1
|
Scheid S, Goebel U, Ulbrich F. Neuroprotection Is in the Air-Inhaled Gases on Their Way to the Neurons. Cells 2023; 12:2480. [PMID: 37887324 PMCID: PMC10605176 DOI: 10.3390/cells12202480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Cerebral injury is a leading cause of long-term disability and mortality. Common causes include major cardiovascular events, such as cardiac arrest, ischemic stroke, and subarachnoid hemorrhage, traumatic brain injury, and neurodegenerative as well as neuroinflammatory disorders. Despite improvements in pharmacological and interventional treatment options, due to the brain's limited regeneration potential, survival is often associated with the impairment of crucial functions that lead to occupational inability and enormous economic burden. For decades, researchers have therefore been investigating adjuvant therapeutic options to alleviate neuronal cell death. Although promising in preclinical studies, a huge variety of drugs thought to provide neuroprotective effects failed in clinical trials. However, utilizing medical gases, noble gases, and gaseous molecules as supportive treatment options may offer new perspectives for patients suffering neuronal damage. This review provides an overview of current research, potentials and mechanisms of these substances as a promising therapeutic alternative for the treatment of cerebral injury.
Collapse
Affiliation(s)
- Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care Medicine, St. Franziskus-Hospital, 48145 Muenster, Germany;
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
2
|
Wu ZD, Feng Y, Ma ZX, Liu Z, Xiong HH, Zhou ZP, Ouyang LS, Xie FK, Tang YM. MicroRNAs: protective regulators for neuron growth and development. Neural Regen Res 2023; 18:734-745. [DOI: 10.4103/1673-5374.353481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
3
|
Stolp J, Coutinho JM, Immink RV, Preckel B. Anesthetic considerations for endovascular treatment in stroke therapy. Curr Opin Anaesthesiol 2022; 35:472-478. [PMID: 35787587 DOI: 10.1097/aco.0000000000001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The introduction of clot removement by endovascular treatment (EVT) in 2015 has improved the clinical outcome of patients with acute ischemic stroke (AIS) due to a large vessel occlusion (LVO). Anesthetic strategies during EVT vary widely between hospitals, with some departments employing local anesthesia (LA), others performing conscious sedation (CS) or general anesthesia (GA). The optimal anesthetic strategy remains debated. This review will describe the effects of anesthetic strategy on clinical and radiological outcomes and hemodynamic parameters in patients with AIS undergoing EVT. RECENT FINDINGS Small single-center randomized controlled trails (RCTs) found either no difference or favored GA, while large observational cohort studies favored CS or LA. RCTs using LA as separate comparator arm are still lacking and a meta-analysis of observational studies failed to show differences in functional outcome between LA vs. other anesthetic strategies. Advantages of LA were shorter door-to-groin time in patients and less intraprocedural hypotension, which are both variables that are known to impact functional outcome. SUMMARY The optimal anesthetic approach in patients undergoing EVT for stroke therapy is still unclear, but based on logistics and peri-procedural hemodynamics, LA may be the optimal choice. Multicenter RCTs are warranted comparing LA, CS and GS with strict blood pressure targets and use of the same anesthetic agents to minimize confounding variables.
Collapse
Affiliation(s)
| | | | - Rogier V Immink
- Department of Anesthesiology, Amsterdam UMC Location AMC, University of Amsterdam
| | - Benedikt Preckel
- Department of Anesthesiology, Amsterdam UMC Location AMC, University of Amsterdam
- Amsterdam Public Health, Quality of Care
- Amsterdam Cardiovascular Science, Diabetes & Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Liang L, Fan Z, He D, Zhao Y, Zeng T, Liu B, Ma T, Kang J, Zhang H. Sevoflurane-Induced Neurotoxicity in the Developing Hippocampus via HIPK2/AKT/mTOR Signaling. Neurotox Res 2022; 40:803-813. [PMID: 35460511 DOI: 10.1007/s12640-021-00445-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022]
Abstract
Sevoflurane (Sev) is a widely used inhalational anesthetic for general anesthesia in children. Previous studies have confirmed that multiple exposures to inhaled anesthetic can induce long-term neurotoxicity in newborn mice. However, the underlying mechanisms remain elusive. In this study, we investigated the role of homeodomain interacting protein kinase 2 (HIPK2), a stress activating kinase involved in neural survival and synaptic plasticity, and its underlying mechanism in sevoflurane-induced neurotoxicity. Empirical study showed that neuronal apoptosis was elevated after exposure to sevoflurane. Meanwhile, up-regulation of HIPK2 and AKT/mTOR signaling was observed in primary hippocampal neurons and hippocampus in mice upon anesthetic exposure. A64, antagonist of HIPK2, could significantly reduce increased apoptosis and activation of AKT/mTOR induced by sevoflurane. AKT antagonist MK2206 partially alleviated neuronal apoptosis without affecting the expression of HIPK2. Experimental results demonstrated a crucial role of HIPK2/AKT/mTOR signaling in neurotoxicity of sevoflurane. Thus, HIPK2/AKT/mTOR signaling can serve as a potential target for the protection of inhalation anesthesia-induced cytotoxicity in the future.
Collapse
Affiliation(s)
- Lirong Liang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, School of Stomatology, Fourth Military Medical University, Shaanxi, 710032, Xi'an, People's Republic of China
| | - Ze Fan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, School of Stomatology, Fourth Military Medical University, Shaanxi, 710032, Xi'an, People's Republic of China
| | - Danyi He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, School of Stomatology, Fourth Military Medical University, Shaanxi, 710032, Xi'an, People's Republic of China
| | - Youyi Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, School of Stomatology, Fourth Military Medical University, Shaanxi, 710032, Xi'an, People's Republic of China
| | - Tian Zeng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, School of Stomatology, Fourth Military Medical University, Shaanxi, 710032, Xi'an, People's Republic of China
| | - Bing Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, School of Stomatology, Fourth Military Medical University, Shaanxi, 710032, Xi'an, People's Republic of China
| | - Tianyuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, School of Stomatology, Fourth Military Medical University, Shaanxi, 710032, Xi'an, People's Republic of China
| | - Junjun Kang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, School of Stomatology, Fourth Military Medical University, Shaanxi, 710032, Xi'an, People's Republic of China.
| |
Collapse
|
5
|
Melis N, Carcy R, Rubera I, Cougnon M, Duranton C, Tauc M, Pisani DF. Akt Inhibition as Preconditioning Treatment to Protect Kidney Cells against Anoxia. Int J Mol Sci 2021; 23:ijms23010152. [PMID: 35008578 PMCID: PMC8745656 DOI: 10.3390/ijms23010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/15/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lesions issued from the ischemia/reperfusion (I/R) stress are a major challenge in human pathophysiology. Of human organs, the kidney is highly sensitive to I/R because of its high oxygen demand and poor regenerative capacity. Previous studies have shown that targeting the hypusination pathway of eIF5A through GC7 greatly improves ischemic tolerance and can be applied successfully to kidney transplants. The protection process correlates with a metabolic shift from oxidative phosphorylation to glycolysis. Because the protein kinase B Akt is involved in ischemic protective mechanisms and glucose metabolism, we looked for a link between the effects of GC7 and Akt in proximal kidney cells exposed to anoxia or the mitotoxic myxothiazol. We found that GC7 treatment resulted in impaired Akt phosphorylation at the Ser473 and Thr308 sites, so the effects of direct Akt inhibition as a preconditioning protocol on ischemic tolerance were investigated. We evidenced that Akt inhibitors provide huge protection for kidney cells against ischemia and myxothiazol. The pro-survival effect of Akt inhibitors, which is reversible, implied a decrease in mitochondrial ROS production but was not related to metabolic changes or an antioxidant defense increase. Therefore, the inhibition of Akt can be considered as a preconditioning treatment against ischemia.
Collapse
Affiliation(s)
- Nicolas Melis
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Romain Carcy
- Université Côte d’Azur, CNRS, LP2M, 06103 Nice, France; (R.C.); (I.R.); (M.C.); (C.D.); (M.T.)
- CHU Nice, Hôpital Pasteur 2, Service de Réanimation Polyvalente et Service de Réanimation des Urgences Vitales, 06103 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Isabelle Rubera
- Université Côte d’Azur, CNRS, LP2M, 06103 Nice, France; (R.C.); (I.R.); (M.C.); (C.D.); (M.T.)
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Marc Cougnon
- Université Côte d’Azur, CNRS, LP2M, 06103 Nice, France; (R.C.); (I.R.); (M.C.); (C.D.); (M.T.)
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Christophe Duranton
- Université Côte d’Azur, CNRS, LP2M, 06103 Nice, France; (R.C.); (I.R.); (M.C.); (C.D.); (M.T.)
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Michel Tauc
- Université Côte d’Azur, CNRS, LP2M, 06103 Nice, France; (R.C.); (I.R.); (M.C.); (C.D.); (M.T.)
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Didier F. Pisani
- Université Côte d’Azur, CNRS, LP2M, 06103 Nice, France; (R.C.); (I.R.); (M.C.); (C.D.); (M.T.)
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
- Correspondence:
| |
Collapse
|
6
|
Cai M, Sun S, Wang J, Dong B, Yang Q, Tian L, Dong H, Wang S, Hou W. Sevoflurane preconditioning protects experimental ischemic stroke by enhancing anti-inflammatory microglia/macrophages phenotype polarization through GSK-3β/Nrf2 pathway. CNS Neurosci Ther 2021; 27:1348-1365. [PMID: 34370899 PMCID: PMC8504524 DOI: 10.1111/cns.13715] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Aims Sevoflurane preconditioning (SPC) results in cerebral ischemic tolerance; however, the mechanism remains unclear. Promoting microglia/macrophages polarization from pro‐inflammatory state to anti‐inflammatory phenotype has been indicated as a potential treatment target against ischemic stroke. In this study, we aimed to assess the effect of SPC on microglia polarization after stroke and which signaling pathway was involved in this transition. Methods Mouse primary microglia with SPC were challenged by oxygen‐glucose deprivation (OGD) or lipopolysaccharide (LPS), and mice with SPC were subjected to middle cerebral artery occlusion (MCAO). Then, the mRNA and protein levels of pro‐inflammatory/anti‐inflammatory factors were analyzed. GSK‐3β phosphorylation and Nrf2 nuclear translocation were measured. The mRNA and protein expression of pro‐inflammatory/anti‐inflammatory factors, neurological scores, infarct volume, cellular apoptosis, the proportion of pro‐inflammatory/anti‐inflammatory microglia/macrophages, and the generation of super‐oxidants were examined after SPC or GSK‐3β inhibitor TDZD treatment with or without Nrf2 deficiency. Results Sevoflurane preconditioning promoted anti‐inflammatory and inhibited pro‐inflammatory microglia/macrophages phenotype both in vitro and in vivo. GSK‐3β phosphorylation at Ser9 was increased after SPC. Both SPC and TDZD administration enhanced Nrf2 nuclear translocation, reduced pro‐inflammatory microglia/macrophages markers expression, promoted anti‐inflammatory markers level, and elicited a neuroprotective effect. Nrf2 deficiency abolished the promoted anti‐inflammatory microglia/macrophages polarization and ischemic tolerance induced by TDZD treatment. The reduced percentage of pro‐inflammatory positive cells and super‐oxidants generation induced by SFC or TDZD was also reversed by Nrf2 knockdown. Conclusions Our results indicated that SPC exerts brain ischemic tolerance and promotes anti‐inflammatory microglia/macrophages polarization by GSK‐3β‐dependent Nrf2 activation, which provides a novel mechanism for SPC‐induced neuroprotection.
Collapse
Affiliation(s)
- Min Cai
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Sisi Sun
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,The Medical Department of the Emergence Centre of Xi'an, Shaanxi, China
| | - Jin Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Beibei Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,The Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Li Tian
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Sheng R, Chen JL, Qin ZH. Cerebral conditioning: Mechanisms and potential clinical implications. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
8
|
Neag MA, Mitre AO, Catinean A, Mitre CI. An Overview on the Mechanisms of Neuroprotection and Neurotoxicity of Isoflurane and Sevoflurane in Experimental Studies. Brain Res Bull 2020; 165:281-289. [DOI: 10.1016/j.brainresbull.2020.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
|
9
|
Dynamic Variations in Brain Glycogen are Involved in Modulating Isoflurane Anesthesia in Mice. Neurosci Bull 2020; 36:1513-1523. [PMID: 33048310 PMCID: PMC7719152 DOI: 10.1007/s12264-020-00587-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
General anesthesia severely affects the metabolites in the brain. Glycogen, principally stored in astrocytes and providing the short-term delivery of substrates to neurons, has been implicated as an affected molecule. However, whether glycogen plays a pivotal role in modulating anesthesia–arousal remains unclear. Here, we demonstrated that isoflurane-anesthetized mice exhibited dynamic changes in the glycogen levels in various brain regions. Glycogen synthase (GS) and glycogen phosphorylase (GP), key enzymes of glycogen metabolism, showed increased activity after isoflurane exposure. Upon blocking glycogenolysis with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB), a GP antagonist, we found a prolonged time of emergence from anesthesia and an enhanced δ frequency in the EEG (electroencephalogram). In addition, augmented expression of glycogenolysis genes in glycogen phosphorylase, brain (Pygb) knock-in (PygbH11/H11) mice resulted in delayed induction of anesthesia, a shortened emergence time, and a lower ratio of EEG-δ. Our findings revealed a role of brain glycogen in regulating anesthesia–arousal, providing a potential target for modulating anesthesia.
Collapse
|
10
|
Autophagic Network Analysis of the Dual Effect of Sevoflurane on Neurons Associated with GABARAPL1 and 2. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1587214. [PMID: 32685442 PMCID: PMC7335402 DOI: 10.1155/2020/1587214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Background Sevoflurane is commonly used as a general anesthetic in neonates to aged patients. Preconditioning or postconditioning with sevoflurane protects neurons from excitotoxic injury. Conversely, sevoflurane exposure induces neurotoxicity during early or late life. However, little is known about the underlying mechanism of the dual effect of sevoflurane on neurons. Autophagy is believed to control neuronal homeostasis. We hypothesized that autophagy determined the dual effect of sevoflurane on neurons. Methods DTome was used to identify the direct protein target (DPT) of sevoflurane. The STRING database was employed to investigate the proteins associated with the DPTs. Protein-protein interaction was assessed using Cytoscape. WebGestalt was used to analyze gene set enrichment. The linkage between candidate genes and autophagy was identified using GeneCards. Results This study found that 23 essential DPTs of sevoflurane interacted with 77 proteins from the STRING database. GABARAPL1 and 2, both of which are DPT- and autophagy-associated proteins, were significantly expressed in the brain and enriched in GABAergic synapses. Conclusions Taken together, our findings showed that the network of sevoflurane-DPT-GABARAPL1 and 2 is related to the dual effect of sevoflurane on neurons.
Collapse
|
11
|
Yin Y, Phạm TL, Shin J, Shin N, Kang DW, Lee SY, Lee W, Kim CS, Kim SR, Hong J, Kim DW. Arginase 2 Deficiency Promotes Neuroinflammation and Pain Behaviors Following Nerve Injury in Mice. J Clin Med 2020; 9:jcm9020305. [PMID: 31979015 PMCID: PMC7073606 DOI: 10.3390/jcm9020305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Microglia, the resident macrophages, act as the first and main form of active immune defense in the central nervous system. Arginase 2 (Arg2) is an enzyme involved in L-arginine metabolism and is expressed in macrophages and nervous tissue. In this study, we determined whether the absence of Arg2 plays a beneficial or detrimental role in the neuroinflammatory process. We then investigated whether the loss of Arg2 potentiated microglia activation and pain behaviors following nerve injury-induced neuropathic pain. A spinal nerve transection (SNT) experimental model was used to induce neuropathic pain in mice. As a result of the peripheral nerve injury, SNT induced microgliosis and astrogliosis in the spinal cord, and upregulated inflammatory signals in both wild-type (WT) and Arg2 knockout (KO) mice. Notably, inflammation increased significantly in the Arg2 KO group compared to the WT group. We also observed a more robust microgliosis and a lower mechanical threshold in the Arg2 KO group than those in the WT group. Furthermore, our data revealed a stronger upregulation of M1 pro-inflammatory cytokines, such as interleukin (IL)-1β, and a stronger downregulation of M2 anti-inflammatory cytokines, including IL4 and IL-10, in Arg2 KO mice. Additionally, stronger formation of enzyme-inducible nitric oxide synthase, oxidative stress, and decreased expression of CD206 were detected in the Arg2 KO group compared to the WT group. These results suggest that Arg2 deficiency contributes to inflammatory response. The reduction or the loss of Arg2 results in the stronger neuroinflammation in the spinal dorsal horn, followed by more severe pain behaviors arising from nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Yuhua Yin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Juhee Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Dong-Wook Kang
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Physiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Sun Yeul Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea; (S.Y.L.); (W.L.)
| | - Wonhyung Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea; (S.Y.L.); (W.L.)
| | - Cuk-Seong Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Physiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
| | - Jinpyo Hong
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Dong-Woon Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (Y.Y.); (T.L.P.); (J.S.); (N.S.); (D.-W.K.); (C.-S.K.)
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Correspondence:
| |
Collapse
|
12
|
Sevoflurane Promotes Regeneration of the Endothelial Glycocalyx by Upregulating Sialyltransferase. J Surg Res 2019; 241:40-47. [DOI: 10.1016/j.jss.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023]
|
13
|
Yin Y, Park H, Lee SY, Lee WH, Song HJ, Kim J, Kim DW, Hong J. Analgesic Effect of Toll-like Receptor 4 Antagonistic Peptide 2 on Mechanical Allodynia Induced with Spinal Nerve Ligation in Rats. Exp Neurobiol 2019; 28:352-361. [PMID: 31308795 PMCID: PMC6614064 DOI: 10.5607/en.2019.28.3.352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/11/2019] [Accepted: 05/28/2019] [Indexed: 01/06/2023] Open
Abstract
Neuroinflammation is one of the key mechanisms of neuropathic pain, which is primarily mediated by the Toll-like receptor 4 (TLR4) signaling pathways in microglia. Therefore, TLR4 may be a reasonable target for treatment of neuropathic pain. Here, we examined the analgesic effect of TLR4 antagonistic peptide 2 (TAP2) on neuropathic pain induced by spinal nerve ligation in rats. When lipopolysaccharide (LPS)-stimulated BV2 microglia cells were treated with TAP2 (10 µM), the mRNA levels of proinflammatory mediators, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS), were markedly decreased by 54-83% as determined by quantitative PCR (qPCR) analysis. Furthermore, when TAP2 (25 nmol in 20 µL PBS) was intrathecally administered to the spinal nerve ligation-induced rats on day 3 after surgery, the mechanical allodynia was markedly decreased for approximately 2 weeks in von Frey filament tests, with a reduction in microglial activation. On immunohistochemical and qPCR analyses, both the level of reactive oxygen species and the gene expression of the proinflammatory mediators, such as TNF-α, IL-1β, IL-6, COX-2, and iNOS, were significantly decreased in the ipsilateral spinal dorsal horn. Finally, the analgesic effect of TAP2 was reproduced in rats with monoiodoacetate-induced osteoarthritic pain. The findings of the present study suggest that TAP2 efficiently mitigates neuropathic pain behavior by suppressing microglial activation, followed by downregulation of neuropathic pain-related factors, such as reactive oxygen species and proinflammatory molecules. Therefore, it may be useful as a new analgesic for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Yuhua Yin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Hyewon Park
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Sun Yeul Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Won-Hyung Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Hee-Jung Song
- Department of Neurology, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Jinhyun Kim
- Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Jinpyo Hong
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
14
|
Zhang Y, Shan Z, Zhao Y, Ai Y. Sevoflurane prevents miR-181a-induced cerebral ischemia/reperfusion injury. Chem Biol Interact 2019; 308:332-338. [PMID: 31170386 DOI: 10.1016/j.cbi.2019.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/19/2019] [Accepted: 06/03/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sevoflurane (sevo) has been reported to be an effective neuroprotective agent in cerebral ischemia/reperfusion injury (CIRI). However, the precise molecular mechanism underlying sevo preconditioning in CIRI remains largely unknown. METHODS A middle cerebral artery occlusion (MCAO) rat model and primary cortical neurons after oxygen-glucose deprivation and reoxygenation (OGDR) were used as the in vivo and in vitro models of CIRI. The expression profiles of miR-181a and X chromosome-linked inhibitor-of-apoptosis protein (XIAP) in the cerebral cortex of rats and in cortical neurons were examined by qRT-PCR and Western blot, respectively. The infarct volumes were measured by TTC staining and neurological deficits in rats was determined by Zea-Longa scoring criteria. The cell viability, lactate dehydrogenase (LDH) release and apoptotic rate were detected in cortical neurons by MTT assay, LDH analysis and flow cytometry. Western blot analysis was performed to assess the expression of apoptosis-related protein. Luciferase reporter assay was used to confirm the interaction between miR-181a and XIAP. RESULTS miR-181a was upregulated and XIAP was downregulated in rats after MCAO. Sevo preconditioning attenuated miR-181a expression and promoted XIAP level in a rat model of CIRI. Sevo preconditioning ameliorated anti-miR-181a-mediated protective effects on cerebral ischemia in rat model of CIRI, presented as the decrease of infarct volume, neurological deficit and apoptosis. Moreover, sevo pretreatment abated miR-181a-induced cellular injury in primary cortical neurons after OGD, embodied by the increase of cell viability, the reduction of LDH release and the decline of apoptosis. Furthermore, miR-181a suppressed XIAP expression by binding to its 3'UTR in cortical neurons, and sevo-mediated increase on XIAP expression was counteracted by miR-181 overexpression in OGDR-treated neurons. CONCLUSION Sevo preconditioning protected against CIRI in vitro and in vivo possibly by inhibiting miR-181a and facilitating XIAP.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhengzheng Shan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yanling Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yanqiu Ai
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
15
|
Yu Q, Li L, Liang WM. Effect of sevoflurane preconditioning on astrocytic dynamics and neural network formation after cerebral ischemia and reperfusion in rats. Neural Regen Res 2019; 14:265-271. [PMID: 30531009 PMCID: PMC6301166 DOI: 10.4103/1673-5374.244790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Astrocytes, the major component of blood-brain barriers, have presented paradoxical profiles after cerebral ischemia and reperfusion in vivo and in vitro. Our previous study showed that sevoflurane preconditioning improved the integrity of blood-brain barriers after ischemia and reperfusion injury in rats. This led us to investigate the effects of sevoflurane preconditioning on the astrocytic dynamics in ischemia and reperfusion rats, in order to explore astrocytic cell-based mechanisms of sevoflurane preconditioning. In the present study, 2,3,5-triphenyltetrazolium chloride staining and Garcia behavioral scores were utilized to evaluate cerebral infarction and neurological outcome from day 1 to day 3 after transient middle cerebral artery occlusion surgery. Using immunofluorescent staining, we found that sevoflurane preconditioning substantially promoted the astrocytic activation and migration from the penumbra to the infarct with microglial activation from day 3 after middle cerebral artery occlusion. The formation of astrocytic scaffolds facilitated neuroblasts migrating from the subventricular zone to the lesion sites on day 14 after injury. Neural networks increased in the infarct of sevoflurane preconditioned rats, consistent with decreased infarct volume and improved neurological scores after ischemia and reperfusion injury. These findings demonstrate that sevoflurane preconditioning confers neuroprotection, not only by accelerating astrocytic spatial and temporal dynamics, but also providing astrocytic scaffolds for neuroblasts migration to ischemic regions, which facilitates neural reconstruction after brain ischemia.
Collapse
Affiliation(s)
- Qiong Yu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Min Liang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Zhao G, Yang L, Wang S, Cai M, Sun S, Dong H, Xiong L. TREK-2 Mediates the Neuroprotective Effect of Isoflurane Preconditioning Against Acute Cerebral Ischemia in the Rat. Rejuvenation Res 2018; 22:325-334. [PMID: 30412001 DOI: 10.1089/rej.2017.2039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It is known that preconditional treatment with volatile anesthetics can induce tolerance of the brain to stroke. A previous study demonstrated that the involvement of TREK-1, a two-pore domain K+ channel, in sevoflurane preconditioning induced neuroprotection against focal cerebral ischemia in rats. The present study testified whether TREK-2, another anesthetic-target K+ channel, is also associated with volatile anesthetic-induced neuroprotection, and further explored its potential mechanism. Rats preconditioned with isoflurane were subjected to 1.4vol% isoflurane plus 98% O2 (1.5 L/min) inhalation for 1 hour daily and continuing for 5 consecutive days. Then, these rats were subjected to middle cerebral artery occlusion (MCAO) as focal cerebral ischemia model. The expression of TWIK-related K+ channel 2 (TREK-2) was analyzed by western blotting and quantitative real-time RT-PCR, and its downstream signaling molecules, protein kinase C (PKC) alpha, extracellular signal-regulated kinase 1/2 (ERK1/2), and pERK1/2 were detected by western blotting also. Subsequently, the expression of TREK-2 was regulated by siRNA transfection in the brain to clarify its role in the neuroprotection of isoflurane preconditioning. Neurological scores, infarction volume, and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining were examined to evaluate the outcomes. The impact of TREK-2 on the expression of its downstream signaling molecules was also examined for preliminary analysis of the possible mechanisms. Isoflurane preconditioning reduced the infarct volume, inhibited the cell apoptosis, and improved the neurological outcome in rats subjected to MCAO. These effects were parallel with the increase in TREK-2 protein and inhibition of the ERK1/2 phosphorylation. The downregulation of TREK-2 through siRNA could significantly attenuate the isoflurane preconditioning-induced neuroprotective effects. Isoflurane preconditioning-induced neuroprotective effects against ischemia-reperfusion injury are associated with the increase in TREK-2 channel activation. These effects depend on the attenuation of PKC alpha and inhibition of ERK1/2 phosphorylation. Results enrich our understanding on the mechanism of two-pore domain K+ channel in preconditioning-induced tolerance to focal cerebral ischemia.
Collapse
Affiliation(s)
- Guangchao Zhao
- 1Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - LuJia Yang
- 2Department of Anesthesiology, Chinese PLA General Hospital, Beijing, China
| | - Shiquan Wang
- 1Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Cai
- 3Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sisi Sun
- 4The Medical Department of the Emergence Center of Xi'an, Xi'an, Shaanxi, China
| | - Hailong Dong
- 1Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lize Xiong
- 1Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
He H, Liu W, Zhou Y, Liu Y, Weng P, Li Y, Fu H. Sevoflurane post-conditioning attenuates traumatic brain injury-induced neuronal apoptosis by promoting autophagy via the PI3K/AKT signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:629-638. [PMID: 29606856 PMCID: PMC5868589 DOI: 10.2147/dddt.s158313] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Sevoflurane post-conditioning exerts nerve-protective effects through inhibiting caspase-dependent neuronal apoptosis after a traumatic brain injury (TBI). Autophagy that is induced by the endoplasmic reticulum stress plays an important role in the secondary neurological dysfunction after a TBI. However, the relationship between autophagy and caspase-dependent apoptosis as well as the underlying nerve protection mechanism that occurs with sevoflurane post-conditioning following a TBI remains unclear. Methods The Feeney TBI model was used to induce brain injury in rats. Evaluation of the modified neurological severity scores, measurement of brain water content, Nissl staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to determine the neuroprotective effects of the sevoflurane post-conditioning. Both immunofluorescence and Western blot analyses were used to detect the expression of autophagy-related proteins microtubule-associated protein 1 light chain 3-II and Beclin-1, pro-apoptotic factors, as well as the activation of the phosphatidylinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway within the lesioned cortex. Results Autophagy and neuronal apoptosis were activated in the lesioned cortex following the TBI. Sevoflurane post-conditioning enhanced early autophagy, suppressed neuronal apoptosis, and alleviated brain edema, which improved nerve function after a TBI (all P < 0.05). Sevoflurane post-conditioning induced the activation of PI3K/AKT signaling after the TBI (P < 0.05). The neuroprotective effects of sevoflurane post-conditioning were reversed through the autophagy inhibitor 3-methyladenine treatment. Conclusion Neuronal apoptosis and the activation of autophagy were involved in the secondary neurological injury following a TBI. Sevoflurane post-conditioning weakened the TBI-induced neuronal apoptosis by regulating autophagy via PI3K/AKT signaling.
Collapse
Affiliation(s)
- Hefan He
- Department of Anesthesia, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China
| | - Weifeng Liu
- Department of Anesthesia, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China
| | - Yingying Zhou
- Department of Anesthesia, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China
| | - Yibin Liu
- Department of Anesthesia, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China
| | - Peiqing Weng
- Department of Anesthesia, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China
| | - Yasong Li
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China
| | - Huangde Fu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
18
|
Xu H, Mei XP, Xu LX. The effect of pre- and after-treatment of sevoflurane on central ischemia tolerance and the underlying mechanisms. J Dent Anesth Pain Med 2018; 18:1-8. [PMID: 29556553 PMCID: PMC5858006 DOI: 10.17245/jdapm.2018.18.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/03/2023] Open
Abstract
In recent years, with continuous research efforts targeted at studying the effects of pre- and after-treatment of inhaled anesthetics, significant progress has been made regarding the common clinical use of low concentrations of inhaled sevoflurane and its effect on induced central ischemia tolerance by pre- and post-treatment. In this study, we collected, analyzed, classified, and summarized recent literature regarding the effect of sevoflurane on central ischemia tolerance and its related mechanisms. In addition, we provide a theoretical basis for the clinical application of sevoflurane to protect the central nervous system and other important organs against ischemic injury.
Collapse
Affiliation(s)
- Hao Xu
- Institution of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xiao-Peng Mei
- Department of Anesthesiology, the First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| | - Li-Xian Xu
- Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
19
|
Chen S, Lotz C, Roewer N, Broscheit JA. Comparison of volatile anesthetic-induced preconditioning in cardiac and cerebral system: molecular mechanisms and clinical aspects. Eur J Med Res 2018; 23:10. [PMID: 29458412 PMCID: PMC5819224 DOI: 10.1186/s40001-018-0308-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/12/2018] [Indexed: 12/17/2022] Open
Abstract
Volatile anesthetic-induced preconditioning (APC) has shown to have cardiac and cerebral protective properties in both pre-clinical models and clinical trials. Interestingly, accumulating evidences demonstrate that, except from some specific characters, the underlying molecular mechanisms of APC-induced protective effects in myocytes and neurons are very similar; they share several major intracellular signaling pathways, including mediating mitochondrial function, release of inflammatory cytokines and cell apoptosis. Among all the experimental results, cortical spreading depolarization is a relative newly discovered cellular mechanism of APC, which, however, just exists in central nervous system. Applying volatile anesthetic preconditioning to clinical practice seems to be a promising cardio-and neuroprotective strategy. In this review, we also summarized and discussed the results of recent clinical research of APC. Despite all the positive experimental evidences, large-scale, long-term, more precisely controlled clinical trials focusing on the perioperative use of volatile anesthetics for organ protection are still needed.
Collapse
Affiliation(s)
- Shasha Chen
- Department of Anesthesiology and Critical Care, University of Wuerzburg, Oberduerrbacher Str.6, 97080, Wuerzburg, Germany.
| | - Christopher Lotz
- Department of Anesthesiology and Critical Care, University of Wuerzburg, Oberduerrbacher Str.6, 97080, Wuerzburg, Germany
| | - Norbert Roewer
- Department of Anesthesiology and Critical Care, University of Wuerzburg, Oberduerrbacher Str.6, 97080, Wuerzburg, Germany
| | - Jens-Albert Broscheit
- Department of Anesthesiology and Critical Care, University of Wuerzburg, Oberduerrbacher Str.6, 97080, Wuerzburg, Germany
| |
Collapse
|
20
|
Niu Q, Zhao W, Wang J, Li C, Yan T, Lv W, Wang G, Duan W, Zhang T, Wang K, Zhou D. LicA induces autophagy through ULK1/Atg13 and ROS pathway in human hepatocellular carcinoma cells. Int J Mol Med 2018; 41:2601-2608. [PMID: 29484365 PMCID: PMC5846666 DOI: 10.3892/ijmm.2018.3499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/07/2018] [Indexed: 11/05/2022] Open
Abstract
Chemotherapy is the best choice for the vast majority of hepatocellular carcinoma patients at late stage, but few effective chemotherapy drugs are available in clinic. Licochalcone A (LicA) is a new chemotherapy drug inducing apoptosis as Bcl-2 inhibitor, but few studies report on LicA-induced autophagy. This study investigated the phenomenon and mechanisms of LicA-induced autophagy looking for a targeted combination drug. Human hepatocellular carcinoma cells (HCCs) were treated with LicA, to detect markers of autophagy and to investigate the mechanisms. In order to investigate the role of reactive oxygen species (ROS) in LicA-induced autophagy, ROS, glutathione (GSH) and O2− were measured in LicA treated HCCs, and antioxidant N-Acetyl-L-cysteine (NAC) was cotreated with LicA in HCCs, then mechanisms of ROS-induced autophagy was investigated in LicA or LicA combined with NAC treated HCCs. Finally, the LicA-induced apoptosis was detected in LicA combined with NAC treated HCCs. We first report that LicA can induce autophagy through ULK1/Atg13 and ROS pathway in HCCs, suppression of LicA-induced ROS through antioxidant NAC can enhance LicA-induced apoptosis, promoting the function of LicA killing HCCs. LicA can activate the ULK1/Atg13 complex which is upstream of autophagy, additionally, LicA also can promote ROS generation, ROS trigger the expression level of TSC1/2 complex, PRAS40, CTMP, PP2A, PDK1 and Rubicon change, these molecules are upstream of autophagy. In conclusion, LicA can induce autophagy through ULK1/Atg13 and ROS pathway in HCCs, LicA combined with NAC can enhance LicA-induced apoptosis. Our results may provide a novel design for clinical hepatocellular carcinoma therapy trials.
Collapse
Affiliation(s)
- Qiang Niu
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Wei Zhao
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Jin Wang
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Chunming Li
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Tao Yan
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Wei Lv
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Guojing Wang
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Weihong Duan
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Tao Zhang
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Kunnan Wang
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| | - Dinghua Zhou
- Department of Hepatobiliary Surgery, Rocket Army General Hospital, Beijing 100088, P.R. China
| |
Collapse
|
21
|
Age-Related Upregulation of Carboxyl Terminal Modulator Protein Contributes to the Decreased Brain Ischemic Tolerance in Older Rats. Mol Neurobiol 2017; 55:6145-6154. [PMID: 29250714 DOI: 10.1007/s12035-017-0826-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022]
Abstract
Stroke remains one of the leading causes of death worldwide. The underlying neuropathology for stroke is ischemic brain injury. Carboxyl terminal modulator protein (CTMP), an endogenous inhibitor of the prosurvival Akt, may increase brain ischemic injury in young animals. Aging decreases brain ischemic tolerance. We hypothesize that CTMP is increased with aging and that this increase contributes to the decreased brain ischemic tolerance. To address these hypotheses, we determined the expression of CTMP and its downstream proteins in the brain of various ages of rats (Fischer 344 and Sprague-Dawley rats). The role of CTMP in ischemic brain injury was investigated by RNA interference. Here, we showed that CTMP in the brain was increased with aging in rats. The phosphorylated/activated Akt was decreased with aging. Six- and 20-month-old rats had poorer neurological outcome than did 2-month-old rats after brain ischemia. The neurological outcome of 2-month-old rats was worsened by LY294002, an Akt inhibitor. The poor neurological outcome in 6-month-old rats was improved by silencing CTMP. CTMP was increased in ischemic penumbral brain tissues. Silencing this increase activated Akt. These results suggest that CTMP increase with aging contributes to the aging-dependent decrease of brain ischemic tolerance.
Collapse
|
22
|
Manatpon P, Kofke WA. Toxicity of inhaled agents after prolonged administration. J Clin Monit Comput 2017; 32:651-666. [PMID: 29098494 DOI: 10.1007/s10877-017-0077-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/28/2017] [Indexed: 11/24/2022]
Abstract
Inhaled anesthetics have been utilized mostly for general anesthesia in the operating room and oftentimes for sedation and for treatment of refractory status epilepticus and status asthmaticus in the intensive care unit. These contexts in the ICU setting are related to potential for prolonged administration wherein potential organ toxicity is a concern. Over the last decade, several clinical and animal studies of neurotoxicity attributable to inhaled anesthetics have been emerging, particularly in extremes of age. This review overviews potential for and potential mechanisms of neurotoxicity and systemic toxicity of prolonged inhaled anesthesia and clinical scenarios where inhaled anesthesia has been used in order to assess safety of possible prolonged use for sedation. High dose inhaled agents are associated with postoperative cognitive dysfunction (POCD) and other situations. However, thus far no strong indication of problematic neuro or organ toxicity has been demonstrated after prolonged use of low dose volatile anesthesia.
Collapse
Affiliation(s)
- Panumart Manatpon
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - W Andrew Kofke
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
23
|
Kelch-like ECH-associated Protein 1-dependent Nuclear Factor-E2–related Factor 2 Activation in Relation to Antioxidation Induced by Sevoflurane Preconditioning. Anesthesiology 2017; 126:507-521. [PMID: 28045693 DOI: 10.1097/aln.0000000000001485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Background
The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2–related factor 2 through multiple pathways. However, whether nuclear factor-E2–related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown.
Methods
Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2–related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2–related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH–associated protein 1-nuclear factor-E2–related factor 2 signal was modulated by nuclear factor-E2–related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed.
Results
Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2–related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2–related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch-like ECH-associated protein 1 overexpression reversed nuclear factor-E2–related factor 2 up-regulation and abolished the neuroprotection induced by sevoflurane preconditioning. Kelch-like ECH-associated protein 1 small interfering RNA administration improved nuclear factor-E2–related factor 2 expression and the outcome of mice subjected to ischemia/reperfusion injury.
Conclusions
Kelch-like ECH-associated protein 1 down-regulation–dependent nuclear factor-E2–related factor 2 activation underlies the ability of sevoflurane preconditioning to activate the endogenous antioxidant response, which elicits its neuroprotection.
Collapse
|
24
|
Sevoflurane pre-conditioning increases phosphorylation of Erk1/2 and HO-1 expression via inhibition of mPTP in primary rat cortical neurons exposed to OGD/R. J Neurol Sci 2017; 372:171-177. [DOI: 10.1016/j.jns.2016.11.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022]
|
25
|
Shin N, Yi MH, Kim S, Baek H, Triantafillu UL, Park J, Kim DW. Astrocytic Expression of CTMP Following an Excitotoxic Lesion in the Mouse Hippocampus. Exp Neurobiol 2016; 26:25-32. [PMID: 28243164 PMCID: PMC5326712 DOI: 10.5607/en.2017.26.1.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 01/03/2023] Open
Abstract
Akt (also known as protein kinase B, PKB) has been seen to play a role in astrocyte activation of neuroprotection; however, the underlying mechanism on deregulation of Akt signaling in brain injuries is not fully understood. We investigated the role of carboxy-terminal modulator protein (CTMP), an endogenous Akt inhibitor, in brain injury following kainic acid (KA)-induced neurodegeneration of mouse hippocampus. In control mice, there was a weak signal for CTMP in the hippocampus, but CTMP was markedly increased in the astrocytes 3 days after KA treatment. To further investigate the effectiveness of Akt signaling, the phosphorylation of CTMP was examined. KA treatment induced an increased p-CTMP expression in the astrocytes of hippocampus at 1 day. LPS/IFN-γ-treatment on primary astrocytes promoted the p-CTMP was followed by phosphorylation of Akt and finally upregulation of CTMP and p-CREB. Time-dependent expression of p-CTMP, p-Akt, p-CREB, and CTMP indicate that LPS/IFN-γ-induced phosphorylation of CTMP can activate Akt/CREB signaling, whereas lately emerging enhancement of CTMP can inhibit it. These results suggest that elevation of CTMP in the astrocytes may suppress Akt activity and ultimately negatively affect the outcome of astrocyte activation (astroglisiois). Early time point enhancers of phosphorylation of CTMP and/or late time inhibitors specifically targeting CTMP may be beneficial in astrocyte activation for neuroprotection within treatment in neuroinflammatory conditions.
Collapse
Affiliation(s)
- Nara Shin
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea.; Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Min-Hee Yi
- Department of Neuroscience & Cell Biology, the University of Texas Medical Branch School of Medicine, Galveston, TX 77555 USA
| | - Sena Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Hyunjung Baek
- Department of Physiology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Ursula L Triantafillu
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Jongsun Park
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon 35015, Korea.; Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Dong Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea.; Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
26
|
Bjørn-Yoshimoto WE, Underhill SM. The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem Int 2016; 98:4-18. [PMID: 27233497 DOI: 10.1016/j.neuint.2016.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
Abstract
The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localization can buffer nearby glutamate receptors and modulate excitatory neurotransmission and synaptic plasticity. It is also the main neuronal cysteine uptake system acting as the rate-limiting factor for the synthesis of glutathione, a potent antioxidant, in EAAT3 expressing neurons, while on GABAergic neurons, it is important in supplying glutamate as a precursor for GABA synthesis. Several diseases implicate EAAT3, and modulation of this transporter could prove a useful therapeutic approach. Regulation of EAAT3 could be targeted at several points for functional modulation, including the level of transcription, trafficking and direct pharmacological modulation, and indeed, compounds and experimental treatments have been identified that regulate EAAT3 function at different stages, which together with observations of EAAT3 regulation in patients is giving us insight into the endogenous function of this transporter, as well as the consequences of altered function. This review summarizes work done on elucidating the role and regulation of EAAT3.
Collapse
Affiliation(s)
- Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Suzanne M Underhill
- National Institute of Mental Health, National Institutes of Health, 35 Convent Drive Room 3A: 210 MSC3742, Bethesda, MD 20892-3742, USA.
| |
Collapse
|
27
|
Chen Y, Cai M, Deng J, Tian L, Wang S, Tong L, Dong H, Xiong L. Elevated Expression of Carboxy-Terminal Modulator Protein (CTMP) Aggravates Brain Ischemic Injury in Diabetic db/db Mice. Neurochem Res 2016; 41:2179-89. [PMID: 27161366 DOI: 10.1007/s11064-016-1932-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/04/2016] [Accepted: 04/20/2016] [Indexed: 12/13/2022]
Abstract
Deregulation of Akt signaling is important in the brain injuries caused by cerebral ischemia in diabetic animals, and the underlying mechanism is not fully understood. We investigated the role of carboxy-terminal modulator protein (CTMP), an endogenous Akt inhibitor, in brain injury following focal cerebral ischemia in type 2 diabetic db/db mice and their control littermates non-diabetic db/+ mice. db/db mice showed a significant elevation in the expression of CTMP compared to db/+ mice under normal physiological conditions. After ischemia, db/db mice exhibit higher levels of CTMP expression, decreased Akt kinase activity, adverse neurological deficits and cerebral infarction than db/+ mice. To further certain the effectiveness of Akt signaling to the final outcome of cerebral ischemia, the animals were treated with LY294002, an inhibitor of the Akt pathway, which aggravated the ischemic injury in db/+ mice but not in db/db mice. RNA interference-mediated depletion of CTMP were finally applied in db/db mice, which restored Akt activity, improved neurological scores and reduced infarct volume. These results suggest that elevation of CTMP in diabetic mice suppresses Akt activity and ultimately negatively affects the outcome of ischemia. Inhibitors specifically targeting CTMP may be beneficial in the treatment of cerebral ischemia in patients with diabetes.
Collapse
Affiliation(s)
- Yu Chen
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Min Cai
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiao Deng
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Li Tian
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shiquan Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Li Tong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China. .,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China. .,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
28
|
Wang WY, Wu XM, Jia LJ, Zhang HH, Cai F, Mao H, Xu WC, Chen L, Zhang J, Hu SF. Beta-arrestin1 and 2 differently modulate metabotropic glutamate receptor 7 signaling in rat developmental sevoflurane-induced neuronal apoptosis. Neuroscience 2016; 313:199-212. [DOI: 10.1016/j.neuroscience.2015.11.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
|
29
|
Wang H, Shi H, Yu Q, Chen J, Zhang F, Gao Y. Sevoflurane Preconditioning Confers Neuroprotection via Anti-apoptosis Effects. ACTA NEUROCHIRURGICA SUPPLEMENT 2016; 121:55-61. [DOI: 10.1007/978-3-319-18497-5_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
|
31
|
Chen C, Shen FY, Zhao X, Zhou T, Xu DJ, Wang ZR, Wang YW. Low-dose sevoflurane promotes hippocampal neurogenesis and facilitates the development of dentate gyrus-dependent learning in neonatal rats. ASN Neuro 2015; 7:7/2/1759091415575845. [PMID: 25873307 PMCID: PMC4720175 DOI: 10.1177/1759091415575845] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4–6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks.
Collapse
Affiliation(s)
- Chong Chen
- Department of Anesthesiology and Intensive Care Medicine, Xinhua Hospital, College of Medicine, Shanghai Jiaotong University, China Graduate School, Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Feng-Yan Shen
- Department of Anesthesiology and Intensive Care Medicine, Xinhua Hospital, College of Medicine, Shanghai Jiaotong University, China
| | - Xuan Zhao
- Department of Anesthesiology and Intensive Care Medicine, Xinhua Hospital, College of Medicine, Shanghai Jiaotong University, China
| | - Tao Zhou
- Department of Anesthesiology and Intensive Care Medicine, Xinhua Hospital, College of Medicine, Shanghai Jiaotong University, China
| | - Dao-Jie Xu
- Department of Anesthesiology and Intensive Care Medicine, Xinhua Hospital, College of Medicine, Shanghai Jiaotong University, China
| | - Zhi-Ru Wang
- Institute of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Ying-Wei Wang
- Department of Anesthesiology and Intensive Care Medicine, Xinhua Hospital, College of Medicine, Shanghai Jiaotong University, China
| |
Collapse
|