1
|
Lee SA, Kamimura HAS, Smith M, Konofagou EE. Functional Cerebral Neurovascular Mapping During Focused Ultrasound Peripheral Neuromodulation of Neuropathic Pain. IEEE Trans Biomed Eng 2024; 71:1770-1779. [PMID: 38198257 PMCID: PMC11105977 DOI: 10.1109/tbme.2024.3352025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
BACKGROUND Nociceptive pain is required for healthy function, yet, neuropathic pain (disease or injury) can be severely debilitating. Though a wide-array of treatment options are available, they are often systemic and/or invasive. As a promising neuromodulation treatment, Focused ultrasound (FUS) is a noninvasive and highly spatially-targeted technique shown to stimulate neural activity, yet, effects on pain signaling are currently unknown. OBJECTIVE Develop and validate a method for studying FUS nerve stimulation modulation of pain-evoked neural responses in vivo. METHODS We developed a high-resolution functional ultrasound (fUS) method capable of mapping cortical responses in healthy and neuropathic pain mice in response to FUS neuromodulation treatment. RESULTS FUS-evoked hemodynamic responses are correlated with the intensity of peripheral neuromodulation. We confirm functional connectivity is altered in neuropathic mice and demonstrate that FUS can modulate neuropathic pain-evoked hemodynamics. CONCLUSIONS The findings presented herein provides evidence for an FUS-based nerve pain method and validates the fUS technique developed for monitoring pain-evoked hemodynamics. SIGNIFICANCE We anticipate that the findings presented herein describe a noninvasive and flexible nerve modulation technique for pain mitigation, furthering evidence for clinical translation.
Collapse
|
2
|
Bao SC, Li F, Xiao Y, Niu L, Zheng H. Peripheral focused ultrasound stimulation and its applications: From therapeutics to human-computer interaction. Front Neurosci 2023; 17:1115946. [PMID: 37123351 PMCID: PMC10140332 DOI: 10.3389/fnins.2023.1115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Peripheral focused ultrasound stimulation (pFUS) has gained increasing attention in the past few decades, because it can be delivered to peripheral nerves, neural endings, or sub-organs. With different stimulation parameters, ultrasound stimulation could induce different modulation effects. Depending on the transmission medium, pFUS can be classified as body-coupled US stimulation, commonly used for therapeutics or neuromodulation, or as an air-coupled contactless US haptic system, which provides sensory inputs and allows distinct human-computer interaction paradigms. Despite growing interest in pFUS, the underlying working mechanisms remain only partially understood, and many applications are still in their infancy. This review focused on existing applications, working mechanisms, the latest progress, and future directions of pFUS. In terms of therapeutics, large-sample randomized clinical trials in humans are needed to translate these state of art techniques into treatments for specific diseases. The airborne US for human-computer interaction is still in its preliminary stage, but further efforts in task-oriented US applications might provide a promising interaction tool soon.
Collapse
Affiliation(s)
- Shi-Chun Bao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Xiao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Hairong Zheng,
| |
Collapse
|
3
|
Collins MN, Mesce KA. A review of the bioeffects of low-intensity focused ultrasound and the benefits of a cellular approach. Front Physiol 2022; 13:1047324. [PMID: 36439246 PMCID: PMC9685663 DOI: 10.3389/fphys.2022.1047324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/25/2022] [Indexed: 10/28/2023] Open
Abstract
This review article highlights the historical developments and current state of knowledge of an important neuromodulation technology: low-intensity focused ultrasound. Because compelling studies have shown that focused ultrasound can modulate neuronal activity non-invasively, especially in deep brain structures with high spatial specificity, there has been a renewed interest in attempting to understand the specific bioeffects of focused ultrasound at the cellular level. Such information is needed to facilitate the safe and effective use of focused ultrasound to treat a number of brain and nervous system disorders in humans. Unfortunately, to date, there appears to be no singular biological mechanism to account for the actions of focused ultrasound, and it is becoming increasingly clear that different types of nerve cells will respond to focused ultrasound differentially based on the complement of their ion channels, other membrane biophysical properties, and arrangement of synaptic connections. Furthermore, neurons are apparently not equally susceptible to the mechanical, thermal and cavitation-related consequences of focused ultrasound application-to complicate matters further, many studies often use distinctly different focused ultrasound stimulus parameters to achieve a reliable response in neural activity. In this review, we consider the benefits of studying more experimentally tractable invertebrate preparations, with an emphasis on the medicinal leech, where neurons can be studied as unique individual cells and be synaptically isolated from the indirect effects of focused ultrasound stimulation on mechanosensitive afferents. In the leech, we have concluded that heat is the primary effector of focused ultrasound neuromodulation, especially on motoneurons in which we observed a focused ultrasound-mediated blockade of action potentials. We discuss that the mechanical bioeffects of focused ultrasound, which are frequently described in the literature, are less reliably achieved as compared to thermal ones, and that observations ascribed to mechanical responses may be confounded by activation of synaptically-coupled sensory structures or artifacts associated with electrode resonance. Ultimately, both the mechanical and thermal components of focused ultrasound have significant potential to contribute to the sculpting of specific neural outcomes. Because focused ultrasound can generate significant modulation at a temperature <5°C, which is believed to be safe for moderate durations, we support the idea that focused ultrasound should be considered as a thermal neuromodulation technology for clinical use, especially targeting neural pathways in the peripheral nervous system.
Collapse
Affiliation(s)
- Morgan N. Collins
- Graduate Program in Neuroscience, University of Minnesota, Saint Paul, MN, United States
| | - Karen A. Mesce
- Department of Entomology and Graduate Program in Neuroscience, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
4
|
Lee G, Ray E, Yoon HJ, Genovese S, Choi YS, Lee MK, Şahin S, Yan Y, Ahn HY, Bandodkar AJ, Kim J, Park M, Ryu H, Kwak SS, Jung YH, Odabas A, Khandpur U, Ray WZ, MacEwan MR, Rogers JA. A bioresorbable peripheral nerve stimulator for electronic pain block. SCIENCE ADVANCES 2022; 8:eabp9169. [PMID: 36197971 PMCID: PMC9534494 DOI: 10.1126/sciadv.abp9169] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/18/2022] [Indexed: 05/31/2023]
Abstract
Local electrical stimulation of peripheral nerves can block the propagation of action potentials, as an attractive alternative to pharmacological agents for the treatment of acute pain. Traditional hardware for such purposes, however, involves interfaces that can damage nerve tissue and, when used for temporary pain relief, that impose costs and risks due to requirements for surgical extraction after a period of need. Here, we introduce a bioresorbable nerve stimulator that enables electrical nerve block and associated pain mitigation without these drawbacks. This platform combines a collection of bioresorbable materials in architectures that support stable blocking with minimal adverse mechanical, electrical, or biochemical effects. Optimized designs ensure that the device disappears harmlessly in the body after a desired period of use. Studies in live animal models illustrate capabilities for complete nerve block and other key features of the technology. In certain clinically relevant scenarios, such approaches may reduce or eliminate the need for use of highly addictive drugs such as opioids.
Collapse
Affiliation(s)
- Geumbee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Precision Biology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Emily Ray
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Hong-Joon Yoon
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Sabrina Genovese
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Yeon Sik Choi
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Min-Kyu Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Samet Şahin
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230 Bilecik, Merkez/Bilecik, Turkey
| | - Ying Yan
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Hak-Young Ahn
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Amay J. Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Minsu Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Hanjun Ryu
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sung Soo Kwak
- Center for Bionics, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yei Hwan Jung
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Arman Odabas
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Internal Medicine, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Umang Khandpur
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Wilson Z. Ray
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Matthew R. MacEwan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Anderson TA, Delgado J, Sun S, Behzadian N, Vilches-Moure J, Szlavik RB, Butts-Pauly K, Yeomans D. Dose-dependent effects of high intensity focused ultrasound on compound action potentials in an ex vivo rodent peripheral nerve model: comparison to local anesthetics. Reg Anesth Pain Med 2022; 47:242-248. [DOI: 10.1136/rapm-2021-103115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/31/2021] [Indexed: 11/04/2022]
Abstract
BackgroundIn animal models, focused ultrasound can reversibly or permanently inhibit nerve conduction, suggesting a potential role in managing pain. We hypothesized focused ultrasound’s effects on action potential parameters may be similar to those of local anesthetics.MethodsIn an ex vivo rat sciatic nerve model, action potential amplitude, area under the curve, latency to 10% peak, latency to 100% peak, rate of rise, and half peak width changes were assessed after separately applying increasing focused ultrasound pressures or concentrations of bupivacaine and ropivacaine. Focused ultrasound’s effects on nerve structure were examined histologically.ResultsIncreasing focused ultrasound pressures decreased action potential amplitude, area under the curve, and rate of rise, increased latency to 10% peak, and did not change latency to 100% peak or half peak width. Increasing local anesthetic concentrations decreased action potential amplitude, area under the curve, and rate of rise and increased latency to 10% peak, latency to 100% peak, and half peak width. At the highest focused ultrasound pressures, nerve architecture was altered compared with controls.DiscussionWhile some action potential parameters were altered comparably by focused ultrasound and local anesthetics, there were small but notable differences. It is not evident if these differences may lead to differences in clinical pain effects when focused ultrasound is applied in vivo or if focused ultrasound pressures that result in clinically relevant changes damage nerve structures. Given the potential advantages of a non-invasive technique for managing pain conditions, further investigation may be warranted in an in vivo pain model.
Collapse
|
6
|
Ultrasound does not activate but can inhibit in vivo mammalian nerves across a wide range of parameters. Sci Rep 2022; 12:2182. [PMID: 35140238 PMCID: PMC8828880 DOI: 10.1038/s41598-022-05226-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022] Open
Abstract
Ultrasound (US) has been shown to stimulate brain circuits, however, the ability to excite peripheral nerves with US remains controversial. To the best of our knowledge, there is still no in vivo neural recording study that has applied US stimulation to a nerve isolated from surrounding tissue to confirm direct activation effects. Here, we show that US cannot excite an isolated mammalian sciatic nerve in an in vivo preparation, even at high pressures (relative to levels recommended in the FDA guidance for diagnostic ultrasound) and for a wide range of parameters, including different pulse patterns and center frequencies. US can, however, reliably inhibit nerve activity whereby greater suppression is correlated with increases in nerve temperature. By prohibiting the nerve temperature from increasing during US application, we did not observe suppressive effects. Overall, these findings demonstrate that US can reliably inhibit nerve activity through a thermal mechanism that has potential for various health disorders, though future studies are needed to evaluate the long-term safety of therapeutic ultrasound applications.
Collapse
|
7
|
Abstract
OBJECTIVE Low-intensity ultrasound can stimulate excitable cells in a noninvasive and targeted manner, but which parameters are effective has remained elusive. This question has been difficult to answer because differences in transducers and parameters-frequency in particular-lead to profound differences in the stimulated tissue volumes. The objective of this study is to control for these differences and evaluate which ultrasound parameters are effective in stimulating excitable cells. METHODS Here, we stimulated the human peripheral nervous system using a single transducer operating in a range of frequencies, and matched the stimulated volumes with an acoustic aperture. RESULTS We found that low frequencies (300 kHz) are substantially more effective in generating tactile and nociceptive responses in humans compared to high frequencies (900 kHz). The strong effect of ultrasound frequency was observed for all pressures tested, for continuous and pulsed stimuli, and for tactile and nociceptive responses. CONCLUSION This prominent effect may be explained by a mechanical force associated with ultrasound. The effect is not due to heating, which would be weaker at the low frequency. SIGNIFICANCE This controlled study reveals that ultrasonic stimulation of excitable cells is stronger at lower frequencies, which guides the choice of transducer hardware for effective ultrasonic stimulation of the peripheral nervous system in humans.
Collapse
Affiliation(s)
- Thomas Riis
- Department of Biomedical Engineering, University of Utah, UT 84112 USA
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, UT 84112 USA
| |
Collapse
|
8
|
Chen Y, Li Y, Du M, Yu J, Gao F, Yuan Z, Chen Z. Ultrasound Neuromodulation: Integrating Medicine and Engineering for Neurological Disease Treatment. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract Neurological diseases associated with dysfunctions of neural circuits, including Alzheimer’s disease (AD), depression and epilepsy, have been increasingly prevalent. To tackle these issues, artificial stimulation or regulation of specific neural circuits and
nuclei are employed to alleviate or cure certain neurological diseases. In particular, ultrasound neuromodulation has been an emerging interdisciplinary approach, which integrates medicine and engineering methodologies in the treatment. With the development of medicine and engineering, ultrasound
neuromodulation has gradually been applied in the treatment of central nervous system diseases. In this review, we aimed to summarize the mechanism of ultrasound neuromodulation and the advances of focused ultrasound (FUS) in neuromodulation in recent years, with a special emphasis on its
application in central nervous system disease treatment. FUS showed great feasibility in the treatment of epilepsy, tremor, AD, depression, and brain trauma. We also suggested future directions of ultrasound neuromodulation in clinical settings, with a focus on its fusion with genetic engineering
or nanotechnology.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Meng Du
- Medical Imaging Centre, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Fei Gao
- Cancer Center, Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
| | - Zhiyi Chen
- Medical Imaging Centre, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
9
|
di Biase L, Falato E, Caminiti ML, Pecoraro PM, Narducci F, Di Lazzaro V. Focused Ultrasound (FUS) for Chronic Pain Management: Approved and Potential Applications. Neurol Res Int 2021; 2021:8438498. [PMID: 34258062 PMCID: PMC8261174 DOI: 10.1155/2021/8438498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/19/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic pain is one of the leading causes of disability and disease burden worldwide, accounting for a prevalence between 6.9% and 10% in the general population. Pharmacotherapy alone results ineffective in about 70-60% of patients in terms of a satisfactory degree of pain relief. Focused ultrasound is a promising tool for chronic pain management, being approved for thalamotomy in chronic neuropathic pain and for bone metastases-related pain treatment. FUS is a noninvasive technique for neuromodulation and for tissue ablation that can be applied to several tissues. Transcranial FUS (tFUS) can lead to opposite biological effects, depending on stimulation parameters: from reversible neural activity facilitation or suppression (low-intensity, low-frequency ultrasound, LILFUS) to irreversible tissue ablation (high-intensity focused ultrasounds, HIFU). HIFU is approved for thalamotomy in neuropathic pain at the central nervous system level and for the treatment of facet joint osteoarthritis at the peripheral level. Potential applications include HIFU at the spinal cord level for selected cases of refractory chronic neuropathic pain, knee osteoarthritis, sacroiliac joint disease, intervertebral disc nucleolysis, phantom limb, and ablation of peripheral nerves. FUS at nonablative dosage, LILFUS, has potential reversible and tissue-selective effects. FUS applications at nonablative doses currently are at a research stage. The main potential applications include targeted drug and gene delivery through the Blood-Brain Barrier, assessment of pain thresholds and study of pain, and reversible peripheral nerve conduction block. The aim of the present review is to describe the approved and potential applications of the focused ultrasound technology in the field of chronic pain management.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Emma Falato
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Maria Letizia Caminiti
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Pasquale Maria Pecoraro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Flavia Narducci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| |
Collapse
|
10
|
Pérez-Neri I, González-Aguilar A, Sandoval H, Pineda C, Ríos C. Therapeutic Potential of Ultrasound Neuromodulation in Decreasing Neuropathic Pain: Clinical and Experimental Evidence. Curr Neuropharmacol 2021; 19:334-348. [PMID: 32691714 PMCID: PMC8033967 DOI: 10.2174/1570159x18666200720175253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background For more than seven decades, ultrasound has been used as an imaging and diagnostic tool. Today, new technologies, such as focused ultrasound (FUS) neuromodulation, have revealed some innovative, potential applications. However, those applications have been barely studied to deal with neuropathic pain (NP), a cluster of chronic pain syndromes with a restricted response to conventional pharmaceuticals. Objective To analyze the therapeutic potential of low-intensity (LIFUS) and high-intensity (HIFUS) FUS for managing NP. Methods We performed a narrative review, including clinical and experimental ultrasound neuromodulation studies published in three main database repositories. Discussion Evidence shows that FUS may influence several mechanisms relevant for neuropathic pain management such as modulation of ion channels, glutamatergic neurotransmission, cerebral blood flow, inflammation and neurotoxicity, neuronal morphology and survival, nerve regeneration, and remyelination. Some experimental models have shown that LIFUS may reduce allodynia after peripheral nerve damage. At the same time, a few clinical studies support its beneficial effect on reducing pain in nerve compression syndromes. In turn, Thalamic HIFUS ablation can reduce NP from several etiologies with minor side-effects, but some neurological sequelae might be permanent. HIFUS is also useful in lowering non-neuropathic pain in several disorders. Conclusion Although an emerging set of studies brings new evidence on the therapeutic potential of both LIFUS and HIFUS for managing NP with minor side-effects, we need more controlled clinical trials to conclude about its safety and efficacy.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Alberto González-Aguilar
- Neuro-oncology Unit, Instituto Nacional de Neurología y Neurocirugia Manuel Velasco Suarez, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Hugo Sandoval
- Sociomedical Research Unit, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P. 14389, Mexico City, Mexico
| | - Carlos Pineda
- Division of Musculoskeletal and Rheumatic Disorders, Instituto Nacional de Rehabilitacion Luis Guillermo Ibarra Ibarra, Calzada Mexico-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P.14389, Mexico City, Mexico
| | - Camilo Ríos
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| |
Collapse
|
11
|
Phillips JA, Hutchings C, Djamgoz MBA. Clinical Potential of Nerve Input to Tumors: A Bioelectricity Perspective. Bioelectricity 2021; 3:14-26. [PMID: 34476375 DOI: 10.1089/bioe.2020.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We support the notion that the neural connections of the tumor microenvironment (TME) and the associated 'bioelectricity' play significant role in the pathophysiology of cancer. In several cancers, the nerve input promotes the cancer process. While straightforward surgical denervation of tumors, therefore, could improve prognosis, resulting side effects of such a procedure would be unpredictable and irreversible. On the other hand, tumor innervation can be manipulated effectively for therapeutic purposes by alternative novel approaches broadly termed "electroceuticals." In this perspective, we evaluate the clinical potential of targeting the TME first through manipulation of the nerve input itself and second by application of electric fields directly to the tumor. The former encompasses several different biophysical and biochemical approaches. These include implantable devices, nanoparticles, and electroactive polymers, as well as optogenetics and chemogenetics. As regard bioelectrical manipulation of the tumor itself, the "tumor-treating field" technique, applied to gliomas commonly in combination with chemotherapy, is evaluated. Also, as electroceuticals, drugs acting on ion channels and neurotransmitter receptors are highlighted for completeness. It is concluded, first, that electroceuticals comprise a broad range of biomedical tools. Second, such electroceuticals present significant clinical potential for exploiting the neural component of the TME as a strategy against cancer. Finally, the inherent bioelectric characteristics of tumors themselves are also amenable to complementary approaches. Collectively, these represent an evolving, dynamic field and further progress and applications can be expected to follow both conceptually and technically.
Collapse
Affiliation(s)
- Jade A Phillips
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charlotte Hutchings
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Biotechnology Research Center, Cyprus International University, Nicosia, North Cyprus
| |
Collapse
|
12
|
Chiou JY, Abd-Elrehim T, Lin CC, Chen GS. Feasibility study of greater occipital nerve blocks by focused ultrasound - an animal study. J Neural Eng 2020; 17:056030. [PMID: 33146147 DOI: 10.1088/1741-2552/abb14d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Greater occipital nerve (GON) block may provide substantial relief for headache in the occipital location. This study tested the feasibility of focused ultrasound (FUS) to induce the conduction block of GONs in rats. APPROACH For in vitro experiments, the nerve was dissected and cut from C2 to the site near the ear of the rats and preserved in Ringer's solution. Pulsed FUS was used for the block, and sensory action potentials were recorded in the GON. For in vivo experiments, the GONs of the rats were surgically exposed for precise ultrasonic treatment. All data are expressed as the mean ± the standard deviation. MAIN RESULTS A single ultrasonic treatment temporarily suppressed the amplitude of action potentials of the in vitro nerves to 42 ± 14% of the baseline values, and the time to recovery was 55 min. The in vivo results showed that FUS acutely inhibited the amplitude of action potentials to 41 ± 8% of the baseline value in rat GONs, and the time to recovery was 67 min. Histological examination revealed no appreciable changes in the nerve morphology caused by FUS. Therefore, FUS reversibly blocked the conduction of the rat GON when the sonication parameters were appropriate. SIGNIFICANCE Noninvasive FUS may be a novel treatment paradigm for occipital headache by blocking the occipital nerve, and the procedure is repeatable if indicated.
Collapse
Affiliation(s)
- Jiun-Yi Chiou
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | |
Collapse
|
13
|
Sun S, Delgado J, Behzadian N, Yeomans D, Anderson TA. Ex Vivo Whole Nerve Electrophysiology Setup, Action Potential Recording, and Data Analyses in a Rodent Model. ACTA ACUST UNITED AC 2020; 93:e99. [PMID: 32663369 DOI: 10.1002/cpns.99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ex vivo rodent whole nerves provide a model for assessing the effects of interventions on nerve impulse transmission and consequent sensory and/or motor function. Nerve impulse transmission can be measured through sciatic nerve compound action potential (CAP) recordings. However, de novo development and implementation of an ex vivo whole nerve resection protocol and an electrophysiology setup that retains nerve viability, that produces low noise CAP signals, and that allows for data analysis is challenging. Additionally, some of the existing literature lacks detail and accuracy and may be out of date. This article describes detailed protocols for rodent ex vivo sciatic nerve dissection and handling; importance of an optimal physiologic solution; computer-aided designs for 3D printing of readily adaptable ex vivo rodent whole nerve electrophysiology chambers; construction of low-cost, effective suction electrodes; setup and use of nerve stimulators and amplifiers; acquisition of low noise, small voltage CAP data and digital conversion; use of software for data analyses of CAP components; and tips for troubleshooting. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Electrophysiology wiring and hardware setup Support Protocol 1: 3D printing an electrophysiology chamber Support Protocol 2: Building suction electrodes Basic Protocol 2: Sciatic nerve dissection and compound action potential recording Basic Protocol 3: Data export and analysis Support Protocol 3: Preparation of HEPES-buffered physiologic solution.
Collapse
Affiliation(s)
- Sharon Sun
- University of Texas Southwestern Medical School, Dallas, Texas
| | - Jorge Delgado
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | | | - David Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Thomas Anthony Anderson
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
14
|
Kim MG, Kamimura HAS, Lee SA, Aurup C, Kwon N, Konofagou EE. Image-guided focused ultrasound modulates electrically evoked motor neuronal activity in the mouse peripheral nervous system in vivo. J Neural Eng 2020; 17:026026. [PMID: 31940596 DOI: 10.1088/1741-2552/ab6be6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Focused ultrasound (FUS) has recently been demonstrated capable of exciting motor neuronal activity. However, comprehensive understanding of elucidated excitatory and inhibitory effects is required to better assess FUS-mediated modulation. In this study, we demonstrate that image-guided FUS can selectively modulate motor neuron activity in the mouse sciatic nerve in vivo and attribute motor responses to thermal effects. APPROACH FUS was applied on the sciatic nerve of anesthetized mice in vivo through the intact skin and muscle using ultrasound imaging for targeting. Both excitatory and inhibitory effects were recorded using electromyography (EMG) along with muscle response of the hind limb. The effects of FUS modulation versus heating by invasive alternative heating source (AHS) on electrically evoked EMG responses in the sciatic nerve in vivo were also investigated. The safety and reversibility of the technique were validated using histology and EMG recovery. MAIN RESULTS The FUS was capable of eliciting motor neuronal activity comparable to electrical stimulation ES, and facilitating motor neuronal response on electrically evoked potentials with temperature elevation up to 11.5 °C ± 0.3 °C (PRF ⩽ 40 Hz). On the other hand, FUS-induced temperature elevations above 15.1 °C ± 1.6 °C (PRF ⩾ 100 Hz) resulted in the suppression of electrically-evoked motor neuronal activity along with a decrease in EMG latency and area under the curve (AUC), which was validated against the invasive AHS with temperature elevation of 18.1 °C ± 8.5 °C. Histological findings along with EMG responses after FUS modulation demonstrated a reversible or irreversible modulation. SIGNIFICANCE The findings reported herein indicate that image-guided FUS (PRF ⩽ 100 Hz) induces safe and controllable modulation of involuntarily evoked motor neuron activity in vivo.
Collapse
Affiliation(s)
- Min Gon Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | | | | | | | | | | |
Collapse
|
15
|
Yildiz KA, Shin AY, Kaufman KR. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review. J Neuroeng Rehabil 2020; 17:43. [PMID: 32151268 PMCID: PMC7063740 DOI: 10.1186/s12984-020-00667-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
The field of prosthetics has been evolving and advancing over the past decade, as patients with missing extremities are expecting to control their prostheses in as normal a way as possible. Scientists have attempted to satisfy this expectation by designing a connection between the nervous system of the patient and the prosthetic limb, creating the field of neuroprosthetics. In this paper, we broadly review the techniques used to bridge the patient's peripheral nervous system to a prosthetic limb. First, we describe the electrical methods including myoelectric systems, surgical innovations and the role of nerve electrodes. We then describe non-electrical methods used alone or in combination with electrical methods. Design concerns from an engineering point of view are explored, and novel improvements to obtain a more stable interface are described. Finally, a critique of the methods with respect to their long-term impacts is provided. In this review, nerve electrodes are found to be one of the most promising interfaces in the future for intuitive user control. Clinical trials with larger patient populations, and for longer periods of time for certain interfaces, will help to evaluate the clinical application of nerve electrodes.
Collapse
Affiliation(s)
- Kadir A Yildiz
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kenton R Kaufman
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
- Motion Analysis Laboratory, W. Hall Wendel, Jr., Musculoskeletal Research, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
16
|
Tan JS, Lin CC, Chen GS. Vasomodulation of peripheral blood flow by focused ultrasound potentiates improvement of diabetic neuropathy. BMJ Open Diabetes Res Care 2020; 8:8/1/e001004. [PMID: 32188594 PMCID: PMC7078690 DOI: 10.1136/bmjdrc-2019-001004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/31/2020] [Accepted: 02/22/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Effective treatment methods for diabetic peripheral neuropathy are still lacking. Here, a focused ultrasound (FUS) technique was developed to improve blood flow in diabetic peripheral vessels and potentially treat diabetic peripheral neuropathy. RESEARCH DESIGN AND METHODS Male adult Sprague-Dawley rats at 4 weeks poststreptozotocin injections were adopted as models for diabetic neuropathic rats. For single FUS treatment, blood perfusion in the skin of the pad of the middle toe was measured before, during, and after the medial and lateral plantar arteries were treated by FUS. For multiple FUS treatments, blood perfusion measurements, von Frey and hot plate testing and nerve conduction velocity measurements were performed before ultrasonic treatment on the first day of each week, and the microvascular and neural fiber densities in the pad of the toe were measured on the first day of the last week. RESULTS The blood perfusion rate significantly increased for 7-10 min in the control and neuropathic rats after a single ultrasound exposure. Multiple ultrasound treatments compared with no treatments significantly increased blood perfusion at the second week and further enhanced perfusion at the third week in the neuropathic rats. Additionally, the paw withdrawal force and latency significantly increased from 34.33±4.55 g and 3.96±0.25 s at the first week to 39.10±5.02 g and 4.77±0.71 s at the second week and to 41.13±2.57 g and 5.24±0.86 s at the third week, respectively. The low nerve conduction velocity in the diabetic rats also improved after the ultrasound treatments. Additionally, ultrasound treatments halted the decrease in microvessel and neural fiber densities in the skin of the diabetic toes. Histologic analysis indicated no damage to the treated arteries or neighboring tissue. CONCLUSIONS FUS treatment can increase upstream arterial blood flow in diabetic feet, ameliorate the decrease in downstream microvessel perfusion and halt neuropathic progression.
Collapse
Affiliation(s)
- Joo-Shin Tan
- Department of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chou-Ching Lin
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Gin-Shin Chen
- Department of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
17
|
Hellman A, Maietta T, Byraju K, Linda Park Y, Shao M, Liss A, Neubauer P, Burdette C, Ghoshal G, Qian J, Nalwalk J, Pilitsis JG. Low Intensity Focused Ultrasound Modulation of Vincristine Induced Neuropathy. Neuroscience 2020; 430:82-93. [DOI: 10.1016/j.neuroscience.2020.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/01/2023]
|
18
|
Feng B, Chen L, Ilham SJ. A review on ultrasonic neuromodulation of the peripheral nervous system: enhanced or suppressed activities? APPLIED SCIENCES-BASEL 2019; 9. [PMID: 34113463 PMCID: PMC8188893 DOI: 10.3390/app9081637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ultrasonic (US) neuromodulation has emerged as a promising therapeutic means by delivering focused energy deep into the tissue. Low-intensity ultrasound (US) directly activates and/or inhibits neurons in the central nervous system (CNS). US neuromodulation of the peripheral nervous system (PNS) is less developed and rarely used clinically. Literature on the neuromodulatory effects of US on the PNS is controversy with some documenting enhanced neural activities, some showing suppressed activities, and others reporting mixed effects. US, with different range of intensity and strength, is likely to generate distinct physical effects in the stimulated neuronal tissues, which underlies different experimental outcomes in the literature. In this review, we summarize all the major reports that documented the effects of US on peripheral nerve endings, axons, and/or somata in the dorsal root ganglion. In particular, we thoroughly discuss the potential impacts by the following key parameters to the study outcomes of PNS neuromodulation by the US: frequency, pulse repetition frequency, duty cycle, intensity, metrics for peripheral neural activities, and type of biological preparations used in the studies. Potential mechanisms of peripheral US neuromodulation are summarized to provide a plausible interpretation to the seemly contradictory effects of enhanced and suppressed neural activities from US neuromodulation.
Collapse
Affiliation(s)
- Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Correspondence: ; Tel.: (001-860-486-6435)
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Sheikh J. Ilham
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
19
|
Walling I, Panse D, Gee L, Maietta T, Kaszuba B, Kumar V, Gannon S, Hellman A, Neubauer P, Frith L, Williams E, Ghoshal G, Shin DS, Burdette C, Qian J, Pilitsis JG. The use of focused ultrasound for the treatment of cutaneous allodynia associated with chronic migraine. Brain Res 2018; 1699:135-141. [DOI: 10.1016/j.brainres.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
|
20
|
Dupleichs M, Gao Q, Badran Z, Janvier P, Bouler JM, Gauthier O, Tamimi F, Verron E. Delivery systems of local anesthetics in bone surgery: are they efficient and safe? Drug Discov Today 2018; 23:1897-1903. [PMID: 29958991 DOI: 10.1016/j.drudis.2018.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 01/25/2023]
Abstract
Management of postoperative pain following bone surgery includes administration of local anesthetics (LAs). Smart delivery systems, including triggered systems, have been designed to provide a continuous release of LA in situ. However, these systems can provide a high level of LA locally. This review will examine the state-of-the-art regarding the LA delivery systems optimized for management of postoperative pain in bone surgery and will discuss the potential adverse effects of LAs on the overall pathways of bone healing, including the inflammation response phase, hemostasis phase, tissue repair phase and remodeling phase. There is a clinical need to document these effects and the potential impacts on the clinical outcome of the patient.
Collapse
Affiliation(s)
- Manon Dupleichs
- CEISAM, CNRS UMR 6230, University of Nantes, Nantes, France; RMeS-lab, INSERM UMR 1229, University of Nantes, Nantes, France
| | - Qiman Gao
- Faculty of Dentistry, McGill University, Montreal, Canada
| | - Zahi Badran
- RMeS-lab, INSERM UMR 1229, University of Nantes, Nantes, France; Faculty of Dentistry, McGill University, Montreal, Canada
| | - Pascal Janvier
- CEISAM, CNRS UMR 6230, University of Nantes, Nantes, France
| | | | - Olivier Gauthier
- RMeS-lab, INSERM UMR 1229, University of Nantes, Nantes, France; ONIRIS, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, France
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, Canada
| | - Elise Verron
- CEISAM, CNRS UMR 6230, University of Nantes, Nantes, France; Faculty of Pharmaceutical Sciences, University of Nantes, Nantes, France.
| |
Collapse
|
21
|
High-Intensity Ultrasound Treatment for Vincristine-Induced Neuropathic Pain. Neurosurgery 2018; 83:1068-1075. [DOI: 10.1093/neuros/nyx488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/07/2018] [Indexed: 11/14/2022] Open
Abstract
Abstract
BACKGROUND
Vincristine is a commonly used chemotherapeutic agent that results in debilitating untreatable peripheral neuropathy.
OBJECTIVE
To determine the effects of pulsed high-intensity focused ultrasound (HIFU) on sensory thresholds in a validated vincristine-induced neuropathy (VIN) rodent model.
METHODS
VIN was induced and mechanical allodynia was confirmed by nociceptive testing. von Frey fibers and Randall-Sellito test were used as measures of innocuous and noxious mechanical thresholds, respectively, and the hot plate test for thermal thresholds. Tests were performed before VIN, after 2 wk of vincristine, at 24, 48, 72, and 120 h after HIFU applied to the left L5 dorsal root ganglia at 3 Watts for 3 min. Comparisons were made between a VIN cohort who underwent HIFU, a VIN cohort who underwent sham HIFU, and naïve rodents who underwent HIFU.
RESULTS
VIN HIFU rats had significantly increased mechanical thresholds at 24 h (P < .001), 48 h (P = .008), 72 h (P = .003), and 120 h (P = .03) after treatment, when compared to pre-HIFU thresholds. Furthermore, at 24 and 48 h following treatment, VIN HIFU rats had significantly higher innocuous and noxious mechanical thresholds and thermal thresholds than VIN sham HIFU rats (P < .001). Thresholds were not altered in naïve rodents who underwent HIFU. Histological data of L5 dorsal root ganglia of VIN HIFU rats suggest that transient cellular edema resolves by 48 h.
CONCLUSION
Our data suggest that HIFU increases mechanical and thermal thresholds in VIN rodents. Whether HIFU can preclude the development of reduced thresholds in the VIN model warrants further study.
Collapse
|
22
|
Lee YF, Lin CC, Cheng JS, Chen GS. An Ultrasonic Tool for Nerve Conduction Block in Diabetic Rat Models. J Vis Exp 2017. [PMID: 29155701 DOI: 10.3791/55675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Nerve conduction block with a high intensity-focused ultrasound (HIFU) transducer has been performed in normal and diabetic animal models recently. HIFU can reversibly block the conduction of peripheral nerves without damaging the nerves while using an appropriate ultrasonic parameter. Temporary and partial block of the action potentials of nerves shows that HIFU has the potential to be a useful clinical treatment for pain relief. This work demonstrates the procedures for suppressing the action potentials of neuropathic nerves in diabetic rats in vivo using an HIFU transducer. The first step is to generate adult male diabetic neuropathic rats by streptozotocin (STZ) injection. The second step is to evaluate the peripheral diabetic neuropathy in STZ-induced diabetic rats by an electronic von Frey probe and a hot plate. The final step is to record in vivo extracellular action potentials of the nerve exposed to HIFU sonication. The method showed here may benefit the study of ultrasound analgesic applications.
Collapse
Affiliation(s)
- Yee Fun Lee
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes
| | - Chou-Ching Lin
- Department of Neurology, National Cheng Kung University Hospital
| | - Jung-Sung Cheng
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes
| | - Gin-Shin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes;
| |
Collapse
|
23
|
Casella DP, Dudley AG, Clayton DB, Pope JC, Tanaka ST, Thomas J, Adams MC, Brock JW, Caskey CF. Modulation of the rat micturition reflex with transcutaneous ultrasound. Neurourol Urodyn 2017; 36:1996-2002. [DOI: 10.1002/nau.23241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 02/04/2023]
Affiliation(s)
| | - Anne G. Dudley
- Vanderbilt University Medical Center; Nashville Tennessee
| | | | - John C. Pope
- Vanderbilt University Medical Center; Nashville Tennessee
| | | | - John Thomas
- Vanderbilt University Medical Center; Nashville Tennessee
| | - Mark C. Adams
- Vanderbilt University Medical Center; Nashville Tennessee
| | - John W. Brock
- Vanderbilt University Medical Center; Nashville Tennessee
| | | |
Collapse
|
24
|
Abstract
Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field's foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.
Collapse
Affiliation(s)
- Omer Naor
- Department of Biomedical Engineering, The Technion-Israel Institute of Technology Haifa 32000, Israel. The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | | | | |
Collapse
|
25
|
Adewole DO, Serruya MD, Harris JP, Burrell JC, Petrov D, Chen HI, Wolf JA, Cullen DK. The Evolution of Neuroprosthetic Interfaces. Crit Rev Biomed Eng 2016; 44:123-52. [PMID: 27652455 PMCID: PMC5541680 DOI: 10.1615/critrevbiomedeng.2016017198] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ideal neuroprosthetic interface permits high-quality neural recording and stimulation of the nervous system while reliably providing clinical benefits over chronic periods. Although current technologies have made notable strides in this direction, significant improvements must be made to better achieve these design goals and satisfy clinical needs. This article provides an overview of the state of neuroprosthetic interfaces, starting with the design and placement of these interfaces before exploring the stimulation and recording platforms yielded from contemporary research. Finally, we outline emerging research trends in an effort to explore the potential next generation of neuroprosthetic interfaces.
Collapse
Affiliation(s)
- Dayo O. Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Mijail D. Serruya
- Department of Neurology, Jefferson University, Philadelphia, PA, USA
| | - James P. Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Dmitriy Petrov
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - H. Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|