1
|
Aoun Sebaiti M, Oubaya N, Gounden Y, Samson C, Lechapt E, Wahab A, Creange A, Hainselin M, Authier FJ. Comparative Study Between Cognitive Phenotypes of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Multiple Sclerosis. Diagnostics (Basel) 2025; 15:487. [PMID: 40002638 PMCID: PMC11854609 DOI: 10.3390/diagnostics15040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Objective: Cognitive impairments are one of the most common and disabling symptoms associated with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Here, we address the possibility of a specific cognitive profile inherent to ME/CFS. Due to the occurrence of cognitive deficits, fatigue, and pain in both pathologies, multiple sclerosis (MS) is a relevant comparison model. For this purpose, we carried out a comparative study between cognitive profiles of patients with ME/CFS and patients suffering from MS. Methods: In total, 40 ME/CFS and 40 MS patients were included. A complete screening of all cognitive functions was carried out through an extensive battery of tests routinely used in clinical practice. Results: ME/CFS and MS patients showed deficits in episodic memory retrieval, visual selective attention and reading speed. ME/CFS patients also elicited a lower level of performance than MS patients regarding consolidation. For both groups, levels of performance on these cognitive tests did not correlate with levels of fatigue, pain, and depression. Conclusions: This study highlighted both similarities and differences in the cognitive profiles of ME/CFS and MS patients. While both groups exhibited deficits in episodic memory retrieval, visual selective attention, and reading speed, ME/CFS patients showed distinct impairment in consolidation processes. These cognitive deficits were not correlated with fatigue, pain, or depression, reinforcing the hypothesis of intrinsic cognitive dysfunction in ME/CFS. These findings define a specific cognitive phenotype for ME/CFS, which could improve diagnostic accuracy and therapeutic strategies. Future research, particularly in functional imaging, may elucidate the neurobiological mechanisms underlying these impairments.
Collapse
Affiliation(s)
- Mehdi Aoun Sebaiti
- CRP-CPO, UR UPJV 7273, Université de Picardie Jules Verne, F-80025 Amiens, France; (Y.G.); (M.H.)
- INSERM, IMRB, Université Paris Est Créteil, F-94010 Créteil, France (F.-J.A.)
- Néocortex (Spécialistes de la Neuropsychologie), F-94100 Saint-Maur-des-Fossés, France
| | - Nadia Oubaya
- INSERM, IMRB, Université Paris Est Créteil, F-94010 Créteil, France (F.-J.A.)
- Département de Santé Publique, AP-HP, Hôpital Henri-Mondor, F-94010 Créteil, France
| | - Yannick Gounden
- CRP-CPO, UR UPJV 7273, Université de Picardie Jules Verne, F-80025 Amiens, France; (Y.G.); (M.H.)
| | - Chloé Samson
- AP-HP, Hôpital René Muret, F-93270 Sevran, France;
| | - Emmanuele Lechapt
- Département de Pathologie, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France;
| | - Abir Wahab
- Service de Neurologie, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France; (A.W.); (A.C.)
| | - Alain Creange
- Service de Neurologie, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France; (A.W.); (A.C.)
| | - Mathieu Hainselin
- CRP-CPO, UR UPJV 7273, Université de Picardie Jules Verne, F-80025 Amiens, France; (Y.G.); (M.H.)
| | - François-Jérôme Authier
- INSERM, IMRB, Université Paris Est Créteil, F-94010 Créteil, France (F.-J.A.)
- UF Centre Expert de Pathologie Neuromusculaire, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France
| |
Collapse
|
2
|
Fallahi A, Hoseini-Tabatabaei N, Eivazi F, Mohammadi Mobarakeh N, Dehghani-Siahaki H, Alibiglou L, Rostami R, Mehvari Habibabadi J, Hashemi-Fesharaki SS, Joghataei MT, Nazem-Zadeh MR. Dynamic causal modeling of reorganization of memory and language networks in temporal lobe epilepsy. Ann Clin Transl Neurol 2023; 10:2238-2254. [PMID: 37776067 PMCID: PMC10723230 DOI: 10.1002/acn3.51908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVE To evaluate the alterations of language and memory functions using dynamic causal modeling, in order to identify the epileptogenic hemisphere in temporal lobe epilepsy (TLE). METHODS Twenty-two patients with left TLE and 13 patients with right TLE underwent functional magnetic resonance imaging (fMRI) during four memory and four language mapping tasks. Dynamic causal modeling (DCM) was employed on fMRI data to examine effective directional connectivity in memory and language networks and the alterations in people with TLE compared to healthy individuals. RESULTS DCM analysis suggested that TLE can influence the memory network more widely compared to the language network. For memory mapping, it demonstrated overall hyperconnectivity from the left hemisphere to the other cranial regions in the picture encoding, and from the right hemisphere to the other cranial regions in the word encoding tasks. On the contrary, overall hypoconnectivity was seen from the brain hemisphere contralateral to the seizure onset in the retrieval tasks. DCM analysis further manifested hypoconnectivity between the brain's hemispheres in the language network in patients with TLE compared to controls. The CANTAB® neuropsychological test revealed a negative correlation for the left TLE and a positive correlation for the right TLE cohorts for the connections extracted by DCM that were significantly different between the left and right TLE cohorts. INTERPRETATION In this study, dynamic causal modeling evidenced the reorganization of language and memory networks in TLE that can be used for a better understanding of the effects of TLE on the brain's cognitive functions.
Collapse
Affiliation(s)
- Alireza Fallahi
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Biomedical Engineering Department, Hamedan University of Technology, Hamedan, Iran
| | | | - Fatemeh Eivazi
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Mohammadi Mobarakeh
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Dehghani-Siahaki
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Laila Alibiglou
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | | | | | | | - Mohammad-Reza Nazem-Zadeh
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Royer J, Larivière S, Rodriguez-Cruces R, Cabalo DG, Tavakol S, Auer H, Ngo A, Park BY, Paquola C, Smallwood J, Jefferies E, Caciagli L, Bernasconi A, Bernasconi N, Frauscher B, Bernhardt BC. Cortical microstructural gradients capture memory network reorganization in temporal lobe epilepsy. Brain 2023; 146:3923-3937. [PMID: 37082950 PMCID: PMC10473569 DOI: 10.1093/brain/awad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.
Collapse
Affiliation(s)
- Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Bo-yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Data Science, Inha University, Incheon 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 34126, Republic of Korea
| | - Casey Paquola
- Multiscale Neuroanatomy Lab, INM-1, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | | | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, MA 19104, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
4
|
Simonnet C, Sinha M, Goutierre M, Moutkine I, Daumas S, Poncer JC. Silencing KCC2 in mouse dorsal hippocampus compromises spatial and contextual memory. Neuropsychopharmacology 2023; 48:1067-1077. [PMID: 36302847 PMCID: PMC10209115 DOI: 10.1038/s41386-022-01480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Delayed upregulation of the neuronal chloride extruder KCC2 underlies the progressive shift in GABA signaling polarity during development. Conversely, KCC2 downregulation is observed in a variety of neurological and psychiatric disorders often associated with cognitive impairment. Reduced KCC2 expression and function in mature networks may disrupt GABA signaling and promote anomalous network activities underlying these disorders. However, the causal link between KCC2 downregulation, altered brain rhythmogenesis, and cognitive function remains elusive. Here, by combining behavioral exploration with in vivo electrophysiology we assessed the impact of chronic KCC2 downregulation in mouse dorsal hippocampus and showed it compromises both spatial and contextual memory. This was associated with altered hippocampal rhythmogenesis and neuronal hyperexcitability, with increased burst firing in CA1 neurons during non-REM sleep. Reducing neuronal excitability with terbinafine, a specific Task-3 leak potassium channel opener, occluded the impairment of contextual memory upon KCC2 knockdown. Our results establish a causal relationship between KCC2 expression and cognitive performance and suggest that non-epileptiform rhythmopathies and neuronal hyperexcitability are central to the deficits caused by KCC2 downregulation in the adult mouse brain.
Collapse
Affiliation(s)
- Clémence Simonnet
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
- Basic Neuroscience Department, Centre Medical Universitaire, 1211, Geneva, Switzerland
| | - Manisha Sinha
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Marie Goutierre
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Imane Moutkine
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Stéphanie Daumas
- Sorbonne Université, 75005, Paris, France
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005, Paris, France
| | - Jean Christophe Poncer
- Inserm UMR-S 1270, 75005, Paris, France.
- Sorbonne Université, 75005, Paris, France.
- Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
5
|
Murray NWG, Graham PL, Sowman PF, Savage G. Theta tACS impairs episodic memory more than tDCS. Sci Rep 2023; 13:716. [PMID: 36639676 PMCID: PMC9839727 DOI: 10.1038/s41598-022-27190-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Episodic memory deficits are a common consequence of aging and are associated with a number of neurodegenerative disorders (e.g., Alzheimer's disease). Given the importance of episodic memory, a great deal of research has investigated how we can improve memory performance. Transcranial electrical stimulation (TES) represents a promising tool for memory enhancement but the optimal stimulation parameters that reliably boost memory are yet to be determined. In our double-blind, randomised, sham-controlled study, 42 healthy adults (36 females; 23.3 ± 7.7 years of age) received anodal transcranial direct current stimulation (tDCS), theta transcranial alternating current stimulation (tACS) and sham stimulation during a list-learning task, over three separate sessions. Stimulation was applied over the left temporal lobe, as encoding and recall of information is typically associated with mesial temporal lobe structures (e.g., the hippocampus and entorhinal cortex). We measured word recall within each stimulation session, as well as the average number of intrusion and repetition errors. In terms of word recall, participants recalled fewer words during tDCS and tACS, compared to sham stimulation, and significantly fewer words recalled during tACS compared with tDCS. Significantly more memory errors were also made during tACS compared with sham stimulation. Overall, our findings suggest that TES has a deleterious effect on memory processes when applied to the left temporal lobe.
Collapse
Affiliation(s)
- Nicholas W G Murray
- School of Psychological Sciences, Macquarie University, Australian Hearing Hub, Level 3, Sydney, NSW, 2109, Australia.
| | - Petra L Graham
- School of Mathematical and Physical Sciences, Macquarie University, Sydney, Australia
| | - Paul F Sowman
- School of Psychological Sciences, Macquarie University, Australian Hearing Hub, Level 3, Sydney, NSW, 2109, Australia
| | - Greg Savage
- School of Psychological Sciences, Macquarie University, Australian Hearing Hub, Level 3, Sydney, NSW, 2109, Australia
| |
Collapse
|
6
|
Dupont S. Anatomie fonctionnelle de l’hippocampe : applications à l’épilepsie. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2022. [DOI: 10.1016/j.banm.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Cole ER, Grogan DP, Laxpati NG, Fernandez AM, Skelton HM, Isbaine F, Gutekunst CA, Gross RE. Evidence supporting deep brain stimulation of the medial septum in the treatment of temporal lobe epilepsy. Epilepsia 2022; 63:2192-2213. [PMID: 35698897 DOI: 10.1111/epi.17326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/28/2022]
Abstract
Electrical brain stimulation has become an essential treatment option for more than one third of epilepsy patients who are resistant to pharmacological therapy and are not candidates for surgical resection. However, currently approved stimulation paradigms achieve only moderate success, on average providing approximately 75% reduction in seizure frequency and extended periods of seizure freedom in nearly 20% of patients. Outcomes from electrical stimulation may be improved through the identification of novel anatomical targets, particularly those with significant anatomical and functional connectivity to the epileptogenic zone. Multiple studies have investigated the medial septal nucleus (i.e., medial septum) as such a target for the treatment of mesial temporal lobe epilepsy. The medial septum is a small midline nucleus that provides a critical functional role in modulating the hippocampal theta rhythm, a 4-7-Hz electrophysiological oscillation mechanistically associated with memory and higher order cognition in both rodents and humans. Elevated theta oscillations are thought to represent a seizure-resistant network activity state, suggesting that electrical neuromodulation of the medial septum and restoration of theta-rhythmic physiology may not only reduce seizure frequency, but also restore cognitive comorbidities associated with mesial temporal lobe epilepsy. Here, we review the anatomical and physiological function of the septohippocampal network, evidence for seizure-resistant effects of the theta rhythm, and the results of stimulation experiments across both rodent and human studies, to argue that deep brain stimulation of the medial septum holds potential to provide an effective neuromodulation treatment for mesial temporal lobe epilepsy. We conclude by discussing the considerations necessary for further evaluating this treatment paradigm with a clinical trial.
Collapse
Affiliation(s)
- Eric R Cole
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | - Nealen G Laxpati
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alejandra M Fernandez
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Henry M Skelton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Faical Isbaine
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert E Gross
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Malkov A, Shevkova L, Latyshkova A, Kitchigina V. Theta and gamma hippocampal-neocortical oscillations during the episodic-like memory test: Impairment in epileptogenic rats. Exp Neurol 2022; 354:114110. [PMID: 35551900 DOI: 10.1016/j.expneurol.2022.114110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 11/04/2022]
Abstract
Cortical oscillations in different frequency bands have been shown to be intimately involved in exploration of environment and cognition. Here, the local field potentials in the hippocampus, the medial prefrontal cortex (mPFC), and the medial entorhinal cortex (mEC) were recorded simultaneously in rats during the execution of the episodic-like memory task. The power of theta (~4-10 Hz), slow gamma (~25-50 Hz), and fast gamma oscillations (~55-100 Hz) was analyzed in all structures examined. Particular attention was paid to the theta coherence between three mentioned structures. The modulation of the power of gamma rhythms by the phase of theta cycle during the execution of the episodic-like memory test by rats was also closely studied. Healthy rats and rats one month after kainate-induced status epilepticus (SE) were examined. Paroxysmal activity in the hippocampus (high amplitude interictal spikes), excessive excitability of animals, and the death of hippocampal and dentate granular cells in rats with kainate-evoked SE were observed, which indicated the development of seizure focus in the hippocampus (epileptogenesis). One month after SE, the rats exhibited a specific impairment of episodic memory for the what-where-when triad: unlike healthy rats, epileptogenic SE animals did not identify the objects during the test. This impairment was associated with the changes in the characteristics of theta and gamma rhythms and specific violation of theta coherence and theta/gamma coupling in these structures in comparison with the healthy animals. We believe that these disturbances in the cortical areas play a role in episodic memory dysfunction in kainate-treated animals. These findings can shed light on the mechanisms of cognitive deficit during epileptogenesis.
Collapse
Affiliation(s)
- Anton Malkov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Russia.
| | | | - Alexandra Latyshkova
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Russia
| | - Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Russia
| |
Collapse
|
9
|
Sun YM, Peng YX, Wen Q, Dai Y, Liu XR, Yang XP, Ye Q. Resting-state fMRI in temporal lobe epilepsy patients with cognitive impairment: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27249. [PMID: 34731102 PMCID: PMC8519237 DOI: 10.1097/md.0000000000027249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Temporal lobe epilepsy is a group of neurological diseases caused by the repeated abnormal discharge of brain neurons. Patients with this disease are often accompanied with cognitive impairment. However, the pathogenesis of the cognitive impairment remains unclear. Resting state functional magnetic resonance imaging is a kind of magnetic resonance imaging method based on blood oxygen level dependence. This can reflect the spontaneous brain functional activity of a human brain in the resting state. In recent years, a number of researchers have used resting state functional magnetic resonance imaging to study the changes in resting spontaneous brain function in patients with temporal lobe epilepsy with cognitive impairment (TLE-CI). However, due to the differences in sample and methodology, the results of these studies were inconsistent. Therefore, the present study aimed to investigate the characteristics of the resting spontaneous brain function in patients with TLE-CI through a meta-analysis. METHODS A search was conducted on electronic databases, including PubMed, Cochrane Library, EMBASE, Web of Science, China National Knowledge Infrastructure, WANGFANG DATA and Chinese Biomedical Literature Database, and Baidu scholar Database, from the establishment of the database to April 20, 2021. Randomized controlled trials that employed amplitude of low-frequency fluctuations/regional homogeneity to investigate the changes in resting spontaneous brain function in patients with TLE-CI were selected. Anisotropic effect size version of signed differential mapping was applied to perform the data analysis. RESULTS The study summarized the changes in spontaneous brain function in patients with TLE-CI. CONCLUSION The conclusion for the functional cerebral alterations based on the latest studies will be provided.
Collapse
|
10
|
Li X, Jiang Y, Li W, Qin Y, Li Z, Chen Y, Tong X, Xiao F, Zuo X, Gong Q, Zhou D, Yao D, An D, Luo C. Disrupted functional connectivity in white matter resting-state networks in unilateral temporal lobe epilepsy. Brain Imaging Behav 2021; 16:324-335. [PMID: 34478055 DOI: 10.1007/s11682-021-00506-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Unilateral temporal lobe epilepsy (TLE) is the most common type of focal epilepsy characterized by foci in the unilateral temporal lobe grey matters of regions such as the hippocampus. However, it remains unclear how the functional features of white matter are altered in TLE. In the current study, resting-state functional magnetic resonance imaging (fMRI) was performed on 71 left TLE (LTLE) patients, 79 right TLE (RTLE) patients and 47 healthy controls (HC). Clustering analysis was used to identify fourteen white matter networks (WMN). The functional connectivity (FC) was calculated among WMNs and between WMNs and grey matter. Furthermore, the FC laterality of hemispheric WMNs was assessed. First, both patient groups showed decreased FCs among WMNs. Specifically, cerebellar white matter illustrated decreased FCs with the cerebral superficial WMNs, implying a dysfunctional interaction between the cerebellum and the cerebral cortex in TLE. Second, the FCs between WMNs and the ipsilateral hippocampus (grey matter foci) were also reduced in patient groups, which may suggest insufficient functional integration in unilateral TLE. Interestingly, RTLE showed more severe abnormalities of white matter FCs, including links to the bilateral hippocampi and temporal white matter, than LTLE. Taken together, these findings provide functional evidence of white matter abnormalities, extending the understanding of the pathological mechanism of white matter impairments in unilateral TLE.
Collapse
Affiliation(s)
- Xuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Yingjie Qin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Zhiliang Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Xin Tong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Fenglai Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Xiaojun Zuo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
11
|
Banjac S, Roger E, Cousin E, Perrone-Bertolotti M, Haldin C, Pichat C, Lamalle L, Minotti L, Kahane P, Baciu M. Interactive mapping of language and memory with the GE2REC protocol. Brain Imaging Behav 2021; 15:1562-1579. [PMID: 32761343 PMCID: PMC8286228 DOI: 10.1007/s11682-020-00355-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have highlighted the importance of considering cognitive functions from a dynamic and interactive perspective and multiple evidence was brought for a language and memory interaction. In this study performed with healthy participants, we present a new protocol entitled GE2REC that interactively accesses the neural representation of language-and-memory network. This protocol consists of three runs related to each other, providing a link between tasks, in order to assure an interactive measure of linguistic and episodic memory processes. GE2REC consists of a sentence generation (GE) in the auditory modality and two recollecting (2REC) memory tasks, one recognition performed in the visual modality, and another one recall performed in the auditory modality. Its efficiency was evaluated in 20 healthy volunteers using a 3T MR imager. Our results corroborate the ability of GE2REC to robustly activate fronto-temporo-parietal language network as well as temporal mesial, prefrontal and parietal cortices in encoding during sentence generation and recognition. GE2REC is useful because it: (a) requires simultaneous and interactive language-and-memory processes and jointly maps their neural basis; (b) explores encoding and retrieval, managing to elicit activation of mesial temporal structures; (c) is easy to perform, hence being suitable for more restrictive settings, and (d) has an ecological dimension of tasks and stimuli. GE2REC may be useful for studying neuroplasticity of cognitive functions, especially in patients with temporal lobe epilepsy who show reorganization of both language and memory networks. Overall, GE2REC can provide valuable information in terms of the practical foundation of exploration language and memory interconnection.
Collapse
Affiliation(s)
- Sonja Banjac
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Elise Roger
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Emilie Cousin
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France.,Univ. Grenoble Alpes, UMS IRMaGe CHU Grenoble, F-38000, Grenoble, France
| | | | - Célise Haldin
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Cédric Pichat
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Laurent Lamalle
- Univ. Grenoble Alpes, UMS IRMaGe CHU Grenoble, F-38000, Grenoble, France
| | - Lorella Minotti
- Univ. Grenoble Alpes, GIN, Synchronisation et modulation des Réseaux Neuronaux dans l'Epilepsie' and Neurology Department, F-38000, Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, GIN, Synchronisation et modulation des Réseaux Neuronaux dans l'Epilepsie' and Neurology Department, F-38000, Grenoble, France
| | - Monica Baciu
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France.
| |
Collapse
|
12
|
Doll A, Wegrzyn M, Benzait A, Mertens M, Woermann FG, Labudda K, Bien CG, Kissler J. Whole-brain functional correlates of memory formation in mesial temporal lobe epilepsy. NEUROIMAGE-CLINICAL 2021; 31:102723. [PMID: 34147817 PMCID: PMC8220377 DOI: 10.1016/j.nicl.2021.102723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Large study of encoding and subsequent memory for words, faces, and scenes. Less ipsilateral mesial temporal activity in mesial temporal lobe epilepsy (mTLE). Extra-mTL activity in mTLE only partly relevant for memory formation. Across materials contralateral mTL decisive to maintain intact memory in mTLE. Left frontal activation correlates with better verbal memory only in left mTLE.
The mesial temporal lobe is a key region for episodic memory. Accordingly, memory impairment is frequent in patients with mesial temporal lobe epilepsy. However, the functional relevance of potentially epilepsy-induced reorganisation for memory formation is still not entirely clear. Therefore, we investigated whole-brain functional correlates of verbal and non-verbal memory encoding and subsequent memory formation in 56 (25 right sided) mesial temporal lobe epilepsy patients and 21 controls. We applied an fMRI task of learning scenes, faces, and words followed by an out-of-scanner recognition test. During encoding of faces and scenes left and right mesial temporal lobe epilepsy patients had consistently reduced activation in the epileptogenic mesial temporal lobe compared with controls. Activation increases in patients were apparent in extra-temporal regions, partly associated with subsequent memory formation (left frontal regions and basal ganglia), and patients had less deactivation in regions often linked to the default mode and auditory networks. The more specific subsequent memory contrast indicated only marginal group differences. Correlating patients’ encoding activation with memory performance both within the paradigm and with independent clinical measures demonstrated predominantly increased contralateral mesio-temporal activation supporting intact memory performance. In left temporal lobe epilepsy patients, left frontal activation was also correlated with better verbal memory performance. Taken together, our findings hint towards minor extra-temporal plasticity in mesial temporal lobe epilepsy patients, which is in line with pre-surgical impairment and post-surgical memory decline in many patients. Further, data underscore the importance of particularly the contralateral mesial temporal lobe itself, to maintain intact memory performance.
Collapse
Affiliation(s)
- Anna Doll
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany; Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany.
| | - Martin Wegrzyn
- Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Anissa Benzait
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany; Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Markus Mertens
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany
| | - Friedrich G Woermann
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany
| | - Kirsten Labudda
- Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Christian G Bien
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany
| | - Johanna Kissler
- Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany; Center for Cognitive Interaction Technology (CITEC), University of Bielefeld, Inspiration 1, Bielefeld 33619, Germany
| |
Collapse
|
13
|
Beyond the Wada: An updated approach to pre-surgical language and memory testing: An updated review of available evaluation techniques and recommended workflow to limit Wada test use to essential clinical cases. Epilepsy Res 2021; 174:106673. [PMID: 34082393 DOI: 10.1016/j.eplepsyres.2021.106673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022]
Abstract
The Intracarotid amobarbital test (IAT), also called Wada test, is considered the "gold standard" for lateralizing language dominance in the pre-surgical evaluation of patients with epilepsy. In addition, it has been further modified to assess the postoperative risk of amnesia in patients undergoing temporal lobectomy. Since then it has been utilized to lateralize language and assess pre-surgical memory function. Over the years, its popularity has declined due to several limitations and availability of alternative procedures like fMRI and MEG. A survey of its use in the pre-surgical evaluation for epilepsy surgery has not been performed since the 2008 international survey by Baxendale et al. and it was heavily skewed due to data from European and North American countries. Only approximately 12% of the epilepsy centers indicated that they used the Wada test in every patient to assess preoperative memory function and language lateralization before temporal lobectomy. Nowadays, we have many functional mapping tools at our disposal. It has become somewhat unsuitable to have epilepsy patients undergo an invasive test such as the Wada test for the risks associated with it outweigh the benefits. Our objective is to review the Wada Test and alternative methods of assessing language and memory dominance, as it is past its prime and should only be used in specific circumstances.
Collapse
|
14
|
Li Q, Tavakol S, Royer J, Larivière S, Vos De Wael R, Park BY, Paquola C, Zeng D, Caldairou B, Bassett DS, Bernasconi A, Bernasconi N, Frauscher B, Smallwood J, Caciagli L, Li S, Bernhardt BC. Atypical neural topographies underpin dysfunctional pattern separation in temporal lobe epilepsy. Brain 2021; 144:2486-2498. [PMID: 33730163 DOI: 10.1093/brain/awab121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Episodic memory is the ability to accurately remember events from our past. The process of pattern separation is hypothesized to underpin this ability and is defined as the ability to orthogonalize memory traces, to maximize the features that make them unique. Contemporary cognitive neuroscience suggests that pattern separation entails complex interactions between the hippocampus and the neocortex, where specific hippocampal subregions shape neural reinstatement in the neocortex. To test this hypothesis, the current work studied both healthy controls and patients with temporal lobe epilepsy (TLE) who present with hippocampal structural anomalies. In all participants, we measured neural activity using functional magnetic resonance imaging (fMRI) while they retrieved memorized items compared to lure items which share features with the target. Behaviorally, TLE patients were less able to exclude lures than controls, and showed a reduction in pattern separation. To assess the hypothesized relationship between neural patterns in the hippocampus and the neocortex, we identified topographic gradients of intrinsic connectivity along neocortical and hippocampal subfield surfaces and identified the topographic profile of the neural activity accompanying pattern separation. In healthy controls, pattern separation followed a graded pattern of neural activity, both along the hippocampal long axis (and peaked in anterior segments that are more heavily engaged in transmodal processing) and along the neocortical hierarchy running from unimodal to transmodal regions (peaking in transmodal default mode regions). In TLE patients, however, this concordance between task-based functional activations and topographic gradients was markedly reduced. Furthermore, person specific measures of concordance between task-related activity and connectivity gradients in patients and controls related to inter-individual differences in behavioral measures of pattern separation and episodic memory, highlighting the functional relevance of the observed topographic motifs. Our work is consistent with an emerging understanding that successful discrimination between memories with similar features entails a shift in the locus of neural activity away from sensory systems, a pattern that is mirrored along the hippocampal long axis and with respect to neocortical hierarchies. More broadly, our study establishes topographic profiling using intrinsic connectivity gradients captures the functional underpinnings of episodic memory processes in manner that is sensitive to their reorganization in pathology.
Collapse
Affiliation(s)
- Qiongling Li
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Reinder Vos De Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Debin Zeng
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, USA.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Shuyu Li
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
15
|
Massot-Tarrús A, White KP, Mousavi SR, Hayman-Abello S, Hayman-Abello B, Mirsattari SM. Concordance between fMRI and Wada test for memory lateralization in temporal lobe epilepsy: A meta-analysis and systematic review. Epilepsy Behav 2020; 107:107065. [PMID: 32276205 DOI: 10.1016/j.yebeh.2020.107065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The Wada test (WT) is increasingly being replaced by functional magnetic resonance imaging (fMRI) to evaluate memory lateralization before temporal lobe epilepsy (TLE) surgery. We aimed to determine, via meta-analysis, agreement between the two tests and identify predictors of disagreement. METHODS We performed a systematic search for studies comparing WT and fMRI for memory lateralization with individual-patient data. If results were provided as laterality indexes instead of hemispheric lateralization, the cutoff point for memory lateralization was set to the usual ±2 for WT and ±0.20 for fMRI. We also evaluated results at our Epilepsy Center. RESULTS Seven published series plus our own were included, comprising 124 patients. Wada test was performed by recognizing objects in half of the studies, and scenes, drawings, and words in the rest. All used scenes or pictures encoding for fMRI. Wada test-fMRI agreement across the studies ranged from 21.1 to 100%, averaging 46.8% (95% confidence interval [CI]: 37.6-56.0%). When cases with bilateral memory in either test were excluded, agreement reached 78.7% (95% CI: 67.6-89.8%), and concordance with contralateral TLE foci 86.4% for the WT and 83.0% for fMRI. Higher agreement was associated with using multiple items during WT (p = 0.001) and higher disagreement with presence of a lesion on MRI (p = 0.024). Binary logistic regression confirmed use of multiple items on WT as the strongest predictor of agreement (odds ratio [OR]: 6.95, 95% CI: 1.84-26.22; p = 0.004) and a bilateral result on the WT or fMRI of disagreement (OR: 0.24, 95% CI: 0.07-0.89 and OR: 0.12, 95% CI: 0.03-0.45; p < 0.05). CONCLUSION Concordance between WT and fMRI for memory lateralization is low in patients with TLE and bilateral memoryl memory distribution or a structural etiology, and it improves with encoding of a varied set of items. Both tests can help to lateralize the TLE foci.
Collapse
Affiliation(s)
- Andreu Massot-Tarrús
- Department of Neurology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - Kevin P White
- Science Right Research Consulting, London, Ontario, Canada
| | - Seyed Reza Mousavi
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Susan Hayman-Abello
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Brent Hayman-Abello
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Seyed M Mirsattari
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Sepeta LN, Berl MM, Gaillard WD. Imaging episodic memory during development and childhood epilepsy. J Neurodev Disord 2018; 10:40. [PMID: 30541437 PMCID: PMC6292091 DOI: 10.1186/s11689-018-9255-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/14/2018] [Indexed: 01/31/2023] Open
Abstract
Epilepsy affects 2.2 million adults in the USA, with 1 in 26 people developing epilepsy at some point in their lives. Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy as medial structures, and the hippocampus in particular, are prone to generating seizures. Selective anterior temporal resection (which removes the hippocampus) is the most effective intractable TLE treatment, but given the critical role of the mesial temporal lobe in memory functioning, resection can have negative effects on this crucial cognitive skill. To minimize the adverse impact of temporal lobe surgery on memory functioning, reliable pre-surgical guides are needed. Clinical functional magnetic resonance imaging (fMRI) provides reliable, noninvasive guidance of language functioning and plays a growing role in the pre-surgical evaluation for epilepsy patients; however, localization of memory function in children with epilepsy using fMRI has not been established. Aside from the lack of neuroimaging memory studies in children with TLE, studies of typical development are limited. This review will focus on the functional anatomy of memory systems throughout development, with a focus on TLE. TLE provides the ideal model from which to understand memory function and the limits of plasticity and compensation/reorganization throughout development.
Collapse
Affiliation(s)
- Leigh N. Sepeta
- Center for Neuroscience Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, D.C., 20010 USA
- Clinical Epilepsy Section, National Institutes for Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892 USA
| | - Madison M. Berl
- Clinical Epilepsy Section, National Institutes for Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892 USA
| | - William Davis Gaillard
- Center for Neuroscience Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, D.C., 20010 USA
- Clinical Epilepsy Section, National Institutes for Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
17
|
Kitchigina VF. Alterations of Coherent Theta and Gamma Network Oscillations as an Early Biomarker of Temporal Lobe Epilepsy and Alzheimer's Disease. Front Integr Neurosci 2018; 12:36. [PMID: 30210311 PMCID: PMC6119809 DOI: 10.3389/fnint.2018.00036] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) and temporal lobe epilepsy (TLE) are the most common forms of neurodegenerative disorders characterized by the loss of cells and progressive irreversible alteration of cognitive functions, such as attention and memory. AD may be an important cause of epilepsy in the elderly. Early diagnosis of diseases is very important for their successful treatment. Many efforts have been done for defining new biomarkers of these diseases. Significant advances have been made in the searching of some AD and TLE reliable biomarkers, including cerebrospinal fluid and plasma measurements and glucose positron emission tomography. However, there is a great need for the biomarkers that would reflect changes of brain activity within few milliseconds to obtain information about cognitive disturbances. Successful early detection of AD and TLE requires specific biomarkers capable of distinguishing individuals with the progressing disease from ones with other pathologies that affect cognition. In this article, we review recent evidence suggesting that magnetoencephalographic recordings and coherent analysis coupled with behavioral evaluation can be a promising approach to an early detection of AD and TLE. Highlights -Data reviewed include the results of clinical and experimental studies.-Theta and gamma rhythms are disturbed in epilepsy and AD.-Common and different behavioral and oscillatory features of pathologies are compared.-Coherent analysis can be useful for an early diagnostics of diseases.
Collapse
Affiliation(s)
- Valentina F Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences (RAS), Pushchino, Russia
| |
Collapse
|
18
|
Mathon B, Amelot A, Clemenceau S, Carpentier A, Boch AL. Commentary: La Pitié-Salpêtrière Hospital in Paris: the Historic Cradle of Neurosurgery. Neurosurgery 2018; 82:164-174. [DOI: 10.1093/neuros/nyy115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- Bertrand Mathon
- Assistance Publique - Hopitaux de Paris, Department of Neurosurgery, La Pitié-Salpêtrière University Hospital, Paris, France
- Sorbonne University, Pierre et Marie Curie School of Medicine, Paris, France
| | - Aymeric Amelot
- Assistance Publique - Hopitaux de Paris, Department of Neurosurgery, La Pitié-Salpêtrière University Hospital, Paris, France
- Sorbonne University, Pierre et Marie Curie School of Medicine, Paris, France
| | - Stéphane Clemenceau
- Assistance Publique - Hopitaux de Paris, Department of Neurosurgery, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Alexandre Carpentier
- Assistance Publique - Hopitaux de Paris, Department of Neurosurgery, La Pitié-Salpêtrière University Hospital, Paris, France
- Sorbonne University, Pierre et Marie Curie School of Medicine, Paris, France
| | - Anne-Laure Boch
- Assistance Publique - Hopitaux de Paris, Department of Neurosurgery, La Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
19
|
In Reply to "Selective Amygdalohippocampectomy for Mesial Temporal Sclerosis: Special Considerations in Geniuses". World Neurosurg 2018; 111:431-432. [PMID: 29499601 DOI: 10.1016/j.wneu.2017.12.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 11/23/2022]
|
20
|
Allone C, Lo Buono V, Corallo F, Pisani LR, Pollicino P, Bramanti P, Marino S. Neuroimaging and cognitive functions in temporal lobe epilepsy: A review of the literature. J Neurol Sci 2017; 381:7-15. [DOI: 10.1016/j.jns.2017.08.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 02/05/2023]
|
21
|
Doyle KL, Woods SP, McDonald CR, Leyden KM, Holden HM, E Morgan E, Gilbert PE, Corey-Bloom J. Verbal episodic memory profiles in HIV-Associated Neurocognitive Disorders (HAND): A comparison with Huntington's disease and mesial temporal lobe epilepsy. APPLIED NEUROPSYCHOLOGY-ADULT 2017; 26:17-27. [PMID: 28850256 DOI: 10.1080/23279095.2017.1353993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) commonly feature verbal episodic memory impairment historically characterized by a retrieval deficit, consistent with a classic "subcortical" presentation; however, there are hints of a subtle shift toward a more "cortical" memory profile characterized by a primary encoding deficit. The current study evaluated this possibility by comparing the pattern of HAND-associated verbal episodic memory deficits to those of traditional "subcortical" (i.e., Huntington's disease; HD) versus "cortical" (i.e., left temporal lobe epilepsy with mesial temporal sclerosis; L-MTLE) profiles. Seventy-seven individuals with HAND, 47 individuals with HD, 21 individuals with L-MTLE, and 45 healthy participants were administered the California Verbal Learning Test - 2nd Edition (CVLT-II). CVLT-II profiles were classified as reflecting a primary encoding deficit, retrieval deficit, or a normal profile. Among participants with a deficit profile, the HAND group showed the highest rates of retrieval versus encoding profiles (71% vs. 29%), followed by HD (59% vs. 41%), L-MTLE (46% vs. 54%), and healthy (50% vs. 50%) groups. While significant profile heterogeneity was observed across clinical groups, findings suggest that HIV-associated verbal episodic memory impairments are most consistent with a traditional "subcortical," retrieval deficit profile, consistent with the primary frontostriatal neuropathogenesis of HIV disease.
Collapse
Affiliation(s)
- Katie L Doyle
- a Department of Psychiatry , University of California San Diego , La Jolla , California.,c Departments of Psychology and Psychiatry , San Diego State University-University of California Joint Doctoral Program in Clinical Psychology , San Diego , California
| | - Steven Paul Woods
- b Department of Psychology , University of Houston , Houston , Texas
| | - Carrie R McDonald
- a Department of Psychiatry , University of California San Diego , La Jolla , California
| | - Kelly M Leyden
- a Department of Psychiatry , University of California San Diego , La Jolla , California
| | - Heather M Holden
- c Departments of Psychology and Psychiatry , San Diego State University-University of California Joint Doctoral Program in Clinical Psychology , San Diego , California
| | - Erin E Morgan
- a Department of Psychiatry , University of California San Diego , La Jolla , California
| | - Paul E Gilbert
- d Department of Psychology , San Diego State University , San Diego , California
| | - Jody Corey-Bloom
- a Department of Psychiatry , University of California San Diego , La Jolla , California
| |
Collapse
|
22
|
McCormick C, Moscovitch M, Valiante TA, Cohn M, McAndrews MP. Different neural routes to autobiographical memory recall in healthy people and individuals with left medial temporal lobe epilepsy. Neuropsychologia 2017; 110:26-36. [PMID: 28803766 DOI: 10.1016/j.neuropsychologia.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/28/2023]
Abstract
Individuals with medial temporal lobe epilepsy (mTLE) are poor at recalling vivid details from autobiographical memories (AM), instead retrieving gist-like schematic memories. Recent research has suggested that this impoverished recall in comparison to controls may reflect (1) differential engagement of anterior vs posterior regions of the hippocampus (HC) and/or (2) differences between the engagement of the HC vs the ventromedial prefrontal cortex (vmPFC). Here we examined these hypotheses by comparing connectivity amongst hippocampal regions and between vmPFC and other brain regions during construction (retrieval of a particular event) vs elaboration (retrieval of perceptual detail) phases of AM recall in 12 individuals with left mTLE and 12 matched controls. Whereas functional connectivity amongst hippocampal regions changed from AM construction to elaboration in controls, the pattern of intra-hippocampal connectivity was unvarying in patients. Furthermore, patterns of connectivity from the vmPFC differed between phases in distinct ways in the two groups of participants. In patients, vmPFC activation was correlated with other prefrontal and lateral temporal cortices during construction and with visual-perceptual cortices during elaboration. While controls did not show a difference in whole-brain connectivity, they did uniquely show a dynamic shift from vmPFC connectivity to anterior HC during construction and to posterior HC during elaboration. Together, these findings suggest that impoverished AM recall in mTLE is a consequence of reduced activation and flexibility of bilateral hippocampal networks and greater reliance on neocortical contributions to memory retrieval.
Collapse
Affiliation(s)
- Cornelia McCormick
- Krembil Research Institute, University Health Network, Toronto, ON, Canada M5T 2S8.
| | - Morris Moscovitch
- Psychology Department, University of Toronto, Toronto, ON, Canada M5S 3G3; Rotman Research Institute, Toronto, ON, Canada M6A 2E1
| | - Taufik A Valiante
- Krembil Research Institute, University Health Network, Toronto, ON, Canada M5T 2S8; Department of Neurosurgery, University of Toronto, Toronto, ON, Canada M5G 2C4
| | - Melanie Cohn
- Krembil Research Institute, University Health Network, Toronto, ON, Canada M5T 2S8; Psychology Department, University of Toronto, Toronto, ON, Canada M5S 3G3
| | - Mary Pat McAndrews
- Krembil Research Institute, University Health Network, Toronto, ON, Canada M5T 2S8; Psychology Department, University of Toronto, Toronto, ON, Canada M5S 3G3.
| |
Collapse
|
23
|
Patrikelis P, Lucci G, Siatouni A, Verentzioti A, Alexoudi A, Gatzonis S. Potential implications of Luria's work for the neuropsychology of epilepsy and epilepsy surgery: A perspective for re-examination. Epilepsy Behav 2017; 72:161-172. [PMID: 28605690 DOI: 10.1016/j.yebeh.2017.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/24/2017] [Accepted: 04/25/2017] [Indexed: 11/26/2022]
Abstract
The pioneeristic work of Alexander Romanovic Luria into the field of human neuropsychology offered eminent contributions to clinical praxis by providing theory guided methods and instruments for the study of higher cortical functions. However, lots of this knowledge corpus either remains untranslated and thus inaccessible, or in some cases selectively overlooked by academic authorities and consequently not passed to the future generations of experts. Although Luria was not exclusively devoted to the study of epilepsy, his theories and clinical approaches actually penetrate the whole neuropathology spectrum. His holistic and systemic approach to the brain sounds nowadays more than opportune and consistent with the network approach of the modern neuroimaging era. As to epilepsy, the logic underlying the Lurian approach (cognitive functions organized into complex functional systems with intra- and/or inter-hemispheric distribution, as opposed to the modularistic view of the brain) seems consistent with our current knowledge in epileptology with respect to epileptic networks, as well as the modern construct of the functional deficit zone. These contributions seem to be highly promising for the neuropsychology of epilepsy and epilepsy surgery, since they provide clinicians with valuable methods and theories to assist them in the localization -and lateralization- of cognitive deficits. Consequently they are of great applicability in the context of the preoperative neuropsychological monitoring of patients candidates for epilepsy surgery, where neuropsychologist are called upon to provide surgeons with anatomical data.
Collapse
Affiliation(s)
- Panayiotis Patrikelis
- Epilepsy Surgery Unit, Department of Neurosurgery, School of Medicine, Evangelismos Hospital, University of Athens, Greece.
| | | | - Anna Siatouni
- Epilepsy Surgery Unit, Department of Neurosurgery, School of Medicine, Evangelismos Hospital, University of Athens, Greece
| | - Anastasia Verentzioti
- Epilepsy Surgery Unit, Department of Neurosurgery, School of Medicine, Evangelismos Hospital, University of Athens, Greece
| | - Athanasia Alexoudi
- Epilepsy Surgery Unit, Department of Neurosurgery, School of Medicine, Evangelismos Hospital, University of Athens, Greece
| | - Stylianos Gatzonis
- Epilepsy Surgery Unit, Department of Neurosurgery, School of Medicine, Evangelismos Hospital, University of Athens, Greece
| |
Collapse
|
24
|
Reorganization of anterior and posterior hippocampal networks associated with memory performance in mesial temporal lobe epilepsy. Clin Neurophysiol 2017; 128:830-838. [DOI: 10.1016/j.clinph.2017.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/14/2017] [Accepted: 02/23/2017] [Indexed: 11/23/2022]
|
25
|
Alteration of the alertness-related network in patients with right temporal lobe epilepsy: A resting state fMRI study. Epilepsy Res 2016; 127:252-259. [DOI: 10.1016/j.eplepsyres.2016.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 08/28/2016] [Accepted: 09/15/2016] [Indexed: 11/22/2022]
|
26
|
Dinkelacker V, Valabregue R, Thivard L, Lehéricy S, Baulac M, Samson S, Dupont S. Hippocampal-thalamic wiring in medial temporal lobe epilepsy: Enhanced connectivity per hippocampal voxel. Epilepsia 2015. [PMID: 26216514 DOI: 10.1111/epi.13051] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Medial temporal lobe epilepsy (TLE) with hippocampal sclerosis is often accompanied by widespread changes in ipsilateral and contralateral white matter connectivity. Recent studies have proposed that patients may show pathologically enhanced wiring of the limbic circuits. To better address this issue, we specifically probed connection patterns between hippocampus and thalamus and examined their impact on cognitive function. METHODS A group of 44 patients with TLE (22 with right and 22 with left hippocampal sclerosis) and 24 healthy control participants were examined with high-resolution T1 imaging, memory functional magnetic resonance imaging (fMRI) and probabilistic diffusion tractography. Thirty-four patients had further extensive neuropsychological testing. After whole brain segmentation with FreeSurfer, tractography streamline samples were drawn with hippocampus as the seed and thalamus as the target region. Two tractography strategies were applied: The first targeted the anatomic thalamic volume segmented in FreeSurfer and the second a functional region of interest in the mediodorsal thalamus derived from the activation during delayed recognition memory. RESULTS We found a pronounced enhancement of connectivity between the sclerotic hippocampus and the ipsilateral thalamus both in the right and left TLE as compared to healthy control participants. This finding held for both the anatomically and the functionally defined thalamic target. Although differences were apparent in the number of absolute fibers, they were most pronounced when correcting for hippocampal volume. In terms of cognitive function, the number of hippocampal-thalamic connections was negatively correlated with performance in a variety of executive tasks, notably in the Trail Making Test, thus suggesting that the pathologic wiring did not compensate cognitive curtailing. SIGNIFICANCE We suggest that TLE is accompanied by an abnormal and dysfunctional enhancement of connectivity between the hippocampus and the thalamus, which is maximal on the side of the sclerosis. This pathologic pattern of limbic wiring might reflect structural remodeling along common pathways of seizure propagation.
Collapse
Affiliation(s)
- Vera Dinkelacker
- Epilepsy Unit, Pitié-Salpêtrière Hospital, APHP, Paris, France.,ICM - Brain and Spine Institute, Sorbonne Universities, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Romain Valabregue
- ICM - Brain and Spine Institute, Sorbonne Universities, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France.,Neuroimaging Center (CENIR), Paris, France
| | - Lionel Thivard
- Epilepsy Unit, Pitié-Salpêtrière Hospital, APHP, Paris, France.,ICM - Brain and Spine Institute, Sorbonne Universities, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Stéphane Lehéricy
- ICM - Brain and Spine Institute, Sorbonne Universities, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France.,Neuroimaging Center (CENIR), Paris, France
| | - Michel Baulac
- Epilepsy Unit, Pitié-Salpêtrière Hospital, APHP, Paris, France.,ICM - Brain and Spine Institute, Sorbonne Universities, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Séverine Samson
- Epilepsy Unit, Pitié-Salpêtrière Hospital, APHP, Paris, France.,Functional Neuroscience Laboratory (EA 4559), Lille University, Paris, France
| | - Sophie Dupont
- Epilepsy Unit, Pitié-Salpêtrière Hospital, APHP, Paris, France.,ICM - Brain and Spine Institute, Sorbonne Universities, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| |
Collapse
|
27
|
Hsiao FJ, Yu HY, Chen WT, Kwan SY, Chen C, Yen DJ, Yiu CH, Shih YH, Lin YY. Increased Intrinsic Connectivity of the Default Mode Network in Temporal Lobe Epilepsy: Evidence from Resting-State MEG Recordings. PLoS One 2015; 10:e0128787. [PMID: 26035750 PMCID: PMC4452781 DOI: 10.1371/journal.pone.0128787] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/30/2015] [Indexed: 11/23/2022] Open
Abstract
The electrophysiological signature of resting state oscillatory functional connectivity within the default mode network (DMN) during spike-free periods in temporal lobe epilepsy (TLE) remains unclear. Using magnetoencephalographic (MEG) recordings, this study investigated how the connectivity within the DMN was altered in TLE, and we examined the effect of lateralized TLE on functional connectivity. Sixteen medically intractable TLE patients and 22 controls participated in this study. Whole-scalp 306-channel MEG epochs without interictal spikes generated from both MEG and EEG data were analyzed using a minimum norm estimate (MNE) and source-based imaginary coherence analysis. With this processing, we obtained the cortical activation and functional connectivity within the DMN. The functional connectivity was increased between DMN and the right medial temporal (MT) region at the delta band and between DMN and the bilateral anterior cingulate cortex (ACC) regions at the theta band. The functional change was associated with the lateralization of TLE. The right TLE showed enhanced DMN connectivity with the right MT while the left TLE demonstrated increased DMN connectivity with the bilateral MT. There was no lateralization effect of TLE upon the DMN connectivity with ACC. These findings suggest that the resting-state functional connectivity within the DMN is reinforced in temporal lobe epilepsy during spike-free periods. Future studies are needed to examine if the altered functional connectivity can be used as a biomarker for treatment responses, cognitive dysfunction and prognosis in patients with TLE.
Collapse
Affiliation(s)
- Fu-Jung Hsiao
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
- Laboratory of Neurophysiology at Medical Research Division, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (FJH); (YYL)
| | - Hsiang-Yu Yu
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ta Chen
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Laboratory of Neurophysiology at Medical Research Division, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shang-Yeong Kwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien Chen
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Der-Jen Yen
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Hing Yiu
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yang-Hsin Shih
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Laboratory of Neurophysiology at Medical Research Division, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (FJH); (YYL)
| |
Collapse
|
28
|
[Mnesic disorders caused by left temporal gliomas]. Rev Neurol (Paris) 2015; 171:382-9. [PMID: 25847397 DOI: 10.1016/j.neurol.2015.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/30/2014] [Accepted: 02/13/2015] [Indexed: 11/20/2022]
Abstract
Episodic memory disorders are frequent in patients with temporal lesion. Verbal or visuo-spatial memory disorders depend on the location and the lateralization of the lesion. These disorders are well described in temporal epilepsy but rarely in population with cerebral tumor and especially not specifically focus on temporal glioma. The purpose of this study was to describe neuropsychological examination in patient with temporal glioma in the database of the regional memory centre of Besançon. Four patients were identified (all right-handed and with a left temporal glioma). Verbal episodic memory impairment and auditory-verbal short-term memory impairment were observed. One patient had also visual memory disorders. Therefore, further investigations showed an associated Alzheimer's disease. This finding modified the clinical management of this patient. Extensive neuropsychological assessment should be systematic initially to seek an associated pathology, especially in elderly patients, if the cognitive profile is unusual, during the follow-up to better understand cognitive evolution and the effect of therapies on cognition.
Collapse
|
29
|
Imaging memory and predicting postoperative memory decline in temporal lobe epilepsy: Insights from functional imaging. Rev Neurol (Paris) 2015; 171:307-14. [PMID: 25726354 DOI: 10.1016/j.neurol.2014.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 11/24/2022]
Abstract
After medial temporal lobe epilepsy (MTLE) surgery, there is considerable individual variation in the extent, nature and direction of postoperative memory change. Before surgery, epileptic patients who are surgery candidates need precise information about the potential cognitive after effects, and particularly in temporal lobe epilepsy, postoperative memory changes. Clinical and neuropsychological data may bring useful information to predict the postoperative memory outcome, but, these data are not always sufficient to replace the Wada test, considered for a long time, as the gold standard to predict postoperative decline following surgery. In any case, numerous studies demonstrate that the Wada procedure can be nowadays reliably replaced by functional MRI (fMRI) activation studies. A vast majority of fMRI studies suggest that it is the functional adequacy of the resected hippocampus rather than the functional reserve of the contralateral hippocampus that determines the extent of postoperative memory decline. In addition, new functional neuroimaging procedures that explore more widespread network disruptions commonly found in MTLE such as diffusion-tensor imaging (DTI) or connectivity studies could in the future constitute a reliable approach combined with fMRI activation studies to significantly improve the prediction of postsurgical memory decline.
Collapse
|
30
|
Memory Assessment in the Clinical Context Using Functional Magnetic Resonance Imaging. Neuroimaging Clin N Am 2014; 24:585-97. [DOI: 10.1016/j.nic.2014.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Lega B, Dionisio S, Bingaman W, Najm I, Gonzalez-Martinez J. The gamma band effect for episodic memory encoding is absent in epileptogenic hippocampi. Clin Neurophysiol 2014; 126:866-72. [PMID: 25249414 DOI: 10.1016/j.clinph.2014.07.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/24/2014] [Accepted: 07/23/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The analysis of hippocampal local field potentials in humans during the encoding of episodic memories has revealed that a robust increase in gamma band oscillatory power predicts successful item encoding, termed the gamma band subsequent memory effect (SME). No previous investigation has looked for differences in this pattern between epileptogenic and non-epileptogenic sources; we sought to examine the gamma band effect in seizure patients to address this question. METHODS We recorded hippocampal activity in nine patients who underwent stereoelectroencephalography for seizure localization and also performed the Free Recall task, a standard test of episodic memory. We compared gamma band oscillatory activity between 15 electrodes localized to epileptogenic hippocampi and 24 electrodes in non-epileptogenic hippocampi. RESULTS The epileptogenic hippocampi exhibited a significant decrease in gamma band power during successful item encoding, whereas the non-epileptogenic group exhibited the expected positive gamma band effect (t(37)=4.69, p<0.0001). CONCLUSIONS The typical gamma band effect is reversed for epileptogenic hippocampi. SIGNIFICANCE This is the first study to demonstrate a difference for epileptogenic hippocampi for an important oscillatory pattern that normally predicts successful item encoding. Patients with epilepsy suffer selective impairment of episodic memory ability, so our findings are especially relevant for clinicians and memory researchers alike.
Collapse
Affiliation(s)
- Bradley Lega
- Neurological Surgery, University of Texas-Southwestern, Dallas, TX 75390, USA
| | - Sasha Dionisio
- Epileptology, The Cleveland Clinic Epilepsy Institute, Cleveland, OH 44195, USA
| | - William Bingaman
- Epilepsy Surgery, The Cleveland Clinic Epilepsy Institute, Cleveland, OH 44195, USA
| | - Imad Najm
- Epileptology, The Cleveland Clinic Epilepsy Institute, Cleveland, OH 44195, USA
| | | |
Collapse
|
32
|
Denkova EJ, Manning L. FMRI contributions to addressing autobiographical memory impairment in temporal lobe pathology. World J Radiol 2014; 6:93-105. [PMID: 24778771 PMCID: PMC4000613 DOI: 10.4329/wjr.v6.i4.93] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/11/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
Episodic autobiographical memory (AM) allows one, through the recollection of sensory-perceptual details, thoughts and feelings, to become aware of an event as belonging to one’s own past as well as being able to project into one’s future. Because AM provides a sense of self-continuity, contributes to the integrity of the self, and helps predicting future experiences, any deficit of AM may have debilitating consequences for everyday life functioning. Understanding AM failure and the underlying neural mechanisms has the potential to shed light on brain reorganization mechanisms and engagement of compensatory processes. Functional magnetic resonance imaging (fMRI) provides the most promising imaging method to tackle these issues. We reviewed evidence from the few studies that used fMRI to investigate the functionality of the residual tissue, the neural reorganization and compensatory mechanisms in patients with neurological conditions due to impaired medial temporal lobe. Overall, these studies highlight the importance of the left hippocampus, which when atrophied and not functional leads to AM deficits but its residual functionality may support relatively normal AM recollection. When damaged hippocampal tissue is not functional, other brain regions (e.g., the medial prefrontal cortex) may be involved to compensate impairment, but they appear generally ineffective to support detailed episodic recollection.
Collapse
|
33
|
Specific impairment of "what-where-when" episodic-like memory in experimental models of temporal lobe epilepsy. J Neurosci 2013; 33:17749-62. [PMID: 24198366 DOI: 10.1523/jneurosci.0957-13.2013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Episodic memory deficit is a common cognitive disorder in human temporal lobe epilepsy (TLE). However, no animal model of TLE has been shown to specifically replicate this cognitive dysfunction, which has limited its translational appeal. Here, using a task that tests for nonverbal correlates of episodic-like memory in rats, we show that kainate-treated TLE rats exhibit a selective impairment of the "what-where-when" memory while preserving other forms of hippocampal-dependent memories. Assisted by multisite silicon probes, we recorded from the dorsal hippocampus of behaving animals to control for seizure-related factors and to look for electrophysiological signatures of cognitive impairment. Analyses of hippocampal local field potentials showed that both the power of theta rhythm and its coordination across CA1 and the DG-measured as theta coherence and phase locking-were selectively disrupted. This disruption represented a basal condition of the chronic epileptic hippocampus that was linked to different features of memory impairment. Theta power was more correlated with the spatial than with the temporal component of the task, while measures of theta coordination correlated with the temporal component. We conclude that episodic-like memory, as tested in the what-where-when task, is specifically affected in experimental TLE and that the impairment of hippocampal theta activity might be central to this dysfunction.
Collapse
|
34
|
Sidhu MK, Stretton J, Winston GP, Bonelli S, Centeno M, Vollmar C, Symms M, Thompson PJ, Koepp MJ, Duncan JS. A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy. ACTA ACUST UNITED AC 2013; 136:1868-88. [PMID: 23674488 PMCID: PMC3673458 DOI: 10.1093/brain/awt099] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment.
Collapse
Affiliation(s)
- Meneka K Sidhu
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Braakman HMH, Vaessen MJ, Jansen JFA, Debeij-van Hall MHJA, de Louw A, Hofman PAM, Vles JSH, Aldenkamp AP, Backes WH. Frontal lobe connectivity and cognitive impairment in pediatric frontal lobe epilepsy. Epilepsia 2012; 54:446-54. [DOI: 10.1111/epi.12044] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Malikova H, Kramska L, Liscak R, Vojtech Z, Prochazka T, Mareckova I, Lukavsky J, Druga R. Stereotactic radiofrequency amygdalohippocampectomy for the treatment of temporal lobe epilepsy: Do good neuropsychological and seizure outcomes correlate with hippocampal volume reduction? Epilepsy Res 2012; 102:34-44. [DOI: 10.1016/j.eplepsyres.2012.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/28/2012] [Accepted: 04/21/2012] [Indexed: 11/26/2022]
|
38
|
Haneef Z, Lenartowicz A, Yeh HJ, Engel J, Stern JM. Effect of lateralized temporal lobe epilepsy on the default mode network. Epilepsy Behav 2012; 25:350-7. [PMID: 23103309 PMCID: PMC4209897 DOI: 10.1016/j.yebeh.2012.07.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/28/2022]
Abstract
The default mode network (DMN) is composed of cerebral regions involved in conscious, resting state cognition. The hippocampus is an essential component of this network. Here, the DMN in TLE is compared to control subjects to better understand its involvement in TLE. We performed resting state connectivity analysis using regions of interest (ROIs) in the retrosplenium/precuneus (Rsp/PCUN) and the ventro-medial pre-frontal cortex (vmPFC) in 36 subjects (11 with right TLE, 12 with left TLE, 13 controls) to delineate the posterior and anterior DMN regions respectively. We found reduced connectivity of the posterior to the anterior DMN in patients with both right and left TLE. However, the posterior and anterior networks were found to be individually preserved. Lateralization of TLE affects the DMN with left TLE demonstrating more extensive networks. These DMN changes may be relevant to altered cognition and memory in TLE and may be relevant to right vs. left TLE differences in cognitive involvement.
Collapse
Affiliation(s)
- Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Agatha Lenartowicz
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Hsiang J. Yeh
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - John M. Stern
- Department of Neurology, University of California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Banks SJ, Sziklas V, Sodums DJ, Jones-Gotman M. fMRI of verbal and nonverbal memory processes in healthy and epileptogenic medial temporal lobes. Epilepsy Behav 2012; 25:42-9. [PMID: 22980080 DOI: 10.1016/j.yebeh.2012.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 07/04/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
Abstract
Material-specific memory impairments are a well-established consequence of unilateral medial temporal lobe damage. We used fMRI to investigate encoding and recognition of verbal and nonverbal stimuli using adaptations of tasks used successfully in clinical evaluations of patients with temporal lobe epilepsy (TLE). We studied two patient groups, one with left TLE and one with right TLE, and one group of healthy subjects. Results from the healthy subjects indicated that initial and delayed recognition trials of the verbal task activated the left medial temporal lobe, and the same tasks of the nonverbal task activated the right, confirming the sensitivity to laterality of our clinical tasks. Patients tended to use the opposite hippocampus, but often the parahippocampal gyrus on the same side, compared to the healthy subjects. Since our patients and the healthy groups performed similarly on the memory tasks, we conclude that the patients' activation patterns represent an effective adaptation to the presence of an unhealthy hippocampus.
Collapse
Affiliation(s)
- Sarah Jane Banks
- Montreal Neurological Institute, 3801 University St, Montreal, Canada QC H3A 2B4.
| | | | | | | |
Collapse
|
40
|
Braakman HMH, van der Kruijs SJM, Vaessen MJ, Jansen JFA, Debeij-van Hall MHJA, Vles JSH, Aldenkamp AP, Backes WH, Hofman PAM. Microstructural and functional MRI studies of cognitive impairment in epilepsy. Epilepsia 2012; 53:1690-9. [PMID: 22889330 DOI: 10.1111/j.1528-1167.2012.03624.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cognitive impairment is the most common comorbidity in children with epilepsy, but its pathophysiology and predisposing conditions remain unknown. Clinical epilepsy characteristics are not conclusive in determining cognitive outcome. Because many children with epilepsy do not have macrostructural magnetic resonance imaging (MRI) abnormalities, the underlying substrate for cognitive impairment may be found at the microstructural or functional level. In the last two decades, new MRI techniques have been developed that have the potential to visualize microstructural or functional abnormalities associated with cognitive impairment. These include volumetric MRI, voxel-based morphometry (VBM), diffusion tensor imaging (DTI), MR spectroscopy (MRS), and functional MRI (fMRI). All of these techniques have shed new light on various aspects associated with, or underlying, cognitive impairment, although their use in epilepsy has been limited and focused mostly on adults. Therefore, in this review, the use of all these different MRI techniques to unravel cognitive impairment in epilepsy is discussed both in adults and children with epilepsy. Volumetric MRI and VBM have revealed significant volume losses in the area of the seizure focus as well as in distant areas. DTI adds evidence of loss of integrity of connections from the seizure focus to distant areas as well as between distant areas. MRS and fMRI have shown impaired function both in the area of the seizure focus as well as in distant structures. For this review we have compiled and compared findings from the various techniques to conclude that cognitive impairment in epilepsy results from a network disorder in which the (micro)structures as well as the functionality can be disturbed.
Collapse
Affiliation(s)
- Hilde M H Braakman
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Otte WM, Dijkhuizen RM, van Meer MPA, van der Hel WS, Verlinde SAMW, van Nieuwenhuizen O, Viergever MA, Stam CJ, Braun KPJ. Characterization of functional and structural integrity in experimental focal epilepsy: reduced network efficiency coincides with white matter changes. PLoS One 2012; 7:e39078. [PMID: 22808026 PMCID: PMC3395639 DOI: 10.1371/journal.pone.0039078] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/16/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although focal epilepsies are increasingly recognized to affect multiple and remote neural systems, the underlying spatiotemporal pattern and the relationships between recurrent spontaneous seizures, global functional connectivity, and structural integrity remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS Here we utilized serial resting-state functional MRI, graph-theoretical analysis of complex brain networks and diffusion tensor imaging to characterize the evolution of global network topology, functional connectivity and structural changes in the interictal brain in relation to focal epilepsy in a rat model. Epileptic networks exhibited a more regular functional topology than controls, indicated by a significant increase in shortest path length and clustering coefficient. Interhemispheric functional connectivity in epileptic brains decreased, while intrahemispheric functional connectivity increased. Widespread reductions of fractional anisotropy were found in white matter regions not restricted to the vicinity of the epileptic focus, including the corpus callosum. CONCLUSIONS/SIGNIFICANCE Our longitudinal study on the pathogenesis of network dynamics in epileptic brains reveals that, despite the locality of the epileptogenic area, epileptic brains differ in their global network topology, connectivity and structural integrity from healthy brains.
Collapse
Affiliation(s)
- Willem M Otte
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Szaflarski JP, Allendorfer JB. Topiramate and its effect on fMRI of language in patients with right or left temporal lobe epilepsy. Epilepsy Behav 2012; 24:74-80. [PMID: 22481042 PMCID: PMC3564045 DOI: 10.1016/j.yebeh.2012.02.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 11/15/2022]
Abstract
Topiramate (TPM) is well recognized for its negative effects on cognition, language performance and lateralization results on the intracarotid amobarbital procedure (IAP). But, the effects of TPM on functional MRI (fMRI) of language and the fMRI signals are less clear. Functional MRI is increasingly used for presurgical evaluation of epilepsy patients in place of IAP for language lateralization. Thus, the goal of this study was to assess the effects of TPM on fMRI signals. In this study, we included 8 patients with right temporal lobe epilepsy (RTLE) and 8 with left temporal lobe epilepsy (LTLE) taking TPM (+TPM). Matched to them for age, handedness and side of seizure onset were 8 patients with RTLE and 8 with LTLE not taking TPM (-TPM). Matched for age and handedness to the patients with TLE were 32 healthy controls. The fMRI paradigm involved semantic decision/tone decision task (in-scanner behavioral data were collected). All epilepsy patients received a standard neuropsychological language battery. One sample t-tests were performed within each group to assess task-specific activations. Functional MRI data random-effects analysis was performed to determine significant group activation differences and to assess the effect of TPM dose on task activation. Direct group comparisons of fMRI, language and demographic data between patients with R/L TLE +TPM vs. -TPM and the analysis of the effects of TPM on blood oxygenation level-dependent (BOLD) signal were performed. Groups were matched for age, handedness and, within the R/L TLE groups, for the age of epilepsy onset/duration and the number of AEDs/TPM dose. The in-scanner language performance of patients was worse when compared to healthy controls - all p<0.044. While all groups showed fMRI activation typical for this task, regression analyses comparing L/R TLE +TPM vs. -TPM showed significant fMRI signal differences between groups (increases in left cingulate gyrus and decreases in left superior temporal gyrus in the patients with LTLE +TPM; increases in the right BA 10 and left visual cortex and decreases in the left BA 47 in +TPM RTLE). Further, TPM dose showed positive relationship with activation in the basal ganglia and negative associations with activation in anterior cingulate and posterior visual cortex. Thus, TPM appears to have a different effect on fMRI language distribution in patients with R/L TLE and a dose-dependent effect on fMRI signals. These findings may, in part, explain the negative effects of TPM on cognition and language performance and support the notion that TPM may affect the results of language fMRI lateralization/localization.
Collapse
Affiliation(s)
- Jerzy P. Szaflarski
- Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA,Cincinnati Epilepsy Center at the University Hospital in Cincinnati, University of Cincinnati Academic Health Center, Cincinnati, OH, USA,Corresponding author at: University of Cincinnati Academic Health Center, Department of Neurology, 260 Stetson Street, Cincinnati, OH 45267-0525, USA. (J.P. Szaflarski)
| | - Jane B. Allendorfer
- Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| |
Collapse
|
43
|
Bonelli SB, Thompson PJ, Yogarajah M, Vollmar C, Powell RHW, Symms MR, McEvoy AW, Micallef C, Koepp MJ, Duncan JS. Imaging language networks before and after anterior temporal lobe resection: results of a longitudinal fMRI study. Epilepsia 2012; 53:639-50. [PMID: 22429073 PMCID: PMC4471632 DOI: 10.1111/j.1528-1167.2012.03433.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary Purpose: Anterior temporal lobe resection (ATLR) controls seizures in up to 70% of patients with intractable temporal lobe epilepsy (TLE) but, in the language dominant hemisphere, may impair language function, particularly naming. Functional reorganization can occur within the ipsilateral and contralateral hemispheres. We investigated reorganization of language in left-hemisphere–dominant patients before and after ATLR; whether preoperative functional magnetic resonance imaging (fMRI) predicts postoperative naming decline; and efficiency of postoperative language networks. Methods: We studied 44 patients with TLE due to unilateral hippocampal sclerosis (24 left) on a 3T GE-MRI scanner. All subjects performed language fMRI and neuropsychological testing preoperatively and again 4 months after left or right ATLR. Key Findings: Postoperatively, individuals with left TLE had greater bilateral middle/inferior frontal fMRI activation and stronger functional connectivity from the left inferior/middle frontal gyri to the contralateral frontal lobe than preoperatively, and this was not observed in individuals with right TLE. Preoperatively, in left and right TLE, better naming correlated with greater preoperative left hippocampal and left frontal activation for verbal fluency (VF). In left TLE, stronger preoperative left middle frontal activation for VF was predictive of greater decline in naming after ATLR. Postoperatively, in left TLE with clinically significant naming decline, greater right middle frontal VF activation correlated with better postoperative naming. In patients without postoperative naming decline, better naming correlated with greater activation in the remaining left posterior hippocampus. In right TLE, naming ability correlated with left hippocampal and left and right frontal VF activation postoperatively. Significance: In left TLE, early postoperative reorganization to the contralateral frontal lobe suggests multiple systems support language function. Postoperatively, ipsilateral recruitment involving the posterior hippocampal remnant is important for maintaining language, and reorganization to the contralateral hemisphere is less effective. Preoperative left middle frontal activation for VF was predictive of naming decline in left TLE after ATLR.
Collapse
Affiliation(s)
- Silvia B Bonelli
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Papazachariadis O, Brunamonti E, Grammaldo LG, De Risi M, Esposito V, Ferraina S. Decision time and response accuracy in a conditional motor learning task are impaired independently in unilateral temporal lobe-resected patients. Epilepsy Behav 2012; 23:324-9. [PMID: 22366054 DOI: 10.1016/j.yebeh.2011.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/13/2011] [Accepted: 11/25/2011] [Indexed: 11/29/2022]
Abstract
Learning and memory of declarative knowledge and relational information are dependent on the integrity of medial temporal lobe (MTL). Numerous studies suggest that left lobectomy impairs verbal memory while right lobectomy impairs non-verbal memory. In order to instrumentally quantify material-specific memory impairment after temporal lobe excision, we compared, using a computerized conditional motor associative learning task, patients with surgically treated drug-resistant temporal lobe epilepsy to age-matched controls. We enrolled seven epileptic patients with left (LTR), seven with right (RTR) temporal lobe resection and fourteen controls. During the task, abstract visual stimuli had to be associated, by trial and error, with a spatially oriented joystick motor response. Response and decision time were analyzed. Statistical analysis disclosed that the learning curve slopes of both RTR and LTR patients were significantly shallower compared to controls, LTR patients needed a number of test trials significantly increased compared to RTR patients and controls, the average probability of success in the test trials was significantly lower in LTR patients compared to RTR patients and controls, and RTR patients' decision times were significantly longer than LTR patients and controls. The results suggest that RTR patients, using the preserved verbalization strategy, achieved higher learning scores than LTR patients, which were forced to use a visuo-spatial representation of the stimuli-response association. Accordingly, RTR patients were significantly slower, compared to LTR patients and controls, indicating that processes involving recall were partially impaired, and non-canonical networks for executing a non-verbal task could be in action.
Collapse
|
45
|
Neuropsychology in temporal lobe epilepsy: influences from cognitive neuroscience and functional neuroimaging. EPILEPSY RESEARCH AND TREATMENT 2012; 2012:925238. [PMID: 22957249 PMCID: PMC3420484 DOI: 10.1155/2012/925238] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/09/2011] [Indexed: 12/28/2022]
Abstract
Neuropsychologists assist in diagnosis (i.e., localization of dysfunction) and in prediction (i.e., how cognition may change following surgery) in individuals being considered for temporal lobe surgery. The current practice includes behavioural testing as well as mapping function via stimulation, inactivation, and (more recently) functional imaging. These methods have been providing valuable information in surgical planning for 60 years. Here, we discuss current assessment strategies and highlight how they are evolving, particularly with respect to integrating recent advances in cognitive neuroscience.
Collapse
|
46
|
Alessio A, Pereira FRS, Sercheli MS, Rondina JM, Ozelo HB, Bilevicius E, Pedro T, Covolan RJM, Damasceno BP, Cendes F. Brain plasticity for verbal and visual memories in patients with mesial temporal lobe epilepsy and hippocampal sclerosis: an fMRI study. Hum Brain Mapp 2011; 34:186-99. [PMID: 22038783 DOI: 10.1002/hbm.21432] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 06/13/2011] [Accepted: 07/08/2011] [Indexed: 11/08/2022] Open
Abstract
We aimed to identify the brain areas involved in verbal and visual memory processing in normal controls and patients with unilateral mesial temporal lobe epilepsy (MTLE) associated with unilateral hippocampal sclerosis (HS) by means of functional magnetic resonance imaging (fMRI). The sample comprised nine normal controls, eight patients with right MTLE, and nine patients with left MTLE. All subjects underwent fMRI with verbal and visual memory paradigms, consisting of encoding and immediate recall of 17 abstract words and 17 abstract drawings. A complex network including parietal, temporal, and frontal cortices seems to be involved in verbal memory encoding and retrieval in normal controls. Although similar areas of activation were identified in both patient groups, the extension of such activations was larger in the left-HS group. Patients with left HS also tended to exhibit more bilateral or right lateralized encoding related activations. This finding suggests a functional reorganization of verbal memory processing areas in these patients due to the failure of left MTL system. As regards visual memory encoding and retrieval, our findings support the hypothesis of a more diffuse and bilateral representation of this cognitive function in the brain. Compared to normal controls, encoding in the left-HS group recruited more widespread cortical areas, which were even more widespread in the right-HS group probably to compensate for their right mesial temporal dysfunction. In contrast, the right-HS group exhibited fewer activated areas during immediate recall than the other two groups, probably related to their greater difficulty in dealing with visual memory content.
Collapse
Affiliation(s)
- Andréa Alessio
- Neuroimaging Laboratory, School of Medical Sciences, University of Campinas, Unicamp, Campinas, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Men are different from women, and patients with epilepsy are different in many aspects from healthy control subjects. Quantitative or semiquantitative analysis of neuroimaging data depends on the comparison between either a single patient against a group of healthy or unaffected controls, or comparisons between groups of patients and controls. Matching for gender is desired, but is sometimes not possible, for example, in the case of nuclear medicine with women in childbearing age usually not being recruited as healthy controls. Antiepileptic drug treatment is the other major confounder for comparisons of cognitive functioning between patients and healthy control subjects. Whether these two covariates, gender and drug effects, are of interest or nuisance variables depends on the question and design of the neuroimaging study.
Collapse
Affiliation(s)
- Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom.
| |
Collapse
|
48
|
You X, Adjouadi M, Guillen MR, Ayala M, Barreto A, Rishe N, Sullivan J, Dlugos D, Vanmeter J, Morris D, Donner E, Bjornson B, Smith ML, Bernal B, Berl M, Gaillard WD. Sub-patterns of language network reorganization in pediatric localization related epilepsy: a multisite study. Hum Brain Mapp 2011; 32:784-99. [PMID: 21484949 DOI: 10.1002/hbm.21066] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To study the neural networks reorganization in pediatric epilepsy, a consortium of imaging centers was established to collect functional imaging data. Common paradigms and similar acquisition parameters were used. We studied 122 children (64 control and 58 LRE patients) across five sites using EPI BOLD fMRI and an auditory description decision task. After normalization to the MNI atlas, activation maps generated by FSL were separated into three sub-groups using a distance method in the principal component analysis (PCA)-based decisional space. Three activation patterns were identified: (1) the typical distributed network expected for task in left inferior frontal gyrus (Broca's) and along left superior temporal gyrus (Wernicke's) (60 controls, 35 patients); (2) a variant left dominant pattern with greater activation in IFG, mesial left frontal lobe, and right cerebellum (three controls, 15 patients); and (3) activation in the right counterparts of the first pattern in Broca's area (one control, eight patients). Patients were over represented in Groups 2 and 3 (P < 0.0004). There were no scanner (P = 0.4) or site effects (P = 0.6). Our data-driven method for fMRI activation pattern separation is independent of a priori notions and bias inherent in region of interest and visual analyses. In addition to the anticipated atypical right dominant activation pattern, a sub-pattern was identified that involved intensity and extent differences of activation within the distributed left hemisphere language processing network. These findings suggest a different, perhaps less efficient, cognitive strategy for LRE group to perform the task.
Collapse
Affiliation(s)
- Xiaozhen You
- College of Engineering and Computing, Florida International University, 10555 W. Flagler Street, Miami, FL 33174, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Campo P, Garrido MI, Moran RJ, Maestú F, García-Morales I, Gil-Nagel A, del Pozo F, Dolan RJ, Friston KJ. Remote effects of hippocampal sclerosis on effective connectivity during working memory encoding: a case of connectional diaschisis? Cereb Cortex 2011; 22:1225-36. [PMID: 21810779 PMCID: PMC3357177 DOI: 10.1093/cercor/bhr201] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Accumulating evidence suggests a role for the medial temporal lobe (MTL) in working memory (WM). However, little is known concerning its functional interactions with other cortical regions in the distributed neural network subserving WM. To reveal these, we availed of subjects with MTL damage and characterized changes in effective connectivity while subjects engaged in WM task. Specifically, we compared dynamic causal models, extracted from magnetoencephalographic recordings during verbal WM encoding, in temporal lobe epilepsy patients (with left hippocampal sclerosis) and controls. Bayesian model comparison indicated that the best model (across subjects) evidenced bilateral, forward, and backward connections, coupling inferior temporal cortex (ITC), inferior frontal cortex (IFC), and MTL. MTL damage weakened backward connections from left MTL to left ITC, a decrease accompanied by strengthening of (bidirectional) connections between IFC and MTL in the contralesional hemisphere. These findings provide novel evidence concerning functional interactions between nodes of this fundamental cognitive network and sheds light on how these interactions are modified as a result of focal damage to MTL. The findings highlight that a reduced (top-down) influence of the MTL on ipsilateral language regions is accompanied by enhanced reciprocal coupling in the undamaged hemisphere providing a first demonstration of "connectional diaschisis."
Collapse
Affiliation(s)
- Pablo Campo
- Department of Basic Psychology, Autonoma University of Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bonelli SB, Powell R, Thompson PJ, Yogarajah M, Focke NK, Stretton J, Vollmar C, Symms MR, Price CJ, Duncan JS, Koepp MJ. Hippocampal activation correlates with visual confrontation naming: fMRI findings in controls and patients with temporal lobe epilepsy. Epilepsy Res 2011; 95:246-54. [PMID: 21592730 PMCID: PMC3229979 DOI: 10.1016/j.eplepsyres.2011.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/05/2011] [Accepted: 04/12/2011] [Indexed: 11/24/2022]
Abstract
Purpose In patients with left temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS) decreased naming ability is common, suggesting a critical role for the medial left temporal lobe in this task. We investigated the integrity of language networks with functional MRI (fMRI) in controls and TLE patients. Experimental design We performed an fMRI verbal fluency paradigm in 22 controls and 66 patients with unilateral mesial TLE (37 left HS, 29 right HS). Verbal fluency and naming ability were investigated as part of the standard presurgical neuropsychological assessment. Naming ability was assessed using a visual confrontation naming test. Results Left TLE patients had significantly lower naming scores than controls and those with right TLE. Right TLE patients performed less well than controls, but better than those with left TLE. Left TLE had significantly lower scores for verbal fluency than controls. In controls and right TLE, left hippocampal activation during the verbal fluency task was significantly correlated with naming, characterised by higher scores in subjects with greater hippocampal fMRI activation. In left TLE no correlation with naming scores was seen in the left hippocampus, but there was a significant correlation in the left middle and inferior frontal gyri, not observed in controls and right TLE. In left and right TLE, out of scanner verbal fluency scores significantly correlated with fMRI activation for verbal fluency in the left middle and inferior frontal gyri. Conclusion Good confrontation naming ability depends on the integrity of the hippocampus and the connecting fronto-temporal networks. Functional MRI activation in the left hippocampus during verbal fluency is associated with naming function in healthy controls and patients with right TLE. In left TLE, there was evidence of involvement of the left frontal lobe when naming was more proficient, most likely reflecting a compensatory response due to the ongoing epileptic activity and/or underlying pathology.
Collapse
Affiliation(s)
- Silvia B. Bonelli
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Rob Powell
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Pamela J. Thompson
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mahinda Yogarajah
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Niels K. Focke
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Department of Clinical Neurophysiology, Georg-August University, 37099 Goettingen, Germany
| | - Jason Stretton
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Christian Vollmar
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mark R. Symms
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Cathy J. Price
- Functional Imaging Laboratory, Wellcome Centre for Imaging Neuroscience, University College London, London WC1N 3BG, UK
| | - John S. Duncan
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Matthias J. Koepp
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Corresponding author. Tel.: +44 20 3108 0112; fax: +44 20 3108 0115.
| |
Collapse
|