1
|
Torregroza C, Yueksel B, Ruske R, Stroethoff M, Raupach A, Heinen A, Hollmann MW, Huhn R, Feige K. Combination of Cyclosporine A and Levosimendan Induces Cardioprotection under Acute Hyperglycemia. Int J Mol Sci 2021; 22:ijms22094517. [PMID: 33926009 PMCID: PMC8123582 DOI: 10.3390/ijms22094517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Prognosis of patients with myocardial infarction is detrimentally affected by comorbidities like diabetes mellitus. In the experimental setting, not only diabetes mellitus but also acute hyperglycemia is shown to hamper cardioprotective properties by multiple pharmacological agents. For Levosimendan-induced postconditioning, a strong infarct size reducing effect is demonstrated in healthy myocardium. However, acute hyperglycemia is suggested to block this protective effect. In the present study, we investigated whether (1) Levosimendan-induced postconditioning exerts a concentration-dependent effect under hyperglycemic conditions and (2) whether a combination with the mitochondrial permeability transition pore (mPTP) blocker cyclosporine A (CsA) restores the cardioprotective properties of Levosimendan under hyperglycemia. For this experimental investigation, hearts of male Wistar rats were randomized and mounted onto a Langendorff system, perfused with Krebs-Henseleit buffer with a constant pressure of 80 mmHg. All isolated hearts were subjected to 33 min of global ischemia and 60 min of reperfusion under hyperglycemic conditions. (1) Hearts were perfused with various concentrations of Levosimendan (Lev) (0.3–10 μM) for 10 min at the onset of reperfusion, in order to investigate a concentration–response relationship. In the second set of experiments (2), 0.3 μM Levosimendan was administered in combination with the mPTP blocker CsA, to elucidate the underlying mechanism of blocked cardioprotection under hyperglycemia. Infarct size was determined by tetrazolium chloride (TTC) staining. (1) Control (Con) hearts showed an infarct size of 52 ± 12%. None of the administered Levosimendan concentrations reduced the infarct size (Lev0.3: 49 ± 9%; Lev1: 57 ± 9%; Lev3: 47 ± 11%; Lev10: 50 ± 7%; all ns vs. Con). (2) Infarct size of Con and Lev0.3 hearts were 53 ± 4% and 56 ± 2%, respectively. CsA alone had no effect on infarct size (CsA: 50 ± 10%; ns vs. Con). The combination of Lev0.3 and CsA (Lev0.3 ± CsA) induced a significant infarct size reduction compared to Lev0.3 (Lev0.3+CsA: 35 ± 4%; p < 0.05 vs. Lev0.3). We demonstrated that (1) hyperglycemia blocks the infarct size reducing effects of Levosimendan-induced postconditioning and cannot be overcome by an increased concentration. (2) Furthermore, cardioprotection under hyperglycemia can be restored by combining Levosimendan and the mPTP blocker CsA.
Collapse
Affiliation(s)
- Carolin Torregroza
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - Birce Yueksel
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - Raphael Ruske
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - Martin Stroethoff
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - Annika Raupach
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - André Heinen
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meiberdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Ragnar Huhn
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
- Correspondence:
| | - Katharina Feige
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| |
Collapse
|
2
|
Wu LN, Hu R, Yu JM. Morphine and myocardial ischaemia-reperfusion. Eur J Pharmacol 2020; 891:173683. [PMID: 33121952 DOI: 10.1016/j.ejphar.2020.173683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Coronary heart disease (CHD) is a cardiovascular disease with high mortality and disability worldwide. The main pathological manifestation of CHD is myocardial injury due to ischaemia-reperfusion, resulting in the death of cardiomyocytes (apoptosis and necrosis) and the occurrence of cardiac failure. Morphine is a nonselective opioid receptor agonist that has been commonly used for analgesia and to treat ischaemic heart disease. The present review focused on morphine-induced protection in an animal model of myocardial ischaemia-reperfusion and chronic heart failure and the effects of morphine on ST segment elevation myocardial infarction (STEMI) patients who underwent pre-primary percutaneous coronary intervention (pre-PPCI) or PPCI. The signalling pathways involved are also briefly described.
Collapse
Affiliation(s)
- Li-Ning Wu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Rui Hu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Jun-Ma Yu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China.
| |
Collapse
|
3
|
Hausenloy DJ, Schulz R, Girao H, Kwak BR, De Stefani D, Rizzuto R, Bernardi P, Di Lisa F. Mitochondrial ion channels as targets for cardioprotection. J Cell Mol Med 2020; 24:7102-7114. [PMID: 32490600 PMCID: PMC7339171 DOI: 10.1111/jcmm.15341] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/31/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.
Collapse
Affiliation(s)
- Derek J. Hausenloy
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart Research Institute SingaporeNational Heart CentreSingaporeSingapore
- Yong Loo Lin School of MedicineNational University SingaporeSingaporeSingapore
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Cardiovascular Research CenterCollege of Medical and Health SciencesAsia UniversityTaichung CityTaiwan
| | - Rainer Schulz
- Institute of PhysiologyJustus‐Liebig University GiessenGiessenGermany
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Centre of CoimbraCACCCoimbraPortugal
| | - Brenda R. Kwak
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
| | - Diego De Stefani
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Rosario Rizzuto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Paolo Bernardi
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CNR Neuroscience InstitutePadovaItaly
| | - Fabio Di Lisa
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CNR Neuroscience InstitutePadovaItaly
| |
Collapse
|
4
|
Abstract
PURPOSE Small and big conductance Ca2+-sensitive potassium (KCa) channels are involved in cardioprotective measures aiming at reducing myocardial reperfusion injury. For levosimendan, infarct size-reducing effects were shown. Whether activation of these channels is involved in levosimendan-induced postconditioning is unknown. We hypothesized that levosimendan exerts a concentration-dependent cardioprotective effect and that both types of Ca2+-sensitive potassium channels are involved. METHODS In a prospective blinded experimental laboratory investigation, hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. At the onset of reperfusion, hearts were perfused with various concentrations of levosimendan (0.03-1 μM) in order to determine a concentration-response relationship. To elucidate the involvement of KCa-channels for the observed cardioprotection, in the second set of experiments, 0.3 μM levosimendan was administered in combination with the subtype-specific KCa-channel inhibitors paxilline (1 μM, big KCa-channel) and NS8593 (0.1 μM, small KCa-channel) respectively. Infarct size was determined by tetrazolium chloride (TTC) staining. RESULTS Infarct size in controls was 60 ± 7% and 59 ± 6% respectively. Levosimendan at a concentration of 0.3 μM reduced infarct size to 30 ± 5% (P < 0.0001 vs. control). Higher concentrations of levosimendan did not induce a stronger effect. Paxilline but not NS8593 completely abolished levosimendan-induced cardioprotection while both substances alone had no effect on infarct size. CONCLUSIONS Cardioprotection by levosimendan-induced postconditioning shows a binary phenomenon, either ineffective or with maximal effect. The cardioprotective effect requires activation of big but not small KCa channels.
Collapse
|
5
|
Bunte S, Behmenburg F, Majewski N, Stroethoff M, Raupach A, Mathes A, Heinen A, Hollmann MW, Huhn R. Characteristics of Dexmedetomidine Postconditioning in the Field of Myocardial Ischemia-Reperfusion Injury. Anesth Analg 2020; 130:90-98. [PMID: 31633505 DOI: 10.1213/ane.0000000000004417] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Timing and onset of myocardial ischemia are mostly unpredictable. Therefore, postconditioning could be an effective cardioprotective intervention. Because ischemic postconditioning is an invasive and not practicable treatment, pharmacological postconditioning would be a more suitable alternative cardioprotective measure. For the α2-adrenoreceptor agonist, dexmedetomidine postconditioning has been shown. However, data on a concentration-dependent effect of dexmedetomidine are lacking. Furthermore, it is unclear whether the time point and/or duration of dexmedetomidine administration in the reperfusion period is of relevance. We set out to determine whether infarct size reduction by dexmedetomidine is concentration dependent and whether time point and/or duration of dexmedetomidine application has an impact on the effect size of cardio protection. METHODS Hearts of male Wistar rats were randomized and placed on a Langendorff system perfused with Krebs-Henseleit buffer at a constant pressure of 80 mm Hg. All hearts were subjected to 33 minutes of global ischemia and 60 minutes of reperfusion. In part I of the study, a concentration-response effect was determined by perfusing hearts with various concentrations of dexmedetomidine (0.3-100 nM) at the onset of reperfusion. Based on these results, part II of the study was conducted with 3 nM dexmedetomidine. Application of dexmedetomidine started directly at the onset of reperfusion (Dex60) and 15 minutes (Dex15), 30 minutes (Dex30), or 45 minutes (Dex45) after the start of reperfusion and lasted always until the end of the reperfusion period. Infarct size was determined by triphenyltetrazolium chloride staining. RESULTS In part I, infarct size in control (Con) hearts was 62% ± 4%. Three-nanometer dexmedetomidine was the lowest most effective cardioprotective concentration and reduced infarct size to 24% ± 7% (P < .0001 versus Con). Higher concentrations did not confer stronger protection. Infarct size in control hearts from part II was 66% ± 6%. Different starting times and/or durations of application resulted in similar infarct size reduction (all P < .0001 versus Con). CONCLUSIONS Postconditioning by dexmedetomidine is concentration dependent in ranges between 0.3 and 3 nM. Increased concentrations above 3 nM do not further enhance this cardioprotective effect. This cardioprotective effect is independent of time point and length of application in the reperfusion period.
Collapse
Affiliation(s)
- Sebastian Bunte
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Friederike Behmenburg
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Nicole Majewski
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Martin Stroethoff
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Annika Raupach
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Alexander Mathes
- Department of Anesthesiology, University Hospital Cologne, Cologne, Germany
| | - André Heinen
- Institute of Cardiovascular Physiology, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam Universitair Medische Centra (UMC), University of Amsterdam, the Netherlands
| | - Ragnar Huhn
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
6
|
Activation of PKG and Akt Is Required for Cardioprotection by Ramelteon-Induced Preconditioning and Is Located Upstream of mKCa-Channels. Int J Mol Sci 2020; 21:ijms21072585. [PMID: 32276406 PMCID: PMC7177737 DOI: 10.3390/ijms21072585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Ramelteon is a Melatonin 1 (MT1)—and Melatonin 2 (MT2)—receptor agonist conferring cardioprotection by pharmacologic preconditioning. While activation of mitochondrial calcium-sensitive potassium (mKCa)-channels is involved in this protective mechanism, the specific upstream signaling pathway of Ramelteon-induced cardioprotection is unknown. In the present study, we (1) investigated whether Ramelteon-induced cardioprotection involves activation of protein kinase G (PKG) and/or protein kinase B (Akt) and (2) determined the precise sequence of PKG and Akt in the signal transduction pathway of Ramelteon-induced preconditioning. Hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs–Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. Before ischemia, hearts were perfused with Ramelteon (Ram) with or without the PKG or Akt inhibitor KT5823 and MK2206, respectively (KT5823 + Ram, KT5823, MK2206 + Ram, MK2206). To determine the precise signaling sequence, subsequent experiments were conducted with the guanylate cyclase activator BAY60-2770 and the mKCa-channel activator NS1619. Infarct size was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Ramelteon-induced infarct size reduction was completely blocked by KT5823 (p = 0.0012) and MK2206 (p = 0.0005). MK2206 with Ramelteon combined with BAY60-2770 reduced infarct size significantly (p = 0.0014) indicating that PKG activation takes place after Akt. Ramelteon and KT5823 (p = 0.0063) or MK2206 (p = 0.006) respectively combined with NS1619 also significantly reduced infarct size, indicating that PKG and Akt are located upstream of mKCa-channels. This study shows for the first time that Ramelteon-induced preconditioning (1) involves activation of PKG and Akt; (2) PKG is located downstream of Akt and (3) both enzymes are located upstream of mKCa-channels in the signal transduction pathway.
Collapse
|
7
|
Cardioprotection by Humoral Factors Released After Remote Ischemic Preconditioning Depends on Anesthetic Regimen. Crit Care Med 2020; 47:e250-e255. [PMID: 30608281 DOI: 10.1097/ccm.0000000000003629] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Remote ischemic preconditioning (RIPC) is a practicable and noninvasive method to protect the heart against ischemia reperfusion injury. Unfortunately results from clinical studies are not convincing. Propofol is suggested to be an inhibiting factor of cardioprotection by RIPC, but the underlying mechanism is still unknown. We investigated whether after RIPC the release of humoral factors and/or the direct cardioprotective effect at the myocardium is inhibited by propofol. DESIGN Randomized, prospective, blinded laboratory investigation. SETTING Experimental laboratory. PATIENTS/SUBJECTS Male Wistar rats. INTERVENTIONS Repetitive hind limb ischemia in rats-blood plasma transfers to isolated rat heart. MEASUREMENTS AND MAIN RESULTS In male Wistar rats (six groups, each n = 6/group), RIPC was induced by four cycles of 5 minutes bilateral hind limb ischemia alternately with 5 minutes of reperfusion. Blood samples were taken with (RIPC) and without RIPC (Con). Rats received continuous anesthesia with pentobarbital (Pento, 40 mg/kg body weight/hr) or propofol (Prop, 12 mg/kg body weight/hr), respectively. Cardioprotective properties of the blood plasma was investigated in the rat heart in vitro (six groups, each n = 6/group) perfused with Krebs-Henseleit buffer alone or with propofol (10 µM). Plasma was administered over 10 minutes before myocardial ischemia. All hearts underwent 33 minutes of global ischemia followed by 1 hour of reperfusion. At the end of the experiments, infarct size was determined by triphenyl-tetrazolium-chloride staining. RIPC plasma from pentobarbital anesthetized rats (Pento-RIPC) reduced infarct size from 64% (62-71%) (Pento-Con) to 34% (30-39%) (p < 0.0001). Infarct size with control plasma from propofol anesthetized rats was 59% (58-64%) (Prop-Con). RIPC plasma could not induce cardioprotection (Prop-RIPC: 63% [56-70%] ns vs Prop-Con). In contrast, RIPC plasma from pentobarbital anesthetized rats induced a significant infarct size reduction under propofol perfusion (Pento-RIPC: 34% [30-42%] vs Pento-Con: 54% [53-63%]; p < 0.0001). CONCLUSIONS Loss of cardioprotection by RIPC during propofol anesthesia depends on inhibition of release of humoral factors.
Collapse
|
8
|
Bunte S, Lill T, Falk M, Stroethoff M, Raupach A, Mathes A, Heinen A, Hollmann MW, Huhn R. Impact of Anesthetics on Cardioprotection Induced by Pharmacological Preconditioning. J Clin Med 2019; 8:jcm8030396. [PMID: 30901956 PMCID: PMC6462902 DOI: 10.3390/jcm8030396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Anesthetics, especially propofol, are discussed to influence ischemic preconditioning. We investigated whether cardioprotection by milrinone or levosimendan is influenced by the clinically used anesthetics propofol, sevoflurane or dexmedetomidine. Hearts of male Wistar rats were randomised, placed on a Langendorff system and perfused with Krebs–Henseleit buffer (KHB) at a constant pressure of 80 mmHg. All hearts underwent 33 min of global ischemia and 60 min of reperfusion. Three different anesthetic regimens were conducted throughout the experiments: propofol (11 μM), sevoflurane (2.5 Vol%) and dexmedetomidine (1.5 nM). Under each anesthetic regimen, pharmacological preconditioning was induced by administration of milrinone (1 μM) or levosimendan (0.3 μM) 10 min before ischemia. Infarct size was determined by TTC staining. Infarct sizes in control groups were comparable (KHB-Con: 53 ± 9%, Prop-Con: 56 ± 9%, Sevo-Con: 56 ± 8%, Dex-Con: 53 ± 9%; ns). Propofol completely abolished preconditioning by milrinone and levosimendan (Prop-Mil: 52 ± 8%, Prop-Lev: 52 ± 8%; ns versus Prop-Con), while sevoflurane did not (Sevo-Mil: 31 ± 9%, Sevo-Lev: 33 ± 7%; p < 0.05 versus Sevo-Con). Under dexmedetomidine, results were inconsistent; levosimendan induced infarct size reduction (Dex-Lev: 36 ± 6%; p < 0.05 versus Dex-Con) but not milrinone (Dex-Mil: 51 ± 8%; ns versus Dex-Con). The choice of the anesthetic regimen has an impact on infarct size reduction by pharmacological preconditioning.
Collapse
Affiliation(s)
- Sebastian Bunte
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Tobias Lill
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Maximilian Falk
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Martin Stroethoff
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Annika Raupach
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Alexander Mathes
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| | - André Heinen
- Institute of Cardiovascular Physiology, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meiberdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Ragnar Huhn
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
9
|
Behmenburg F, Trefz L, Dorsch M, Ströthoff M, Mathes A, Raupach A, Heinen A, Hollmann MW, Berger MM, Huhn R. Milrinone-Induced Postconditioning Requires Activation of Mitochondrial Ca 2+-sensitive Potassium (mBK Ca) Channels. J Cardiothorac Vasc Anesth 2018; 32:2142-2148. [PMID: 29306618 DOI: 10.1053/j.jvca.2017.11.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Cardioprotection by postconditioning requires activation of mitochondrial large-conductance Ca2+-sensitive potassium (mBKCa) channels. The involvement of these channels in milrinone-induced postconditioning is unknown. The authors determined whether cardioprotection by milrinone-induced postconditioning involves activation of mBKCa channels in the rat heart in vitro. DESIGN Randomized, prospective, blinded laboratory investigation. SETTING Experimental laboratory. PARTICIPANTS Male Wistar rats. INTERVENTIONS Hearts of male Wistar rats were randomized, placed on a Langendorff system, and perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 minutes of global ischemia and 60 minutes of reperfusion. At the onset of reperfusion, hearts were perfused with different concentrations of milrinone (0.3-100 μM) for determination of a dose-effect curve. In a second set of experiments, 3 μM milrinone was administered in combination with the mBKCa channel inhibitor paxilline (1 μM). Infarct size was determined by triphenyltetrazoliumchloride staining. MEASUREMENTS AND MAIN RESULTS In control animals, infarct size was 37 ± 7%. Milrinone at a concentration of 3 μM reduced infarct size to 22 ± 7% (p < 0.05 v control). Higher milrinone concentrations did not confer stronger protection. Paxilline completely blocked milrinone-induced cardioprotection whereas paxilline alone had no effect on infarct size. CONCLUSIONS This study shows that activation of mBKCa channels plays a pivotal role in milrinone-induced postconditioning.
Collapse
Affiliation(s)
| | - Lara Trefz
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marianne Dorsch
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Martin Ströthoff
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Alexander Mathes
- Department of Anesthesiology, University Hospital Cologne, Cologne, Germany
| | - Annika Raupach
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - André Heinen
- Institute of Cardiovascular Physiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Markus W Hollmann
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Marc M Berger
- Department of Anesthesiology, Perioperative and General Critical Care Medicine, Salzburg General Hospital, Paracelsus Medical University, Salzburg, Austria; Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ragnar Huhn
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
10
|
Bunte S, Behmenburg F, Bongartz A, Stroethoff M, Raupach A, Heinen A, Minol JP, Hollmann MW, Huhn R, Sixt SU. Preconditioning by Levosimendan is Mediated by Activation of Mitochondrial Ca2+-Sensitive Potassium (mBKCa) Channels. Cardiovasc Drugs Ther 2018; 32:427-434. [DOI: 10.1007/s10557-018-6819-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
The Cardioprotective Effect of Dexmedetomidine in Rats Is Dose-Dependent and Mediated by BKCa Channels. J Cardiovasc Pharmacol 2017; 69:228-235. [DOI: 10.1097/fjc.0000000000000466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Eshraghi A, Tayyebi M, Sajjadi SS, Bagheri RK, Ebdali RT, Golnezhad R. Morphine Post-Conditioning Effect on QT Dispersion in Patients Undergoing Primary Percutaneous Coronary Intervention on Anterior Descending Cardiac Artery: A Cohort Study. Electron Physician 2017; 9:3468-3474. [PMID: 28243396 PMCID: PMC5308484 DOI: 10.19082/3468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/14/2016] [Indexed: 01/03/2023] Open
Abstract
Introduction QT dispersion is the difference between the maximum and minimum QTc interval in a 12-lead electrocardiogram (ECG). Some researchers have demonstrated the effects of an increase of QT-d in STEMI and its reduction with successful therapy. The aim of this study was to investigate the morphine post-conditioning effect on the QT dispersion in patients undergoing primary percutaneous coronary intervention (PCI) on anterior descending cardiac artery. Methods This cohort study was conducted on STEMI patients admitted to the Hospital of Imam Reza (AS), Mashhad, Iran, from March 2015 to February 2016 who were undergoing primary angioplasty on the anterior descending cardiac artery. The patients were divided into two groups based on the intake or non-intake of morphine (5 mg morphine for the period of 30 minutes prior to PCI). Parameters, including age, gender, history of diabetes, and blood pressure as well as admission and 24 hours after PCI ejection fraction (EF) and QT-d, were recorded in all patients and compared between the two intervention and control groups. Independent and paired t-tests and chi-square test were used to compare the qualitative and quantitative data between the two groups using SPSS version 19 software. Results The present research was performed on 77 patients (61 males) with mean age of 58.71±11.84 years in the two groups of morphine consumption before PCI (n=46) and control (n=31). No statistical difference was found among the groups in age, gender, diabetes, hypertension, and onset of symptoms until primary PCI. Admission electrocardiogram QT-d value in the positive exposure group showed no significant difference with the control group, but QT-d value at 24 hours after PCI was lower in the positive exposure group than in the control group (morphine versus control: 40.32±6.98 versus 59.64±8.89; p=0.000). QT-d value 24 hours after PCI compared with the admission QT-d value was significantly reduced in both groups. The mean decrease of admission QT-d relative to QT-d 24 hours after PCI was higher in the positive exposure group than in the control group, and this difference was also statistically significant (morphine versus control: 48.65±9.95 versus 25.74±6.66; p=0.000). Conclusion The findings of the current survey demonstrated that morphine consumption before PCI can further reduce QT-d value in an electrocardiogram for PCI as compared to patients who did not take morphine before PCI.
Collapse
Affiliation(s)
- Ali Eshraghi
- M.D., Assistant Professor, Department of Cardiology, Atherosclerosis Prevention Research Center, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Tayyebi
- M.D., Assistant Professor, Department of Cardiology, Atherosclerosis Prevention Research Center, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Sajed Sajjadi
- M.D., Resident of Cardiology, Department of Cardiology, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Khameneh Bagheri
- M.D., Assistant Professor, Department of Cardiology, Atherosclerosis Prevention Research Center, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Takalloo Ebdali
- M.D., Resident of Cardiology, Department of Cardiology, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Golnezhad
- M.D., Resident of Cardiology, Department of Cardiology, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Maslov LN, Khaliulin I, Oeltgen PR, Naryzhnaya NV, Pei J, Brown SA, Lishmanov YB, Downey JM. Prospects for Creation of Cardioprotective and Antiarrhythmic Drugs Based on Opioid Receptor Agonists. Med Res Rev 2016; 36:871-923. [PMID: 27197922 PMCID: PMC5082499 DOI: 10.1002/med.21395] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
It has now been demonstrated that the μ, δ1 , δ2 , and κ1 opioid receptor (OR) agonists represent the most promising group of opioids for the creation of drugs enhancing cardiac tolerance to the detrimental effects of ischemia/reperfusion (I/R). Opioids are able to prevent necrosis and apoptosis of cardiomyocytes during I/R and improve cardiac contractility in the reperfusion period. The OR agonists exert an infarct-reducing effect with prophylactic administration and prevent reperfusion-induced cardiomyocyte death when ischemic injury of heart has already occurred; that is, opioids can mimic preconditioning and postconditioning phenomena. Furthermore, opioids are also effective in preventing ischemia-induced arrhythmias.
Collapse
Affiliation(s)
| | - Igor Khaliulin
- School of Clinical SciencesUniversity of BristolBristolUK
| | | | | | - Jian‐Ming Pei
- Department of PhysiologyFourth Military Medical UniversityXi'anP. R. China
| | | | - Yury B. Lishmanov
- Research Institute for CardiologyTomskRussia
- National Research Tomsk Polytechnic University634050TomskRussia
| | | |
Collapse
|
14
|
Dorsch M, Behmenburg F, Raible M, Blase D, Grievink H, Hollmann MW, Heinen A, Huhn R. Morphine-Induced Preconditioning: Involvement of Protein Kinase A and Mitochondrial Permeability Transition Pore. PLoS One 2016; 11:e0151025. [PMID: 26968004 PMCID: PMC4788451 DOI: 10.1371/journal.pone.0151025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 02/23/2016] [Indexed: 11/20/2022] Open
Abstract
Background Morphine induces myocardial preconditioning (M-PC) via activation of mitochondrial large conductance Ca2+-sensitive potassium (mKCa) channels. An upstream regulator of mKCa channels is protein kinase A (PKA). Furthermore, mKCa channel activation regulates mitochondrial bioenergetics and thereby prevents opening of the mitochondrial permeability transition pore (mPTP). Here, we investigated in the rat heart in vivo whether 1) M-PC is mediated by activation of PKA, and 2) pharmacological opening of the mPTP abolishes the cardioprotective effect of M-PC and 3) M-PC is critically dependent on STAT3 activation, which is located upstream of mPTP within the signalling pathway. Methods Male Wistar rats were randomised to six groups (each n = 6). All animals underwent 25 minutes of regional myocardial ischemia and 120 minutes of reperfusion. Control animals (Con) were not further treated. Morphine preconditioning was initiated by intravenous administration of 0.3 mg/kg morphine (M-PC). The PKA blocker H-89 (10 μg/kg) was investigated with and without morphine (H-89+M-PC, H-89). We determined the effect of mPTP opening with atractyloside (5 mg/kg) with and without morphine (Atr+M-PC, Atr). Furthermore, the effect of morphine on PKA activity was tested in isolated adult rat cardiomyocytes. In further experiments in isolated hearts we tested the protective properties of morphine in the presence of STAT3 inhibition, and whether pharmacological prevention of the mPTP-opening by cyclosporine A (CsA) is cardioprotective in the presence of STAT3 inhibition. Results Morphine reduced infarct size from 64±5% to 39±9% (P<0.05 vs. Con). H-89 completely blocked preconditioning by morphine (64±9%; P<0.05 vs. M-PC), but H-89 itself had not effect on infarct size (61±10%; P>0.05 vs. Con). Also, atractyloside abolished infarct size reduction of morphine completely (65±9%; P<0.05 vs. M-PC) but had no influence on infarct size itself (64±5%; P>0.05 vs. Con). In isolated hearts STAT3 inhibitor Stattic completely abolished morphine-induced preconditioning. Administration of Stattic and mPTP inhibitor cyclosporine A reduced infarct size to 31±6% (Stat+CsA, P<0.05 vs. Con). Cyclosporine A alone reduced infarct size to 26±7% (CsA P<0.05 vs. Con). In cardiomyocytes, PKA activity was increased by morphine. Conclusion Our data suggest that morphine-induced cardioprotection is mediated by STAT3-activation and inhibition of mPTP, with STA3 located upstream of mPTP. There is some evidence that protein kinase A is involved within the signalling pathway.
Collapse
Affiliation(s)
- Marianne Dorsch
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Friederike Behmenburg
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
- * E-mail:
| | - Miriam Raible
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Dominic Blase
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Hilbert Grievink
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
- Department of Anesthesiology and Critical Care Medicine, Hadassah University Hospital, Jerusalem, Israel
- Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, Israel
| | - Markus W. Hollmann
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - André Heinen
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
- Institute of Cardiovascular Physiology, Heinrich-Heine-University, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Ragnar Huhn
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| |
Collapse
|
15
|
Kinoshita M, M. Tsutsumi Y, Fukuta K, Kasai A, Tanaka K. Isoflurane-induced postconditioning via mitochondrial calcium-activated potassium channels. THE JOURNAL OF MEDICAL INVESTIGATION 2016; 63:80-4. [DOI: 10.2152/jmi.63.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
| | - Yasuo M. Tsutsumi
- Department of Anesthesiology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Kohei Fukuta
- Department of Anesthesiology, Tokushima University Hospital
| | - Asuka Kasai
- Department of Anesthesiology, Tokushima University Hospital
| | - Katsuya Tanaka
- Department of Anesthesiology, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
16
|
Impact of Mitochondrial Ca2+-Sensitive Potassium (mBKCa) Channels in Sildenafil-Induced Cardioprotection in Rats. PLoS One 2015; 10:e0144737. [PMID: 26671662 PMCID: PMC4684397 DOI: 10.1371/journal.pone.0144737] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mitochondrial large-conductance Ca2+-sensitive potassium (mBKCa) channels are involved in myocardial ischemic preconditioning. Their role in sildenafil-induced cardioprotection is unknown. We investigated whether sildenafil-induced acute cardioprotection is mediated by activation of mBKCa channels in the rat heart in vitro. METHODS Male Wistar rats (n = 8 per group) were randomized and anesthetized with pentobarbital (90 mg/kg). Hearts were isolated, mounted on a Langendorff system and perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. Hearts underwent 30 min of global ischemia followed by 60 min of reperfusion. At the end of the experiments infarct size was determined by TTC staining. In the control group rats were not further treated. Sildenafil (3 μM) was administered over 10 min before the beginning of ischemia. The mBKCa channel inhibitor paxilline (1 μM) was administered with and without sildenafil before the onset of ischemia. The pathway underlying sildenafil-induced cardioprotection was further investigated with the protein kinase G blocker KT5823 (1 μM). Myocardial cGMP concentration was measured by ELISA. Data (mean±SD) were analysed with a one and two-way analysis of variance as appropriate. RESULTS In control animals infarct size was 52±8%. Sildenafil increased cGMP concentration and reduced infarct size to 35±6% (P<0.05 vs. control). Paxilline and KT5823 completely blocked sildenafil-induced cardioprotection (paxilline+sildenafil: 50±8%, KT5823+sildenafil: 45±8%; both P<0.05 vs. sildenafil). Functional heart parameters and coronary flow were not different between the study groups. CONCLUSION This study shows that in male rats protein kinase G-dependent opening of mBKCa channels plays a pivotal role in sildenafil-induced cardioprotection.
Collapse
|
17
|
|
18
|
Heinen A, Ströthoff M, Schmidt A, Stracke N, Behmenburg F, Bauer I, Hollmann MW, Huhn R. Pharmacological options to protect the aged heart from ischemia and reperfusion injury by targeting the PKA-BK(Ca) signaling pathway. Exp Gerontol 2014; 56:99-105. [PMID: 24727217 DOI: 10.1016/j.exger.2014.03.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 12/21/2022]
Abstract
The beneficial effects of many cardioprotective strategies including ischemic or pharmacological conditioning are reduced in the aged heart. The underlying reason(s) for the age-dependent loss of cardioprotection is unclear. Recently, we demonstrated that protein kinase A (PKA) dependent cardioprotection is lost in the aged heart. However, activation of large-conductance Ca(2+)-sensitive K(+) (BK(Ca)) channels, a putative PKA downstream target, initiated cardioprotection also in the aged heart. Therefore, we aimed to investigate whether 1) BK(Ca) channels are critically involved in PKA activation induced cardioprotection and 2) the age-dependent loss of cardioprotection is caused by differences in PKA regulation. Using an in vivo rat model with regional myocardial ischemia, we treated young (2-4 months) and aged (22-24 months) Wistar rats with PKA activator forskolin, BK(Ca) channel activator NS1619 and/or BK(Ca) channel blocker iberiotoxin. Forskolin induced infarct size reduction was 1) age-dependent and 2) prevented by iberiotoxin. The effect of forskolin on myocardial PKA activity was comparable in young and aged animals. In addition, NS1619 initiated cardioprotection also in the aged heart both when administered before ischemia and during early reperfusion phase. Activation of BK(Ca) channels is critically involved in forskolin induced cardioprotection. The age-dependency of forskolin induced cardioprotection is not caused by age-dependent differences in PKA activation. Pharmacological targeting of BK(Ca) channels before or after myocardial ischemia is a promising therapeutic strategy to protect the aged heart from ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Andre Heinen
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Martin Ströthoff
- Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Anika Schmidt
- Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Nadine Stracke
- Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Friederike Behmenburg
- Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Markus W Hollmann
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands.
| | - Ragnar Huhn
- Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Abstract
Reactive oxygen species (ROS) have been associated with various human diseases, and considerable attention has been paid to investigate their physiological effects. Various ROS are synthesized in the mitochondria and accumulate in the cytoplasm if the cellular antioxidant defense mechanism fails. The critical balance of this ROS synthesis and antioxidant defense systems is termed the redox system of the cell. Various cardiovascular diseases have also been affected by redox to different degrees. ROS have been indicated as both detrimental and protective, via different cellular pathways, for cardiac myocyte functions, electrophysiology, and pharmacology. Mostly, the ROS functions depend on the type and amount of ROS synthesized. While the literature clearly indicates ROS effects on cardiac contractility, their effects on cardiac excitability are relatively under appreciated. Cardiac excitability depends on the functions of various cardiac sarcolemal or mitochondrial ion channels carrying various depolarizing or repolarizing currents that also maintain cellular ionic homeostasis. ROS alter the functions of these ion channels to various degrees to determine excitability by affecting the cellular resting potential and the morphology of the cardiac action potential. Thus, redox balance regulates cardiac excitability, and under pathological regulation, may alter action potential propagation to cause arrhythmia. Understanding how redox affects cellular excitability may lead to potential prophylaxis or treatment for various arrhythmias. This review will focus on the studies of redox and cardiac excitation.
Collapse
Affiliation(s)
- Nitin T Aggarwal
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
| | | |
Collapse
|
20
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
21
|
Jin C, Wu J, Watanabe M, Okada T, Iesaki T. Mitochondrial K+ channels are involved in ischemic postconditioning in rat hearts. J Physiol Sci 2012; 62:325-32. [PMID: 22528048 PMCID: PMC10717354 DOI: 10.1007/s12576-012-0206-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/31/2012] [Indexed: 12/20/2022]
Abstract
The mitochondrial calcium-activated potassium channel (mitoK(Ca)) and the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) are both involved in cardiac preconditioning. Here, we examined whether these two channels are also involved in ischemic or pharmacological postconditioning. Using Langendorff perfusion, rat hearts were made hypoxic for 45 min and then reoxygenated for 30 min. Ischemic postconditioning (IPT) was achieved through application of 3 cycles of 10 s of reperfusion and 10 s of ischemia before reoxygenation, with and without paxilline (Pax; a mitoK(Ca) blocker) or 5-hydroxydecanoate (5-HD; a mitoK(ATP) blocker). Pharmacological postconditioning was carried out for 5 min at the onset of reoxygenation using NS1619 (a mitoK(Ca) opener) or diazoxide (Dia; a mitoK(ATP) opener). Pax and 5-HD abolished IPT-induced cardioprotection from reoxygenation injury, whereas administration of NS1619 or Dia significantly improved cardiac contractile activity and reduced aspartate aminotransferase (an index of myocyte injury) release following reoxygenation. In addition, isolated rat myocytes were loaded with tetramethylrhodamine methyl ester (TMRE; fluorescent mitochondrial membrane potential indicator) and 2',7'-dichlorofluorescein [DCFH; fluorescent reactive oxygen species (ROS) indicator] or Fluo-4-acetoxymethyl ester (Fluo-4-AM; fluorescent calcium indicator). When TMRE-loaded myocytes were laser illuminated, the DCFH and Fluo-4 fluorescence increased, and TMRE fluorescence decreased. These effects were significantly inhibited by NS1619 and Dia. We therefore conclude that IPT may protect the heart through activation of mitoK(ATP) and mitoK(Ca) channels, and that opening of these channels at the onset of reoxygenation protects the heart from reoxygenation injury, most likely by reducing excess generation of ROS and the resultant Ca(2+) overload.
Collapse
Affiliation(s)
- Chunhong Jin
- Department of Physiology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | |
Collapse
|
22
|
Stumpner J, Lange M, Beck A, Smul TM, Lotz CA, Kehl F, Roewer N, Redel A. Desflurane-induced post-conditioning against myocardial infarction is mediated by calcium-activated potassium channels: role of the mitochondrial permeability transition pore. Br J Anaesth 2012; 108:594-601. [PMID: 22315330 DOI: 10.1093/bja/aer496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Desflurane (DES)-induced preconditioning is mediated by large-conductance calcium-activated potassium channels (BK(Ca)). Whether BK(Ca) are involved in anaesthetic-induced post-conditioning is unknown. We tested the hypothesis that DES-induced post-conditioning is mediated by BK(Ca) upstream of the mitochondrial permeability transition pore (mPTP). METHODS Pentobarbital-anaesthetized male C57Black/6 mice were subjected to 45 min coronary artery occlusion (CAO) and 3 h reperfusion. Animals received either no intervention or dimethylsulphoxide (DMSO, 10 µl g(-1)). DES (1.0 MAC, 7.5 vol%) was administered for 18 min, starting 3 min before the end of CAO. The following agents were given either alone or in combination with DES: the BK(Ca) activator NS1619 (1 µg g(-1)), the BK(Ca) inhibitor iberiotoxin (IbTx, 0.05 µg g(-1)), the mPTP opener atractyloside (ATRA, 25 µg g(-1)), and the mPTP inhibitor cyclosporine A (CYC A, 10 µg g(-1)). Infarct size (IS) was determined with triphenyltetrazolium chloride and the area at risk with Evans Blue, respectively. RESULTS IS in control animals was 48(6)%. Neither DMSO, IbTx nor ATRA affected myocardial IS. DES alone or NS1619 alone or the combination reduced IS (P<0.05), CYC A alone or in combination with IbTx or DES also reduced IS (P<0.05). DES-induced reduction of myocardial IS was completely abolished by IbTx and was partially blocked by ATRA and ATRA partially blocked IS reduction by NS1619. CONCLUSIONS These data suggest that DES-induced post-conditioning against myocardial infarction is mediated by BK(Ca) and mPTP. Cardioprotection by BK(Ca) activator NS1619 might occur, at least in part, independently of mPTP.
Collapse
Affiliation(s)
- J Stumpner
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Oberduerrbacher Str. 6, 97080 Wuerzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim JM, Jang YH, Kim J. Morphine and remifentanil-induced cardioprotection: its experimental and clinical outcomes. Korean J Anesthesiol 2011; 61:358-66. [PMID: 22148082 PMCID: PMC3229012 DOI: 10.4097/kjae.2011.61.5.358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 01/05/2023] Open
Abstract
During the past few decades, a large number of animal studies demonstrated that commonly used opioids could provide cardioprotection against ischemia-reperfusion (I/R) injury. Opioid-induced preconditioning or postconditioning mimics ischemic preconditioning (I-Pre) or ischemic postconditioning (I-Post). Both δ- and κ-opioid receptors (OPRs) play a crucial role in opioid-induced cardioprotection (OIC). Down stream signaling effectors of OIC include ATP-sensitive potassium (KATP) channels, protein kinase C (PKC), tyrosine kinase, phosphatidylinositol-3-kinase (PI3-kinase), extracellular signal regulated kinase1/2 (ERK1/2), glycogen synthase kinase-3β (GSK-3β), and mitochondrial permeability transition pore (MPTP), among others. Recently, various reports also suggest that opioids could provide cardioprotection in humans. This review will discuss OIC using mostly morphine and remifentanil which are widely used during cardiac anesthesia in addition to the clinical implications of OIC.
Collapse
Affiliation(s)
- Jin Mo Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Keimyung University, Daegu, Korea
| | | | | |
Collapse
|
24
|
Mochly-Rosen D, Grimes KV. Myocardial salvage in acute myocardial infarction--challenges in clinical translation. J Mol Cell Cardiol 2011; 51:451-3. [PMID: 21851825 DOI: 10.1016/j.yjmcc.2011.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022]
|
25
|
Cao Y, Zhang SZ, Zhao SQ, Bruce IC. The mitochondrial Ca(2+)-activated K(+) channel contributes to cardioprotection by limb remote ischemic preconditioning in rat. Life Sci 2011; 88:1026-30. [PMID: 21443891 DOI: 10.1016/j.lfs.2011.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/10/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
AIMS To investigate the role of the mitochondrial Ca(2+)-activated K(+) channel in cardioprotection induced by limb remote ischemic preconditioning. MAIN METHODS Male Sprague-Dawley rats (250-300 g) were randomized into control, ischemia/reperfusion (I/R), remote ischemic preconditioning (RPC), NS1619 (a specific mitochondrial Ca(2+)-activated K(+) channel opener), and RPC+paxilline (a specific mitochondrial Ca(2+)-activated K(+) channel inhibitor) groups. RPC was induced by 4 cycles of 5 min of ligation followed by 5 min of reperfusion of the left femoral artery. Myocardial I/R was achieved by ligation of the left anterior descending coronary artery for 30 min, followed by 120 min of reperfusion. Infarct size was determined by 2,3,5-triphenyltetrazolium chloride staining, the hemodynamics were monitored, and lactate dehydrogenase (LDH) levels in the coronary effluent, manganese superoxide dismutase (Mn-SOD) content in mitochondria and mitochondrial membrane potential were measured spectrophotometrically. The ultrastructure of cardiomyocyte mitochondria was assessed by electron microscopy. KEY FINDINGS NS1619 (10 μM) improved heart function, decreased infarct size, reduced LDH release, maintained mitochondrial structural integrity and mitochondrial membrane potential, and increased the mitochondrial content of Mn-SOD to the same degree as RPC treatment. However, paxilline (1 μM) eliminated the cardioprotective effect conferred by RPC. SIGNIFICANCE The mitochondrial Ca(2+)-activated K(+) channel participates in the myocardial protection by limb remote ischemic preconditioning.
Collapse
Affiliation(s)
- Yang Cao
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | | | | | | |
Collapse
|