1
|
Behnoush AH, Bazmi E, Forouzesh M, Behnoush B. Risk of COVID-19 infection and the associated hospitalization, ICU admission and mortality in opioid use disorder: a systematic review and meta-analysis. Addict Sci Clin Pract 2022; 17:68. [PMID: 36451181 PMCID: PMC9709364 DOI: 10.1186/s13722-022-00349-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Opioid use disorder (OUD) as a common drug use disorder can affect public health issues, including the COVID-19 pandemic, in which patients with OUD may have higher risk of infection and severe disease. This systematic review and meta-analysis was conducted to investigate the risk of COVID-19 and the associated hospitalization, intensive care unit (ICU) admission, and mortality in patients with OUD. MATERIALS AND METHODS A comprehensive systematic search was performed on PubMed, Scopus, Embase, and Web of Science to find studies which compared the infection rate and outcomes of COVID-19 in OUD patients in comparison with the normal population. A random effects meta-analysis model was developed to estimate odd ratios (OR) and 95% confidence interval (CI) between the outcomes of COVID-19 and OUD. RESULTS Out of 2647 articles identified through the systematic search, eight were included in the systematic review and five in the meta-analysis. Among 73,345,758 participants with a mean age of 57.90 ± 13.4 years, 45.67% were male. The findings suggested no significant statistical relationship between COVID-19 infection and OUD (OR (95% CI): 1.18 (0.47-2.96), p-value: 0.73). Additionally, patients with OUD had higher rate of hospitalization (OR (95% CI) 5.98 (5.02-7.13), p-value<0.01), ICU admission (OR (95% CI): 3.47 (2.24-5.39), p-value<0.01), and mortality by COVID-19) OR (95% CI): 1.52(1.27-1.82), pvalue< 0.01). CONCLUSION The present findings suggested that OUD is a major risk factor for mortality and the need for hospitalization and ICU admission in patients with COVID-19. It is recommended that policymakers and healthcare providers adopt targeted methods to prevent and manage clinical outcomes and decrease the burden of COVID-19, especially in specific populations such as OUD patients.
Collapse
Affiliation(s)
- Amir Hossein Behnoush
- grid.411705.60000 0001 0166 0922School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Bazmi
- grid.508126.80000 0004 9128 0270Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mehdi Forouzesh
- grid.508126.80000 0004 9128 0270Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Behnam Behnoush
- grid.411705.60000 0001 0166 0922Department of Forensic Medicine and Toxicology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gozzi-Silva SC, Teixeira FME, Duarte AJDS, Sato MN, Oliveira LDM. Immunomodulatory Role of Nutrients: How Can Pulmonary Dysfunctions Improve? Front Nutr 2021; 8:674258. [PMID: 34557509 PMCID: PMC8453008 DOI: 10.3389/fnut.2021.674258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Nutrition is an important tool that can be used to modulate the immune response during infectious diseases. In addition, through diet, important substrates are acquired for the biosynthesis of regulatory molecules in the immune response, influencing the progression and treatment of chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). In this way, nutrition can promote lung health status. A range of nutrients, such as vitamins (A, C, D, and E), minerals (zinc, selenium, iron, and magnesium), flavonoids and fatty acids, play important roles in reducing the risk of pulmonary chronic diseases and viral infections. Through their antioxidant and anti-inflammatory effects, nutrients are associated with better lung function and a lower risk of complications since they can decrease the harmful effects from the immune system during the inflammatory response. In addition, bioactive compounds can even contribute to epigenetic changes, including histone deacetylase (HDAC) modifications that inhibit the transcription of proinflammatory cytokines, which can contribute to the maintenance of homeostasis in the context of infections and chronic inflammatory diseases. These nutrients also play an important role in activating immune responses against pathogens, which can help the immune system during infections. Here, we provide an updated overview of the roles played by dietary factors and how they can affect respiratory health. Therefore, we will show the anti-inflammatory role of flavonoids, fatty acids, vitamins and microbiota, important for the control of chronic inflammatory diseases and allergies, in addition to the antiviral role of vitamins, flavonoids, and minerals during pulmonary viral infections, addressing the mechanisms involved in each function. These mechanisms are interesting in the discussion of perspectives associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its pulmonary complications since patients with severe disease have vitamins deficiency, especially vitamin D. In addition, researches with the use of flavonoids have been shown to decrease viral replication in vitro. This way, a full understanding of dietary influences can improve the lung health of patients.
Collapse
Affiliation(s)
- Sarah Cristina Gozzi-Silva
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil.,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil.,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil.,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Thachil J, Khorana A, Carrier M. Similarities and perspectives on the two C's-Cancer and COVID-19. J Thromb Haemost 2021; 19:1161-1167. [PMID: 33725410 PMCID: PMC8250039 DOI: 10.1111/jth.15294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
COVID-19 continues to dominate the health-care burden in the twenty-first century. While health-care professionals around the world try their best to minimize the mortality from this pandemic, we also continue to battle the high mortality from different types of cancer. For the hemostasis and thrombosis specialist, these two conditions present some unusual similarities including the high rate of thrombosis and marked elevation of D-dimers. In this forum article, we discuss these similarities and provide some considerations for future research and therapeutic trials.
Collapse
Affiliation(s)
- Jecko Thachil
- Department of Haematology, Manchester University Hospitals, Manchester, UK
| | - Alok Khorana
- Department of Hematology and Medical Oncology, Taussig Cancer Institute and Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Marc Carrier
- Cleveland Clinic, Cleveland, Ohio, USA
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Sukhatme VP, Reiersen AM, Vayttaden SJ, Sukhatme VV. Fluvoxamine: A Review of Its Mechanism of Action and Its Role in COVID-19. Front Pharmacol 2021; 12:652688. [PMID: 33959018 PMCID: PMC8094534 DOI: 10.3389/fphar.2021.652688] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Fluvoxamine is a well-tolerated, widely available, inexpensive selective serotonin reuptake inhibitor that has been shown in a small, double-blind, placebo-controlled, randomized study to prevent clinical deterioration of patients with mild coronavirus disease 2019 (COVID-19). Fluvoxamine is also an agonist for the sigma-1 receptor, through which it controls inflammation. We review here a body of literature that shows important mechanisms of action of fluvoxamine and other SSRIs that could play a role in COVID-19 treatment. These effects include: reduction in platelet aggregation, decreased mast cell degranulation, interference with endolysosomal viral trafficking, regulation of inositol-requiring enzyme 1α-driven inflammation and increased melatonin levels, which collectively have a direct antiviral effect, regulate coagulopathy or mitigate cytokine storm, which are known hallmarks of severe COVID-19.
Collapse
Affiliation(s)
- Vikas P Sukhatme
- Department of Medicine and the Morningside Center for Innovative and Affordable Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Angela M Reiersen
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | | | - Vidula V Sukhatme
- GlobalCures, Inc., Newton, MA, United States.,Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
5
|
Man Y, Kucukal E, An R, Bode A, Little JA, Gurkan UA. Standardized microfluidic assessment of red blood cell-mediated microcapillary occlusion: Association with clinical phenotype and hydroxyurea responsiveness in sickle cell disease. Microcirculation 2021; 28:e12662. [PMID: 33025653 DOI: 10.1111/micc.12662] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVES We present a standardized in vitro microfluidic assay and Occlusion Index (OI) for the assessment of red blood cell (RBC)-mediated microcapillary occlusion and its clinical associations in sickle cell disease (SCD). METHODS Red blood cell mediated microcapillary occlusion represented by OI and its clinical associations were assessed for seven subjects with hemoglobin-SC disease (HbSC), 18 subjects with homozygous SCD (HbSS), and five control individuals (HbAA). RESULTS We identified two sub-populations with HbSS based on the OI distribution. HbSS subjects with relatively higher OIs had significantly lower hemoglobin levels, lower fetal hemoglobin (HbF) levels, and lower mean corpuscular volume (MCV), but significantly higher serum lactate dehydrogenase levels and absolute reticulocyte counts, compared to subjects with HbSS and lower OIs. HbSS subjects who had relatively higher OIs were more likely to have had a concomitant diagnosis of intrapulmonary shunting (IPS). Further, lower OI associated with hydroxyurea (HU) responsiveness in subjects with HbSS, as evidenced by significantly elevated HbF levels and MCV. CONCLUSIONS We demonstrated that RBC-mediated microcapillary occlusion and OI associated with subject clinical phenotype and HU responsiveness in SCD. The presented standardized microfluidic assay may be useful for evaluating clinical phenotype and assessing therapeutic outcomes in SCD, including emerging targeted and curative treatments that aim to improve RBC deformability and microcirculatory health.
Collapse
Affiliation(s)
- Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Allison Bode
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.,Division of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jane A Little
- Division of Hematology and Oncology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
6
|
Gaisina IN, Peet NP, Cheng H, Li P, Du R, Cui Q, Furlong K, Manicassamy B, Caffrey M, Thatcher GRJ, Rong L. Optimization of 4-Aminopiperidines as Inhibitors of Influenza A Viral Entry That Are Synergistic with Oseltamivir. J Med Chem 2020; 63:3120-3130. [PMID: 32069052 DOI: 10.1021/acs.jmedchem.9b01900] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vaccination is the most prevalent prophylactic means for controlling seasonal influenza infections. However, an effective vaccine usually takes at least 6 months to develop for the circulating strains. Therefore, new therapeutic options are needed for the acute treatment of influenza infections to control this virus and prevent epidemics/pandemics from developing. We have discovered fast-acting, orally bioavailable acylated 4-aminopiperidines with an effective mechanism of action targeting viral hemagglutinin (HA). Our data show that these compounds are potent entry inhibitors of influenza A viruses. We present docking studies that suggest an HA binding site for these inhibitors on H5N1. Compound 16 displayed a significant decrease of viral titer when evaluated in the infectious assays with influenza virus H1N1 (A/Puerto Rico/8/1934) or H5N1 (A/Vietnam/1203/2004) strains and the oseltamivir-resistant strain with the most common H274Y mutation. In addition, compound 16 showed significant synergistic activity with oseltamivir in vitro.
Collapse
Affiliation(s)
- Irina N Gaisina
- UICentre (Drug Discovery@UIC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States.,Chicago BioSolutions, Inc., 2242 West Harrison Street, Chicago, Illinois 60612, United States
| | - Norton P Peet
- Chicago BioSolutions, Inc., 2242 West Harrison Street, Chicago, Illinois 60612, United States
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, Illinois 60612, United States
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 16369 Jinshi Road, Jinan, Shandong 250355, China
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 16369 Jinshi Road, Jinan, Shandong 250355, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 16369 Jinshi Road, Jinan, Shandong 250355, China
| | - Kevin Furlong
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, United States
| | - Balaji Manicassamy
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, United States.,Department of Microbiology and Immunology, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, United States
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, Illinois 60607, United States
| | - Gregory R J Thatcher
- UICentre (Drug Discovery@UIC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, Illinois 60612, United States
| |
Collapse
|
7
|
Martins MDF, Honório-Ferreira A, Martins P, Gonçalves CA. Presence of sialic acids in bronchioloalveolar cells and identification and quantification of N-acetylneuraminic and N-glycolylneuraminic acids in the lung. Acta Histochem 2019; 121:712-717. [PMID: 31248580 DOI: 10.1016/j.acthis.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
The lung, in air-breathing vertebrates, is a tree-like structure composed of branching tubes ending in alveoli and lined by diverse and highly specialized epithelial cells. A dense array of complex and diverse glycoconjugates is present on essentially all animal cell surfaces. Sialic acids are widely allocated at the outermost ends of glycan chains, attached to membrane proteins and lipids below. Due to their abundance and their terminal position in glycans, sialic acids are implicated in many physiological and pathological functions. Although the composition of lung epithelial cell-surface glycans has been studied over the years, it is not yet completely understood. In the present work, we aimed to histochemically localize N-acetylneuraminic acid (Neu5Ac)>N-glycolylneuraminic acid (Neu5Gc) residues on rat bronchioloalveolar epithelial cell surfaces using light microscopy (LM) methods. In lung membranes isolated from adult rat lung homogenates, we also separated, identified and quantified Neu5Ac and Neu5Gc by means of high-performance liquid chromatography (HPLC), and systematically described the optimized HPLC methods used. Sialic acid residues were localized on the surface coat of bronchioloalveolar cells, and the mean quantification of Neu5Ac and Neu5Gc in the adult rat lung homogenates was 12,26 and 2,73 μg/mg prot., respectively, revealing a manifest preponderance of Neu5Ac. A coefficient of variation (CV) of 4,98% and 4,40%, respectively was obtained and an optimal dispersion variability expressed by the SD and the CV was also reported, confirming the efficiency of the methodology. To the best of our knowledge, our group was the first to identify, separate and quantify sialic acids in purified lung membranes. The presence of these residues contributes to a strong anionic shield and may provide an hydrating and protective barrier as well as a repulsive structure that is crucial to lung physiology.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Eosinophils are short-lived granulocytes that contain a variety of proteins and lipids traditionally associated with host defense against parasites. The primary goal of this review is to examine more recent evidence that challenged this rather outdated role of eosinophils in the context of pulmonary infections with helminths, viruses, and bacteria. RECENT FINDINGS While eosinophil mechanisms that counter parasites, viruses, and bacteria are similar, the kinetics and impact may differ by pathogen type. Major antiparasitic responses include direct killing and immunoregulation, as well as some mechanisms by which parasite survival/growth is supported. Antiviral defenses may be as unembellished as granule protein-induced direct killing or more urbane as serving as a conduit for better adaptive immune responses to the invading virus. Although sacrificial, eosinophil DNA emitted in response to bacteria helps trap bacteria to limit dissemination. Herein, we discuss the current research redefining eosinophils as multifunctional cells that are active participants in host defense against lung pathogens. Eosinophils recognize and differentially respond to invading pathogens, allowing them to deploy innate defense mechanisms to contain and clear the infection, or modulate the immune response. Modern technology and animal models have unraveled hitherto unknown capabilities of this surreptitious cell that indubitably has more functions awaiting discovery.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Pediatrics, Division of Pulmonology, Allergy - Immunology, and Sleep, University of Tennessee Health Science Center, Memphis, TN, USA
- Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Amali E Samarasinghe
- Department of Pediatrics, Division of Pulmonology, Allergy - Immunology, and Sleep, University of Tennessee Health Science Center, Memphis, TN, USA.
- Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
9
|
Yilmaz Y, Williams G, Walles M, Manevski N, Krähenbühl S, Camenisch G. Comparison of Rat and Human Pulmonary Metabolism Using Precision-cut Lung Slices (PCLS). Drug Metab Lett 2019; 13:53-63. [PMID: 30345935 DOI: 10.2174/1872312812666181022114622] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Although the liver is the primary organ of drug metabolism, the lungs also contain drug-metabolizing enzymes and may, therefore, contribute to the elimination of drugs. In this investigation, the Precision-cut Lung Slice (PCLS) technique was standardized with the aims of characterizing and comparing rat and human pulmonary drug metabolizing activity. METHOD Due to the limited availability of human lung tissue, standardization of the PCLS method was performed with rat lung tissue. Pulmonary enzymatic activity was found to vary significantly with rat age and rat strain. The Dynamic Organ Culture (DOC) system was superior to well-plates for tissue incubations, while oxygen supply appeared to have a limited impact within the 4h incubation period used here. RESULTS The metabolism of a range of phase I and phase II probe substrates was assessed in rat and human lung preparations. Cytochrome P450 (CYP) activity was relatively low in both species, whereas phase II activity appeared to be more significant. CONCLUSION PCLS is a promising tool for the investigation of pulmonary drug metabolism. The data indicates that pulmonary CYP activity is relatively low and that there are significant differences in enzyme activity between rat and human lung.
Collapse
Affiliation(s)
- Yildiz Yilmaz
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gareth Williams
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Markus Walles
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Nenad Manevski
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Stephan Krähenbühl
- Clinical Pharmacology and Toxicology, University Hospital, Basel, Switzerland
| | - Gian Camenisch
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
10
|
Abstract
The lung is constantly exposed to a large volume of inhaled air that may contain toxicant xenobiotics. With the possibility of exposure to a variety of respiratory toxicants from airborne pollutants in our environment during the course of daily activities, in occupational settings, the use of aerosol sprays for household products, and the development of inhalant bronchial therapies, pulmonary toxicology has become an important subspecialty of toxicology. The lung is susceptible to injury following hematogenous exposure to toxicants. Susceptibility to injury and the type of response following exposure to air- or blood-borne toxicants is largely dependent on the physiochemical characteristics and concentration of the toxicant, duration of exposure, site/tissue specific sensitivity, and the integrity of the defense mechanisms of the lung. In this chapter, nonneoplastic and neoplastic spontaneous lesions and those that develop in the lungs of rats following exposure to toxicants by various routes, but primarily by inhalation, are discussed in detail which provides insight into our understanding of how human lungs respond to toxic chemicals. In addition, the gross and microscopic anatomy of the rat lung is also discussed some detail. Although inhalation is the primary route of exposure in experimental studies, in the past, many studies used intratracheal instillation or direct injection of known carcinogens into the lung. These experiments often resulted in the development of squamous cell carcinomas even though they are very rare as a naturally occurring neoplasm. Instillation of chemicals or particles into the trachea or pleura or direct injection into the lung results in lesions or responses that may not be as relevant to understanding the mechanism of pulmonary carcinogenesis as inhalation of materials under more normal conditions. There remain, however, many areas where our understanding of the response of the lung to toxic chemicals is incomplete.
Collapse
|
11
|
Paku S, Laszlo V, Dezso K, Nagy P, Hoda MA, Klepetko W, Renyi-Vamos F, Timar J, Reynolds AR, Dome B. The evidence for and against different modes of tumour cell extravasation in the lung: diapedesis, capillary destruction, necroptosis, and endothelialization. J Pathol 2017; 241:441-447. [PMID: 28026875 DOI: 10.1002/path.4855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/17/2022]
Abstract
The development of lung metastasis is a significant negative prognostic factor for cancer patients. The extravasation phase of lung metastasis involves interactions of tumour cells with the pulmonary endothelium. These interactions may have broad biological and medical significance, with potential clinical implications ranging from the discovery of lung metastasis biomarkers to the identification of targets for intervention in preventing lung metastases. Because of the potential significance, the mechanisms of tumour cell extravasation require cautious, systematic studies. Here, we discuss the literature pertaining to the proposed mechanisms of extravasation and critically compare a recently proposed mechanism (tumour cell-induced endothelial necroptosis) with the already described extravasation mechanisms in the lung. We also provide novel data that may help to explain the underlying physiological basis for endothelialization as a mechanism of tumour cell extravasation in the lung. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sándor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.,Tumour Progression Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary
| | - Viktoria Laszlo
- Department of Thoracic Surgery, Medical University of Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Katalin Dezso
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Peter Nagy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Austria
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, Medical University of Vienna, Austria.,Department of Thoracic Surgery, Semmelweis University-National Institute of Oncology, Budapest, Hungary
| | - Jozsef Timar
- Tumour Progression Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary.,2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Andrew R Reynolds
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Balazs Dome
- Department of Thoracic Surgery, Medical University of Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria.,Department of Thoracic Surgery, Semmelweis University-National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|