1
|
Tesic V, Joksimovic SM, Quillinan N, Krishnan K, Covey DF, Todorovic SM, Jevtovic-Todorovic V. Neuroactive steroids alphaxalone and CDNC24 are effective hypnotics and potentiators of GABA A currents, but are not neurotoxic to the developing rat brain. Br J Anaesth 2020; 124:603-613. [PMID: 32151384 DOI: 10.1016/j.bja.2020.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/01/2020] [Accepted: 01/20/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The most currently used general anaesthetics are potent potentiators of γ-aminobutyric acid A (GABAA) receptors and are invariably neurotoxic during the early stages of brain development in preclinical animal models. As causality between GABAA potentiation and anaesthetic-induced developmental neurotoxicity has not been established, the question remains whether GABAergic activity is crucial for promoting/enhancing neurotoxicity. Using the neurosteroid analogue, (3α,5α)-3-hydroxy-13,24-cyclo-18,21-dinorchol-22-en-24-ol (CDNC24), which potentiates recombinant GABAA receptors, we examined whether this potentiation is the driving force in inducing neurotoxicity during development. METHODS The neurotoxic potential of CDNC24 was examined vis-à-vis propofol (2,6-diisopropylphenol) and alphaxalone (5α-pregnan-3α-ol-11,20-dione) at the peak of rat synaptogenesis. In addition to the morphological neurotoxicity studies of the subiculum and medial prefrontal cortex (mPFC), we assessed the extra-, pre-, and postsynaptic effects of these agents on GABAergic neurotransmission in acute subicular slices from rat pups. RESULTS CDNC24, like alphaxalone and propofol, caused dose-dependent hypnosis in vivo, with a higher therapeutic index. CDNC24 and alphaxalone, unlike propofol, did not cause developmental neuroapoptosis in the subiculum and mPFC. Propofol potentiated post- and extrasynaptic GABAA currents as evidenced by increased spontaneous inhibitory postsynaptic current (sIPSC) decay time and prominent tonic currents, respectively. CDNC24 and alphaxalone had a similar postsynaptic effect, but also displayed a strong presynaptic effect as evidenced by decreased frequency of sIPSCs and induced moderate tonic currents. CONCLUSIONS The lack of neurotoxicity of CDNC24 and alphaxalone may be at least partly related to suppression of presynaptic GABA release in the developing brain.
Collapse
Affiliation(s)
- Vesna Tesic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
2
|
Hao X, Ou M, Zhang D, Zhao W, Yang Y, Liu J, Yang H, Zhu T, Li Y, Zhou C. The Effects of General Anesthetics on Synaptic Transmission. Curr Neuropharmacol 2020; 18:936-965. [PMID: 32106800 PMCID: PMC7709148 DOI: 10.2174/1570159x18666200227125854] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a class of drugs that target the central nervous system and are widely used for various medical procedures. General anesthetics produce many behavioral changes required for clinical intervention, including amnesia, hypnosis, analgesia, and immobility; while they may also induce side effects like respiration and cardiovascular depressions. Understanding the mechanism of general anesthesia is essential for the development of selective general anesthetics which can preserve wanted pharmacological actions and exclude the side effects and underlying neural toxicities. However, the exact mechanism of how general anesthetics work is still elusive. Various molecular targets have been identified as specific targets for general anesthetics. Among these molecular targets, ion channels are the most principal category, including ligand-gated ionotropic receptors like γ-aminobutyric acid, glutamate and acetylcholine receptors, voltage-gated ion channels like voltage-gated sodium channel, calcium channel and potassium channels, and some second massager coupled channels. For neural functions of the central nervous system, synaptic transmission is the main procedure for which information is transmitted between neurons through brain regions, and intact synaptic function is fundamentally important for almost all the nervous functions, including consciousness, memory, and cognition. Therefore, it is important to understand the effects of general anesthetics on synaptic transmission via modulations of specific ion channels and relevant molecular targets, which can lead to the development of safer general anesthetics with selective actions. The present review will summarize the effects of various general anesthetics on synaptic transmissions and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Li
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| | - Cheng Zhou
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| |
Collapse
|
3
|
Costa FLPD, Monteiro LDS, Binda NS, Gomez MV, Gomez RS. Effect of Propofol on the Release of [3H] Acetylcholine from Rat Hippocampal Synaptosomes. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.494.500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
The Effects of Benzodiazepines on Urotensin II-Stimulated Norepinephrine Release from Rat Cerebrocortical Slices. Anesth Analg 2009; 108:1177-81. [DOI: 10.1213/ane.0b013e3181981faa] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Tose R, Kushikata T, Yoshida H, Kudo M, Furukawa K, Ueno S, Hirota K. Interaction between orexinergic neurons and NMDA receptors in the control of locus coeruleus-cerebrocortical noradrenergic activity of the rat. Brain Res 2008; 1250:81-7. [PMID: 19007758 DOI: 10.1016/j.brainres.2008.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 10/14/2008] [Accepted: 10/19/2008] [Indexed: 11/26/2022]
Abstract
Several studies suggest that NMDA glutamate receptors may play an important role in the activation of a number of brain regions by orexin (OX). We hypothesized that OX and NMDA receptors may interact with cerebrocortical noradrenergic neuron originating from the locus coeruleus (LC). To test this hypothesis, using rats as experimental animals, we examined (i) in vitro effects of MK801 on OXA-evoked norepinephrine release from rat cerebrocortical slices, (ii) in vivo interaction between OXA and the NMDA receptor antagonist, MK801 on norepinephrine release from the prefrontal cortex assessed using microdialysis and (iii) MK801 and OXA-modulation of the electroencephalogram (EEG). We have found that MK801 produced a concentration-dependent inhibition of OXA-evoked norepinephrine release from rat cerebrocortical slices with the IC(50) of 0.9 microM. Moreover, we have also found that icv OXA dose-dependently stimulated norepinephrine release from the rat prefrontal cortex saturating at 213% of baseline. In addition, ip MK801 0.1 mg/kg also significantly increased norepinephrine release in prefrontal cortex to 213%. However, these increases in norepinephrine release were significantly reduced by approximately 70% by simultaneous administration of icv OXA 1 nmol and ip MK801 0.1 mg/kg. Both OXA and MK801 decreased sleep and increased wakefulness, but co-administration caused a return to base-line sleep state. These findings strongly indicate that there is a significant interaction between orexinergic neurons and NMDA receptors in the control of LC-cerebrocortical noradrenergic activity.
Collapse
Affiliation(s)
- Ryuji Tose
- Department of Anesthesiology, University of Hirosaki Postgraduate School of Medicine, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Jaskiw GE, Newbould E, Bongiovanni R. Tyrosine availability modulates potassium-induced striatal catecholamine efflux in vivo. Brain Res 2008; 1209:74-84. [DOI: 10.1016/j.brainres.2008.02.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/17/2022]
|
7
|
He Y, Kudo M, Kudo T, Kushikata T, Li E, Hirota K. The Effects of Benzodiazepines on Orexinergic Systems in Rat Cerebrocortical Slices. Anesth Analg 2007; 104:338-40. [PMID: 17242090 DOI: 10.1213/01.ane.0000252413.62821.2e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND As orexinergic (OXergic) neurons have been reported to mediate emotional changes, benzodiazepines might interact with OXergic neurons. METHODS We examined the interactions between OXergic neurons and benzodiazepine receptors in orexin-A (100 nM) and K+ (25 mM)-evoked norepinephrine release from rat cerebrocortical slices. RESULTS Midazolam, diazepam, and flunitrazepam concentration-dependently inhibited both OX-A- and K+-evoked norepinephrine release. The IC50 of midazolam for orexin-A-evoked release (0.87 microM, P < 0.01), which was insensitive to flumazenil, was significantly lower than that of diazepam and flunitrazepam (around 60 microM), whereas the IC50s for K+-evoked release were not different among the benzodiazepines. CONCLUSION There may be no interaction between OXergic neurons and central benzodiazepine receptors.
Collapse
Affiliation(s)
- Ying He
- Department of Anesthesiology, University of Hirosaki School of Medicine, Hirosaki, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Pashkov VN, Hemmings HC. The effects of general anesthetics on norepinephrine release from isolated rat cortical nerve terminals. Anesth Analg 2002; 95:1274-81, table of contents. [PMID: 12401610 DOI: 10.1097/00000539-200211000-00032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Intravenous and volatile general anesthetics inhibit norepinephrine (NE) release from sympathetic neurons and other neurosecretory cells. However, the actions of general anesthetics on NE release from central nervous system (CNS) neurons are unclear. We investigated the effects of representative IV and volatile anesthetics on [(3)H]NE release from isolated rat cortical nerve terminals (synaptosomes). Purified synaptosomes prepared from rat cerebral cortex were preloaded with [(3)H]NE and superfused with buffer containing pargyline (a monoamine oxidase inhibitor) and ascorbic acid (an antioxidant). Basal (spontaneous) and stimulus-evoked [(3)H]NE release was evaluated in the superfusate in the absence or presence of various anesthetics. Depolarization with increased concentrations of KCl (15-20 mM) or 4-aminopyridine (0.5-1.0 mM) evoked concentration- and Ca(2+)-dependent increases in [(3)H]NE release from rat cortical synaptosomes. The IV anesthetics etomidate (5-40 microM), ketamine (5-30 microM), or pentobarbital (25-100 microM) did not affect basal or stimulus-evoked [(3)H]NE release. Propofol (5-40 microM) increased basal [(3)H]NE release and, at larger concentrations, reduced stimulus-evoked release. The volatile anesthetic halothane (0.15-0.70 mM) increased basal [(3)H]NE release, but did not affect stimulus-evoked release. These findings demonstrate drug-specific stimulation of basal NE release. Noradrenergic transmission may represent a presynaptic target for selected general anesthetics in the CNS. Given the contrasting effects of general anesthetics on the release of other CNS transmitters, the presynaptic actions of general anesthetics are both drug- and transmitter-specific. IMPLICATIONS General anesthetics affect synaptic transmission both by altering neurotransmitter release and by modulating postsynaptic responses to transmitter. Anesthetics exert both drug-specific and transmitter-specific effects on transmitter release: therapeutic concentrations of some anesthetics stimulate basal, but not evoked, norepinephrine release, in contrast to evoked glutamate release, which is inhibited.
Collapse
Affiliation(s)
- Victor N Pashkov
- Departments of Anesthesiology and Pharmacology, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10021, USA
| | | |
Collapse
|
9
|
Jouvert P, Pain L, Aunis D, Zwiller J. The anesthetics propofol and ketamine inhibit cocaine-induced egr-1 gene expression in rat forebrain. Eur J Pharmacol 2002; 449:239-43. [PMID: 12167465 DOI: 10.1016/s0014-2999(02)02035-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acute cocaine injection to rats is known to induce the expression of immediate early genes in the forebrain, the effect being primarily mediated by the dopaminergic system. We examined the effect of the anesthetics ketamine and propofol on cocaine-induced egr-1 mRNA expression. Using in situ hybridization, we show that both compounds did not induce egr-1 gene by themselves, but were able to dose-dependently reduce cocaine-induced egr-1 mRNA synthesis in the nucleus accumbens, caudate-putamen and cingulate cortex. Our data suggest that in addition to glutamate NMDA receptors, propofol may act via GABA(A) receptors or ion channels.
Collapse
Affiliation(s)
- Peggy Jouvert
- INSERM U338, Centre de Neurochimie, 5 rue Blaise Pascal, 67084 Strasbourg, Cedex, France
| | | | | | | |
Collapse
|
10
|
Delta 9-tetrahydrocannabinol and cannabinol activate capsaicin-sensitive sensory nerves via a CB1 and CB2 cannabinoid receptor-independent mechanism. J Neurosci 2002. [PMID: 12040079 DOI: 10.1523/jneurosci.22-11-04720.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although Delta(9)-tetrahydrocannabinol (THC) produces analgesia, its effects on nociceptive primary afferents are unknown. These neurons participate not only in pain signaling but also in the local response to tissue injury. Here, we show that THC and cannabinol induce a CB(1)/CB(2) cannabinoid receptor-independent release of calcitonin gene-related peptide from capsaicin-sensitive perivascular sensory nerves. Other psychotropic cannabinoids cannot mimic this action. The vanilloid receptor antagonist ruthenium red abolishes the responses to THC and cannabinol. However, the effect of THC on sensory nerves is intact in vanilloid receptor subtype 1 gene knock-out mice. The THC response depends on extracellular calcium but does not involve known voltage-operated calcium channels, glutamate receptors, or protein kinases A and C. These results may indicate the presence of a novel cannabinoid receptor/ion channel in the pain pathway.
Collapse
|
11
|
Hirota K, Kushikata T, Kudo M, Kudo T, Lambert DG, Matsuki A. Orexin A and B evoke noradrenaline release from rat cerebrocortical slices. Br J Pharmacol 2001; 134:1461-6. [PMID: 11724752 PMCID: PMC1573092 DOI: 10.1038/sj.bjp.0704409] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Orexin A and B, recently identified in the rat hypothalamus are endogenous neuropeptide agonists for the G-protein coupled orexin-1 (OX1) and orexin-2 (OX2) receptors. 2. In the present study, we have examined the effects of orexin A, B and raised extracellular K(+) on noradrenaline release from the rat cerebrocortical slice. We have compared this with other sleep-wake-related (excitatory) neurotransmitters; dopamine, glutamate, serotonin and histamine. 3. Neurotransmitter release studies were performed in rat cerebrocortical slices incubated in modified Krebs buffer (with and without Ca(2+)+EGTA 1 mM) with various concentrations of orexin A, B and K(+) for various times. 4. Orexin A and B-evoked (10(-7) M) noradrenaline release was time-dependent reaching a maximum some 10 min after stimulation. K(+) (40 mM) evoked release was also time dependent but reached a maximum after 6 min. Orexin A, B and K(+) stimulation of release was concentration dependent with pEC(50) and E(max) (% of basal) values of 8.74+/-0.32 (1.8 nM) and 263+/-14% and 8.61+/-0.38 (2.4 nM) and 173+/-7% and 1.43+/-0.02 (37 mM) and 1430+/-70%, respectively. Orexin-evoked release was partially extracellular Ca(2+) dependent. 5. Of the other transmitters studied there was a weak orexin A and B stimulation of glutamate release. In contrast K(+) evoked dopamine, glutamate, histamine and serotonin release with pEC(50) and E(max) (% of basal) values of 1.47+/-0.05 (34 mM) and 3430+/-410%, 1.38+/-0.04 (42 mM) and 1240+/-50%, 1.47+/-0.02 (34 mM) and 480+/-10% and 1.40+/-0.05 (40 mM) and 560+/-60% respectively. 6. We conclude that the neuropeptides orexin A and B evoke noradrenaline release from rat cerebrocortical slices.
Collapse
Affiliation(s)
- K Hirota
- Department of Anesthesiology, University of Hirosaki School of Medicine, Hirosaki 036-8563, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Hirota K, Kudo M, Kudo T, Kitayama M, Kushikata T, Lambert DG, Matsuki A. Barbiturates inhibit K(+)-evoked noradrenaline and dopamine release from rat striatal slices--involvement of voltage sensitive Ca(2+) channels. Neurosci Lett 2000; 291:175-8. [PMID: 10984635 DOI: 10.1016/s0304-3940(00)01408-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cellular target site(s) for anaesthetic action remain unclear. In rat striatal slices we have previously demonstrated that K(+)-evoked noradrenaline (NA) and dopamine (DA) release is mediated predominantly via P/Q-type voltage sensitive Ca(2+) channels (VSCC). Using this model of Ca(2+) dependent transmitter release we have evaluated the effects of anaesthetic and non-anaesthetic barbiturates. Rat brain striatal slices were incubated in the absence and presence of barbiturate for 10 min at 37 degrees C. The slices were then incubated for 6 min with 40 mM KCl. All anaesthetic barbiturates produced a concentration-dependent inhibition of K(+)-evoked NA and DA release. Non-anaesthetic barbiturate, barbituric acid was ineffective. The pIC(50) for NA and DA release (thiopental: 4.90+/-0.13 and 5.00+/-0.10, pentobarbital: 4.39+/-0.07 and 4.43+/-0.14, phenobarbital: 3.85+/-0.08 and 3.59+/-0.10, respectively) correlated with lipid solubility (NA: r(2)=0.999, DA: r(2)=0.987). We therefore suggest that barbiturates inhibit catecholamine release via an interaction with P/Q VSCC further implicating this channel in anaesthetic action.
Collapse
Affiliation(s)
- K Hirota
- Department of Anesthesiology, University of Hirosaki School of Medicine, 036-8563, Hirosaki, Japan
| | | | | | | | | | | | | |
Collapse
|