1
|
McGuigan S, Marie DJ, O'Bryan LJ, Flores FJ, Evered L, Silbert B, Scott DA. The cellular mechanisms associated with the anesthetic and neuroprotective properties of xenon: a systematic review of the preclinical literature. Front Neurosci 2023; 17:1225191. [PMID: 37521706 PMCID: PMC10380949 DOI: 10.3389/fnins.2023.1225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Xenon exhibits significant neuroprotection against a wide range of neurological insults in animal models. However, clinical evidence that xenon improves outcomes in human studies of neurological injury remains elusive. Previous reviews of xenon's method of action have not been performed in a systematic manner. The aim of this review is to provide a comprehensive summary of the evidence underlying the cellular interactions responsible for two phenomena associated with xenon administration: anesthesia and neuroprotection. Methods A systematic review of the preclinical literature was carried out according to the PRISMA guidelines and a review protocol was registered with PROSPERO. The review included both in vitro models of the central nervous system and mammalian in vivo studies. The search was performed on 27th May 2022 in the following databases: Ovid Medline, Ovid Embase, Ovid Emcare, APA PsycInfo, and Web of Science. A risk of bias assessment was performed utilizing the Office of Health Assessment and Translation tool. Given the heterogeneity of the outcome data, a narrative synthesis was performed. Results The review identified 69 articles describing 638 individual experiments in which a hypothesis was tested regarding the interaction of xenon with cellular targets including: membrane bound proteins, intracellular signaling cascades and transcription factors. Xenon has both common and subtype specific interactions with ionotropic glutamate receptors. Xenon also influences the release of inhibitory neurotransmitters and influences multiple other ligand gated and non-ligand gated membrane bound proteins. The review identified several intracellular signaling pathways and gene transcription factors that are influenced by xenon administration and might contribute to anesthesia and neuroprotection. Discussion The nature of xenon NMDA receptor antagonism, and its range of additional cellular targets, distinguishes it from other NMDA antagonists such as ketamine and nitrous oxide. This is reflected in the distinct behavioral and electrophysiological characteristics of xenon. Xenon influences multiple overlapping cellular processes, both at the cell membrane and within the cell, that promote cell survival. It is hoped that identification of the underlying cellular targets of xenon might aid the development of potential therapeutics for neurological injury and improve the clinical utilization of xenon. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: 336871.
Collapse
Affiliation(s)
- Steven McGuigan
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Boston, MA, United States
| | - Daniel J. Marie
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Liam J. O'Bryan
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Francisco J. Flores
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Boston, MA, United States
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lisbeth Evered
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Brendan Silbert
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
| | - David A. Scott
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Yin H, Chen Z, Zhao H, Huang H, Liu W. Noble gas and neuroprotection: From bench to bedside. Front Pharmacol 2022; 13:1028688. [PMID: 36532733 PMCID: PMC9750501 DOI: 10.3389/fphar.2022.1028688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/03/2022] [Indexed: 07/26/2023] Open
Abstract
In recent years, inert gases such as helium, argon, and xenon have gained considerable attention for their medical value. Noble gases present an intriguing scientific paradox: although extremely chemically inert, they display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge about their mechanisms of action, some noble gases have been used successfully in clinical practice. The neuroprotection elicited by these noble gases has been investigated in experimental animal models of various types of brain injuries, such as traumatic brain injury, stroke, subarachnoid hemorrhage, cerebral ischemic/reperfusion injury, and neurodegenerative diseases. Collectively, these central nervous system injuries are a leading cause of morbidity and mortality every year worldwide. Treatment options are presently limited to thrombolytic drugs and clot removal for ischemic stroke, or therapeutic cooling for other brain injuries before the application of noble gas. Currently, there is increasing interest in noble gases as novel treatments for various brain injuries. In recent years, neuroprotection elicited by particular noble gases, xenon, for example, has been reported under different conditions. In this article, we have reviewed the latest in vitro and in vivo experimental and clinical studies of the actions of xenon, argon, and helium, and discuss their potential use as neuroprotective agents.
Collapse
Affiliation(s)
- Haiying Yin
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zijun Chen
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hailin Zhao
- Division of Anesthetics, Department of Surgery and Cancer, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Han Huang
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenwen Liu
- Department of Anesthesia Nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Ministry of Education, Sichuan University and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| |
Collapse
|
3
|
Zhang M, Cheng Y, Zhai Y, Yuan Y, Hu H, Meng X, Fan X, Sun H, Li S. Attenuated iron stress and oxidative stress may participate in anti-seizure and neuroprotective roles of xenon in pentylenetetrazole-induced epileptogenesis. Front Cell Neurosci 2022; 16:1007458. [DOI: 10.3389/fncel.2022.1007458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
The previous studies have demonstrated the excellent neuroprotective effects of xenon. In this study, we verified the anti-seizure and neuroprotective roles of xenon in epileptogenesis and evaluated the involvement of oxidative stress and iron accumulation in the protective roles of xenon. Epileptogenesis was induced by pentylenetetrazole (PTZ) treatment in Sprague-Dawley rats. During epileptogenesis, we found increased levels of iron and oxidative stress accompanied by elevated levels of divalent metal transporter protein 1 and iron regulatory protein 1, which are closely associated with iron accumulation. Meanwhile, the levels of autophagy and mitophagy increased, alongside significant neuronal damage and cognitive deficits. Xenon treatment reversed these effects: oxidative stress and iron stress were reduced, neuronal injury and seizure severity were attenuated, and learning and memory deficits were improved. Thus, our results confirmed the neuroprotective and anti-seizure effects of xenon treatment in PTZ-induced epileptogenesis. The reduction in oxidative and iron stress may be the main mechanisms underlying xenon treatment. Thus, this study provides a potential intervention strategy for epileptogenesis.
Collapse
|
4
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
5
|
Zhu W, Zhu J, Zhao S, Li J, Hou D, Zhang Y, Sun H. Xenon Exerts Neuroprotective Effects on Kainic Acid-Induced Acute Generalized Seizures in Rats via Increased Autophagy. Front Cell Neurosci 2020; 14:582872. [PMID: 33132850 PMCID: PMC7573545 DOI: 10.3389/fncel.2020.582872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/03/2020] [Indexed: 12/04/2022] Open
Abstract
Xenon has been shown to have neuroprotective effects and is clinically used as a favorable safe inhalation anesthetic. We previously confirmed the neuroprotective effects of xenon treatment in epileptic animals. However, the mechanism underlying these protective effects remains unclear. We aimed to assess the effects of xenon inhalation on autophagy in neuronal injury induced by acute generalized seizures. Kainic acid (KA) was injected into the lateral ventricle of male Sprague–Dawley rats to induce acute generalized seizures. Next, the rats were treated via inhalation of a 70% xenon/21% oxygen/9% nitrogen mixture for 60 min immediately after KA administration. The control group was treated via inhalation of a 79% nitrogen/21% oxygen mixture. Subsequently, two inhibitors (3-methyladenine or bafilomycin A1) or an autophagy inducer (rapamycin) were administered, respectively, before KA and xenon administration to determine the role of autophagy in the protective effects of xenon. The levels of apoptosis, neuronal injury, and autophagy were determined in all the rats. Xenon inhalation significantly attenuated the severity of the seizure-induced neuronal injury. Increased autophagy accompanied this inhibitive effect. Autophagy inhibition eliminated these xenon neuroprotective effects. A simulation of autophagy using rapamycin recapitulated xenon’s protective effects on KA-induced acute generalized seizures in the rats. These findings confirmed that xenon exerts strong neuroprotective effects in KA-induced acute generalized seizures. Further, they indicate that increased autophagy may underlie the protective effects of xenon. Therefore, xenon and autophagy inducers may be useful clinical options for their neuroprotective effects in epileptic seizures.
Collapse
Affiliation(s)
- Wei Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Jianguo Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | | | - Jieqing Li
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Dianjun Hou
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
6
|
Xenon exerts anti-seizure and neuroprotective effects in kainic acid-induced status epilepticus and neonatal hypoxia-induced seizure. Exp Neurol 2019; 322:113054. [DOI: 10.1016/j.expneurol.2019.113054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/27/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022]
|
7
|
Zhang Y, Zhang M, Yu J, Zhu W, Wang Q, Pan X, Gao X, Yang J, Sun H. Mode-Dependent Effect of Xenon Inhalation on Kainic Acid-Induced Status Epilepticus in Rats. Front Cell Neurosci 2019; 13:375. [PMID: 31474835 PMCID: PMC6702968 DOI: 10.3389/fncel.2019.00375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Previous studies have reported the possible neuroprotective effects of xenon treatment. The purpose of this study was to define the range of effective xenon ratio, most effective xenon ratio, and time-window for intervention in the kainic acid (KA) – induced status epilepticus (SE) rat model. Different ratios of xenon (35% xenon, 21% oxygen, 44% nitrogen, 50% xenon, 21% oxygen, 29% nitrogen, 70% xenon, 21% oxygen, and 9% nitrogen) were used to treat the KA-induced SE. Our results confirmed the anti-seizure role of 50 and 70% xenon mixture, with a stronger effect from the latter. Further, 70% xenon mixture was dispensed at three time points (0 min, 15 min delayed, and 30 min delayed) after KA administration, and the results indicated the anti-seizure effect at all treated time points. The results also established that the neuronal injury in the hippocampus and entorhinal cortex (EC), assessed using Fluoro-Jade B (FJB) staining, were reversed by the xenon inhalation, and within 30 min after KA administration. Our study, therefore, indicates the appropriate effective xenon ratio and time-window for intervention that can depress seizures. The prevention of neuronal injury and further reversal of the loss of effective control of depress network in the hippocampus and EC may be the mechanisms underlying the anti-seizure effect of xenon.
Collapse
Affiliation(s)
- Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Wei Zhu
- Shandong Academy of Medical Sciences, Jinan, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Jing Yang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
8
|
Jin Z, Piazza O, Ma D, Scarpati G, De Robertis E. Xenon anesthesia and beyond: pros and cons. Minerva Anestesiol 2018; 85:83-89. [PMID: 30019577 DOI: 10.23736/s0375-9393.18.12909-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Xenon is a colorless and odorless noble gas, licensed for human use as an anesthetic gas as well as a radiological marker. The MAC of this gas is about 63% but xenon anesthesia is associated with fast recovery of cognitive function and cardiovascular stability. Nevertheless, postoperative nausea and vomiting (PONV) incidence for xenon anesthesia is very high. It has been reported that Xenon has cytoprotective effects that may have therapeutic values in both CNS protection, and in organ graft preservation. Currently, there are few studies about the effect of xenon on ischemia reperfusion injury of transplantable organs and insufficient clinical data upon its effect on intracranial and cerebral perfusion pressure. We shortly review the pros and cons of xenon as an anesthetic agent.
Collapse
Affiliation(s)
- Zhaosheng Jin
- Anesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Ornella Piazza
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Daqing Ma
- Anesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Giuliana Scarpati
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Edoardo De Robertis
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy -
| |
Collapse
|
9
|
Yang YW, Wang YL, Lu JK, Tian L, Jin M, Cheng WP. Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors. Neural Regen Res 2018; 13:510-517. [PMID: 29623938 PMCID: PMC5900516 DOI: 10.4103/1673-5374.228757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neuroprotective effect against spinal cord ischemia/reperfusion injury in rats exerted by delayed xenon post-conditioning is stronger than that produced by immediate xenon post-conditioning. However, the mechanisms underlying this process remain unclear. Activated microglia are the main inflammatory cell type in the nervous system. The release of pro-inflammatory factors following microglial activation can lead to spinal cord damage, and inhibition of microglial activation can relieve spinal cord ischemia/reperfusion injury. To investigate how xenon regulates microglial activation and the release of inflammatory factors, a rabbit model of spinal cord ischemia/reperfusion injury was induced by balloon occlusion of the infrarenal aorta. After establishment of the model, two interventions were given: (1) immediate xenon post-conditioning—after reperfusion, inhalation of 50% xenon for 1 hour, 50% N2/50%O2 for 2 hours; (2) delayed xenon post-conditioning—after reperfusion, inhalation of 50% N2/50%O2 for 2 hours, 50% xenon for 1 hour. At 4, 8, 24, 48 and 72 hours after reperfusion, hindlimb locomotor function was scored using the Jacobs locomotor scale. At 72 hours after reperfusion, interleukin 6 and interleukin 10 levels in the spinal cord of each group were measured using western blot assays. Iba1 levels were determined using immunohistochemistry and a western blot assay. The number of normal neurons at the injury site was quantified using hematoxylin-eosin staining. At 72 hours after reperfusion, delayed xenon post-conditioning remarkably enhanced hindlimb motor function, increased the number of normal neurons at the injury site, decreased Iba1 levels, and inhibited interleukin-6 and interleukin-10 levels in the spinal cord. Immediate xenon post-conditioning did not noticeably affect the above-mentioned indexes. These findings indicate that delayed xenon post-conditioning after spinal cord injury improves the recovery of neurological function by reducing microglial activation and the release of interleukin-6 and interleukin-10.
Collapse
Affiliation(s)
- Yan-Wei Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yun-Lu Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jia-Kai Lu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Lei Tian
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Mu Jin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Wei-Ping Cheng
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
10
|
Xenon-delayed postconditioning attenuates spinal cord ischemia/reperfusion injury through activation AKT and ERK signaling pathways in rats. J Neurol Sci 2016; 368:277-84. [DOI: 10.1016/j.jns.2016.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/20/2022]
|
11
|
|
12
|
Fahlenkamp AV, Rossaint R, Coburn M. [Neuroprotection by noble gases: New developments and insights]. Anaesthesist 2016; 64:855-8. [PMID: 26329914 DOI: 10.1007/s00101-015-0079-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Noble gases are chemically inert elements, some of which exert biological activity. Experimental neuroprotection in particular has been widely shown for xenon, argon and helium. The underlying mechanisms of action are not yet fully understood. Besides an interference with neuronal ion-gated channels and cellular signaling pathways as well as anti-apoptotic effects, the modulation of neuroinflammation seems to play a crucial role. This review presents the current knowledge on neuroprotection by noble gases with a focus on interactions with the neuronal-glial network and neuroinflammation and the perspectives on clinical applications.
Collapse
Affiliation(s)
- A V Fahlenkamp
- Klinik für Anästhesiologie, Universitätsklinikum Aachen, RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| | - R Rossaint
- Klinik für Anästhesiologie, Universitätsklinikum Aachen, RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - M Coburn
- Klinik für Anästhesiologie, Universitätsklinikum Aachen, RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| |
Collapse
|
13
|
Jellish WS. Spinal Cord Protection During Thoracoabdominal Aortic Intervention: Now and in the Future–It’s Not All About Hypothermia. J Cardiothorac Vasc Anesth 2016; 30:275-9. [DOI: 10.1053/j.jvca.2016.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 11/11/2022]
|
14
|
Abstract
Objectives: Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Design: Experimental animal investigation. Setting: University research laboratory. Subjects: Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20–25 g. Interventions: We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Measurements and Main Results: Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10 expression, resulted in an increase in apoptosis, and exacerbated lipopolysaccharide-induced acute kidney injury. Conclusion: Our findings demonstrated that xenon preconditioning protected against lipopolysaccharide-induced acute kidney injury via activation of miR-21 target signaling pathways.
Collapse
|
15
|
|
16
|
Smit KF, Weber NC, Hollmann MW, Preckel B. Noble gases as cardioprotectants - translatability and mechanism. Br J Pharmacol 2015; 172:2062-73. [PMID: 25363501 PMCID: PMC4386981 DOI: 10.1111/bph.12994] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/06/2014] [Accepted: 10/21/2014] [Indexed: 01/03/2023] Open
Abstract
Several noble gases, although classified as inert substances, exert a tissue-protective effect in different experimental models when applied before organ ischaemia as an early or late preconditioning stimulus, after ischaemia as a post-conditioning stimulus or when given in combination before, during and/or after ischaemia. A wide range of organs can be protected by these inert substances, in particular cardiac and neuronal tissue. In this review we summarize the data on noble gas-induced cardioprotection, focusing on the underlying protective mechanisms. We will also look at translatability of experimental data to the clinical situation.
Collapse
Affiliation(s)
- Kirsten F Smit
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A), Academic Medical Centre (AMC)Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A), Academic Medical Centre (AMC)Amsterdam, The Netherlands
| | - Markus W Hollmann
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A), Academic Medical Centre (AMC)Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A), Academic Medical Centre (AMC)Amsterdam, The Netherlands
| |
Collapse
|