1
|
Nagy S, Pagnamenta AT, Cali E, Braakman HMH, Wijntjes J, Kusters B, Gotkine M, Elpeleg O, Meiner V, Lenberg J, Wigby K, Friedman J, Perry LD, Rossor AM, Uhrova Meszarosova A, Thomasova D, Jacob S, O'Driscoll M, De Simone L, Grange DK, Sommerville R, Firoozfar Z, Alavi S, Mazaheri M, Parmar JM, Lamont PJ, Pini V, Sarkozy A, Muntoni F, Ravenscroft G, Jones E, O'Rourke D, Nel M, Heckmann JM, Kvalsund M, Kapapa MM, Wa Somwe S, Bearden DR, Çakar A, Childs AM, Horvath R, Reilly MM, Houlden H, Maroofian R. Autosomal recessive VWA1-related disorder: comprehensive analysis of phenotypic variability and genetic mutations. Brain Commun 2024; 6:fcae377. [PMID: 39502942 PMCID: PMC11535570 DOI: 10.1093/braincomms/fcae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/14/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
A newly identified subtype of hereditary axonal motor neuropathy, characterized by early proximal limb involvement, has been discovered in a cohort of 34 individuals with biallelic variants in von Willebrand factor A domain-containing 1 (VWA1). This study further delineates the disease characteristics in a cohort of 20 individuals diagnosed through genome or exome sequencing, incorporating neurophysiological, laboratory and imaging data, along with data from previously reported cases across three different studies. Newly reported clinical features include hypermobility/hyperlaxity, axial weakness, dysmorphic signs, asymmetric presentation, dystonic features and, notably, upper motor neuron signs. Foot drop, foot deformities and distal leg weakness followed by early proximal leg weakness are confirmed to be initial manifestations. Additionally, this study identified 11 novel VWA1 variants, reaffirming the 10 bp insertion-induced p.Gly25ArgfsTer74 as the most prevalent disease-causing allele, with a carrier frequency of ∼1 in 441 in the UK and Western European population. Importantly, VWA1-related pathology may mimic various neuromuscular conditions, advocating for its inclusion in diverse gene panels spanning hereditary neuropathies to muscular dystrophies. The study highlights the potential of lower quality control filters in exome analysis to enhance diagnostic yield of VWA1 disease that may account for up to 1% of unexplained hereditary neuropathies.
Collapse
Affiliation(s)
- Sara Nagy
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Neurology, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford OX3 9DU, UK
| | - Elisa Cali
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Hilde M H Braakman
- Department of Pediatric Neurology, Amalia Children’s Hospital, Radboud University Medical Center & Donders Institute for Brain, Cognition and Behavior, Nijmegen 6525 GA, The Netherlands
| | - Juerd Wijntjes
- Department of Neurology and Clinical Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen 6525 GD, The Netherlands
| | - Benno Kusters
- Department of Pathology, Radboudumc, Nijmegen 6525 GA, The Netherlands
| | - Marc Gotkine
- Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Hebrew University Medical Center, Jerusalem 9574869, Israel
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center, Hebrew University Medical Center, Jerusalem 9574869, Israel
| | - Jerica Lenberg
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Kristen Wigby
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Friedman
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Luke D Perry
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street, Great Ormond Street Hospital, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, London WC1N 3BG, UK
| | - Alexander M Rossor
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Anna Uhrova Meszarosova
- Neurogenetic Laboratory, Department of Paediatric Neurology, and Institute of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Dana Thomasova
- Neurogenetic Laboratory, Department of Paediatric Neurology, and Institute of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Saiju Jacob
- Department of Neurology, University Hospitals Birmingham, Birmingham B15 2TT, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Mary O'Driscoll
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Lenika De Simone
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Dorothy K Grange
- Department of Neurology at Washington University, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO 63108, USA
| | - Richard Sommerville
- Department of Neurology at Washington University, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO 63108, USA
| | | | | | - Mahta Mazaheri
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 97514, Iran
- Dr. Mazaheri’s Medical Genetics Lab, Yazd 97514, Iran
| | - Jevin M Parmar
- Rare Disease Genetics and Functional Genomics Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
- Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | | | - Veronica Pini
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street, Great Ormond Street Hospital, London WC1N 1EH, UK
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, London WC1N 3BG, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street, Great Ormond Street Hospital, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Gianina Ravenscroft
- Rare Disease Genetics and Functional Genomics Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
- Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Eppie Jones
- Genomics Medicine Ireland, Dublin D18 K7W4, Ireland
| | - Declan O'Rourke
- Children’s Health Ireland at Temple Street, Dublin, Dublin D01 XD99, Ireland
| | - Melissa Nel
- Neurogenomics Lab, Neuroscience Institute, University of Cape Town, Cape Town 7935, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Jeannine M Heckmann
- Neurology Research Group, Neuroscience Institute, University of Cape Town, Cape Town 7935, South Africa
| | - Michelle Kvalsund
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14618, USA
- Department of Internal Medicine, University of Zambia School of Medicine, Ridgeway, Lusaka, Zambia
| | - Musambo M Kapapa
- Department of Physiotherapy, University of Zambia School of Health Sciences, Lusaka, Zambia
| | - Somwe Wa Somwe
- Department of Paediatrics and Child Health, School of Medicine and Health Sciences, University of Lusaka, Lusaka, Zambia
| | - David R Bearden
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14618, USA
- Department of Educational Psychology, University of Zambia, Lusaka, Zambia
| | - Arman Çakar
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Neuromuscular Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Anne-Marie Childs
- Department of Paediatric Neurology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2PY, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Reza Maroofian
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
2
|
Parmar JM, Laing NG, Kennerson ML, Ravenscroft G. Genetics of inherited peripheral neuropathies and the next frontier: looking backwards to progress forwards. J Neurol Neurosurg Psychiatry 2024; 95:992-1001. [PMID: 38744462 PMCID: PMC11503175 DOI: 10.1136/jnnp-2024-333436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Inherited peripheral neuropathies (IPNs) encompass a clinically and genetically heterogeneous group of disorders causing length-dependent degeneration of peripheral autonomic, motor and/or sensory nerves. Despite gold-standard diagnostic testing for pathogenic variants in over 100 known associated genes, many patients with IPN remain genetically unsolved. Providing patients with a diagnosis is critical for reducing their 'diagnostic odyssey', improving clinical care, and for informed genetic counselling. The last decade of massively parallel sequencing technologies has seen a rapid increase in the number of newly described IPN-associated gene variants contributing to IPN pathogenesis. However, the scarcity of additional families and functional data supporting variants in potential novel genes is prolonging patient diagnostic uncertainty and contributing to the missing heritability of IPNs. We review the last decade of IPN disease gene discovery to highlight novel genes, structural variation and short tandem repeat expansions contributing to IPN pathogenesis. From the lessons learnt, we provide our vision for IPN research as we anticipate the future, providing examples of emerging technologies, resources and tools that we propose that will expedite the genetic diagnosis of unsolved IPN families.
Collapse
Affiliation(s)
- Jevin M Parmar
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Preventive Genetics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australia
| | - Gianina Ravenscroft
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Athamneh M, Daya N, Hentschel A, Gangfuss A, Ruck T, Marina AD, Schara‐Schmidt U, Sickmann A, Güttsches A, Deschauer M, Preusse C, Vorgerd M, Roos A. Proteomic studies in VWA1-related neuromyopathy allowed new pathophysiological insights and the definition of blood biomarkers. J Cell Mol Med 2024; 28:e18122. [PMID: 38652110 PMCID: PMC11037410 DOI: 10.1111/jcmm.18122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 04/25/2024] Open
Abstract
Bi-allelic variants in VWA1, encoding Von Willebrand Factor A domain containing 1 protein localized to the extracellular matrix (ECM), were linked to a neuromuscular disorder with manifestation in child- or adulthood. Clinical findings indicate a neuromyopathy presenting with muscle weakness. Given that pathophysiological processes are still incompletely understood, and biomarkers are still missing, we aimed to identify blood biomarkers of pathophysiological relevance: white blood cells (WBC) and plasma derived from six VWA1-patients were investigated by proteomics. Four proteins, BET1, HNRNPDL, NEFM and PHGDH, known to be involved in neurological diseases and dysregulated in WBC were further validated by muscle-immunostainings unravelling HNRNPDL as a protein showing differences between VWA1-patients, healthy controls and patients suffering from neurogenic muscular atrophy and BICD2-related neuromyopathy. Immunostaining studies of PHGDH indicate its involvement in apoptotic processes via co-localisation with caspase-3. NEFM showed an increase in cells within the ECM in biopsies of all patients studied. Plasma proteomics unravelled dysregulation of 15 proteins serving as biomarker candidates among which a profound proportion of increased ones (6/11) are mostly related to antioxidative processes and have even partially been described as blood biomarkers for other entities of neuromuscular disorders before. CRP elevated in plasma also showed an increase in the extracellular space of VWA1-mutant muscle. Results of our combined studies for the first time describe pathophysiologically relevant biomarkers for VWA1-related neuromyopathy and suggest that VWA1-patient derived blood might hold the potential to study disease processes of clinical relevance, an important aspect for further preclinical studies.
Collapse
Affiliation(s)
- Mohammed Athamneh
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
- Department of Clinical Science, Faculty of MedicineYarmouk UniversityIrbidJordan
| | - Nassam Daya
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Andreas Hentschel
- Leibniz‐Institut für Analytische Wissenschaften‐ISAS‐e.V.DortmundGermany
| | - Andrea Gangfuss
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
| | - Tobias Ruck
- Department of Neurology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
| | - Ulrike Schara‐Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
| | - Albert Sickmann
- Leibniz‐Institut für Analytische Wissenschaften‐ISAS‐e.V.DortmundGermany
| | - Anne‐Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Marcus Deschauer
- Department of NeurologyTechnical University of Munich, School of MedicineMunichGermany
| | - Corinna Preusse
- Institute of Neuropathology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
- Children's Hospital of Eastern Ontario Research InstituteUniversity of OttawaOttawaCanada
| |
Collapse
|
4
|
Albuainain F, Shi Y, Lor-Zade S, Hüffmeier U, Pauly M, Reis A, Faivre L, Maraval J, Bruel AL, Them FTM, Haack TB, Grasshoff U, Horber V, Schot R, van Slegtenhorst M, Wilke M, Barakat TS. Confirmation and expansion of the phenotype of the TCEAL1-related neurodevelopmental disorder. Eur J Hum Genet 2024; 32:350-356. [PMID: 38200082 PMCID: PMC10923854 DOI: 10.1038/s41431-023-01530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Numerous contiguous gene deletion syndromes causing neurodevelopmental disorders have previously been defined using cytogenetics for which only in the current genomic era the disease-causing genes have become elucidated. One such example is deletion at Xq22.2, previously associated with a neurodevelopmental disorder which has more recently been found to be caused by de novo loss-of-function variants in TCEAL1. So far, a single study reported six unrelated individuals with this monogenetic disorder, presenting with syndromic features including developmental delay especially affecting expressive speech, intellectual disability, autistic-like behaviors, hypotonia, gait abnormalities and mild facial dysmorphism, in addition to ocular, gastrointestinal, and immunologic abnormalities. Here we report on four previously undescribed individuals, including two adults, with de novo truncating variants in TCEAL1, identified through trio exome or genome sequencing, further delineating the phenotype of the TCEAL1-related disorder. Whereas overall we identify similar features compared to the original report, we also highlight features in our adult individuals including hyperphagia, obesity, and endocrine abnormalities including hyperinsulinemia, hyperandrogenemia, and polycystic ovarian syndrome. X chromosome inactivation and RNA-seq studies further provide functional insights in the molecular mechanisms. Together this report expands the phenotypic and molecular spectrum of the TCEAL1-related disorder which will be useful for counseling of newly identified individuals and their families.
Collapse
Affiliation(s)
- Fatimah Albuainain
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Yuwei Shi
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sarah Lor-Zade
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ulrike Hüffmeier
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Melissa Pauly
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), Erlangen, Germany
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Fédération Hospitalo-Universitaire TRANSLAD et Institut GIMI, Dijon Bourgogne University Hospital, F-21000, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, F-21000, Dijon, France
| | - Julien Maraval
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, F-21000, Dijon, France
- Centre de Référence Déficiences Intellectuelles de causes rares, Dijon Bourgogne University Hospital, F-21000, Dijon, France
| | - Ange-Line Bruel
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, F-21000, Dijon, France
- Functional Unit of Innovative Diagnosis for Rare Diseases, Dijon Bourgogne University Hospital, F-21000, Dijon, France
| | - Frédéric Tran Mau Them
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, F-21000, Dijon, France
- Functional Unit of Innovative Diagnosis for Rare Diseases, Dijon Bourgogne University Hospital, F-21000, Dijon, France
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Veronka Horber
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital Tübingen, Tübingen, Germany
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Mavillard F, Servian-Morilla E, Dofash L, Rojas-Marcos I, Folland C, Monahan G, Gutierrez-Gutierrez G, Rivas E, Hernández-Lain A, Valladares A, Cantero G, Morales JM, Laing NG, Paradas C, Ravenscroft G, Cabrera-Serrano M. Ablation of the carboxy-terminal end of MAMDC2 causes a distinct muscular dystrophy. Brain 2023; 146:5235-5248. [PMID: 37503746 DOI: 10.1093/brain/awad256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023] Open
Abstract
The extracellular matrix (ECM) has an important role in the development and maintenance of skeletal muscle, and several muscle diseases are associated with the dysfunction of ECM elements. MAMDC2 is a putative ECM protein and its role in cell proliferation has been investigated in certain cancer types. However, its participation in skeletal muscle physiology has not been previously studied. We describe 17 individuals with an autosomal dominant muscular dystrophy belonging to two unrelated families in which different heterozygous truncating variants in the last exon of MAMDC2 co-segregate correctly with the disease. The radiological aspect of muscle involvement resembles that of COL6 myopathies with fat replacement at the peripheral rim of vastii muscles. In this cohort, a subfascial and peri-tendinous pattern is observed in upper and lower limb muscles. Here we show that MAMDC2 is expressed in adult skeletal muscle and differentiating muscle cells, where it appears to localize to the sarcoplasm and myonuclei. In addition, we show it is secreted by myoblasts and differentiating myotubes into to the extracellular compartment. The last exon encodes a disordered region with a polar residue compositional bias loss of which likely induces a toxic effect of the mutant protein. The precise mechanisms by which the altered MAMDC2 proteins cause disease remains to be determined. MAMDC2 is a skeletal muscle disease-associated protein. Its role in muscle development and ECM-muscle communication remains to be fully elucidated. Screening of the last exon of MAMDC2 should be considered in patients presenting with autosomal dominant muscular dystrophy, particularly in those with a subfascial radiological pattern of muscle involvement.
Collapse
Affiliation(s)
- Fabiola Mavillard
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Emilia Servian-Morilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Lein Dofash
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Iñigo Rojas-Marcos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Department of Neurology, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| | - Chiara Folland
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Gavin Monahan
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Gerardo Gutierrez-Gutierrez
- Department of Neurology, Hospital Universitario Infanta Sofia, Universidad Europea de Madrid, Madrid 28702, Spain
| | - Eloy Rivas
- Department of Neuropathology, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| | | | - Amador Valladares
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Gloria Cantero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Jose M Morales
- Department of Neuroradiology, Hospital Universitario Virgen del Rocio, Sevilla 41013, Spain
| | - Nigel G Laing
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Carmen Paradas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, 28220 Madrid, Spain
- Department of Neurology, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| | - Gianina Ravenscroft
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Macarena Cabrera-Serrano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, 28220 Madrid, Spain
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
- Department of Neurology, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| |
Collapse
|
6
|
Higuchi Y, Takashima H. Clinical genetics of Charcot-Marie-Tooth disease. J Hum Genet 2023; 68:199-214. [PMID: 35304567 DOI: 10.1038/s10038-022-01031-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Recent research in the field of inherited peripheral neuropathies (IPNs) such as Charcot-Marie-Tooth (CMT) disease has helped identify the causative genes provided better understanding of the pathogenesis, and unraveled potential novel therapeutic targets. Several reports have described the epidemiology, clinical characteristics, molecular pathogenesis, and novel causative genes for CMT/IPNs in Japan. Based on the functions of the causative genes identified so far, the following molecular and cellular mechanisms are believed to be involved in the causation of CMTs/IPNs: myelin assembly, cytoskeletal structure, myelin-specific transcription factor, nuclear related, endosomal sorting and cell signaling, proteasome and protein aggregation, mitochondria-related, motor proteins and axonal transport, tRNA synthetases and RNA metabolism, and ion channel-related mechanisms. In this article, we review the epidemiology, genetic diagnosis, and clinicogenetic characteristics of CMT in Japan. In addition, we discuss the newly identified novel causative genes for CMT/IPNs in Japan, namely MME and COA7. Identification of the new causes of CMT will facilitate in-depth characterization of the underlying molecular mechanisms of CMT, leading to the establishment of therapeutic approaches such as drug development and gene therapy.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
7
|
Masingue M, Fernández-Eulate G, Debs R, Tard C, Labeyrie C, Leonard-Louis S, Dhaenens CM, Masson MA, Latour P, Stojkovic T. Strategy for genetic analysis in hereditary neuropathy. Rev Neurol (Paris) 2023; 179:10-29. [PMID: 36566124 DOI: 10.1016/j.neurol.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Inherited neuropathies are a heterogeneous group of slowly progressive disorders affecting either motor, sensory, and/or autonomic nerves. Peripheral neuropathy may be the major component of a disease such as Charcot-Marie-Tooth disease or a feature of a more complex multisystemic disease involving the central nervous system and other organs. The goal of this review is to provide the clinical clues orientating the genetic diagnosis in a patient with inherited peripheral neuropathy. This review focuses on primary inherited neuropathies, amyloidosis, inherited metabolic diseases, while detailing clinical, neurophysiological and potential treatment of these diseases.
Collapse
Affiliation(s)
- M Masingue
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France.
| | - G Fernández-Eulate
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - R Debs
- Service de neurophysiologie, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C Tard
- CHU de Lille, clinique neurologique, centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, 59037 Lille cedex, France
| | - C Labeyrie
- Service de neurologie, hôpital Kremlin-Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - S Leonard-Louis
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C-M Dhaenens
- Université de Lille, Inserm, CHU de Lille, U1172-LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - M A Masson
- Inserm U1127, Paris Brain Institute, ICM, Sorbonne Université, CNRS UMR 7225, hôpital Pitié-Salpêtrière, Paris, France
| | - P Latour
- Service de biochimie biologie moléculaire, CHU de Lyon, centre de biologie et pathologie Est, 69677 Bron cedex, France
| | - T Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
8
|
Gable DL, Mo A, Estrella E, Saffari A, Ghosh PS, Ebrahimi-Fakhari D. Upper motor neuron signs and early onset gait abnormalities in young children with bi-allelic VWA1 variants. Am J Med Genet A 2022; 188:3531-3534. [PMID: 35975723 DOI: 10.1002/ajmg.a.62953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 01/31/2023]
Abstract
Bi-allelic loss-of-function variants in Von Willebrand factor type A (VWA1) were recently discovered to lead to an early onset motor neuropathy or neuromyopathy. What makes this discovery particularly notable is the high frequency of one of the VWA1 (NM_022834.5) founder variants, c.62_71dup (p.Gly25ArgfsTer74), which nears 0.01% in European populations, and suggests that there may be a wide spectrum of disease features and severity. Here, we report two cases from nonconsanguineous families in North America that presented in early childhood with lower extremity weakness and prominent foot deformities, and were found to carry bi-allelic variants in VWA1. We draw focus to upper motor neuron signs and abnormal gait phenotypes as presenting symptoms in VWA1-related disorder and expand the clinical and molecular spectrum.
Collapse
Affiliation(s)
- Dustin L Gable
- Child Neurology Residency Training Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alisa Mo
- Child Neurology Residency Training Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Elicia Estrella
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,Neuromuscular Clinic, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Afshin Saffari
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Partha S Ghosh
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,Neuromuscular Clinic, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Beyltjens T, Boudin E, Revencu N, Boeckx N, Bertrand M, Schütz L, Haack TB, Weber A, Biliouri E, Vinkšel M, Zagožen A, Peterlin B, Pai S, Telegrafi A, Henderson LB, Ells C, Turner L, Wuyts W, Van Hul W, Hendrickx G, Mortier GR. Heterozygous pathogenic variants involving CBFB cause a new skeletal disorder resembling cleidocranial dysplasia. J Med Genet 2022; 60:498-504. [PMID: 36241386 PMCID: PMC10176335 DOI: 10.1136/jmg-2022-108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/03/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cleidocranial dysplasia (CCD) is a rare skeletal dysplasia with significant clinical variability. Patients with CCD typically present with delayed closure of fontanels and cranial sutures, dental anomalies, clavicular hypoplasia or aplasia and short stature. Runt-related transcription factor 2 (RUNX2) is currently the only known disease-causing gene for CCD, but several studies have suggested locus heterogeneity. METHODS The cohort consists of eight subjects from five unrelated families partially identified through GeneMatcher. Exome or genome sequencing was applied and in two subjects the effect of the variant was investigated at RNA level. RESULTS In each subject a heterozygous pathogenic variant in CBFB was detected, whereas no genomic alteration involving RUNX2 was found. Three CBFB variants (one splice site alteration, one nonsense variant, one 2 bp duplication) were shown to result in a premature stop codon. A large intragenic deletion was found to delete exon 4, without affecting CBFB expression. The effect of a second splice site variant could not be determined but most likely results in a shortened or absent protein. Affected individuals showed similarities with RUNX2-related CCD, including dental and clavicular abnormalities. Normal stature and neurocognitive problems were however distinguishing features. CBFB encodes the core-binding factor β subunit, which can interact with all RUNX proteins (RUNX1, RUNX2, RUNX3) to form heterodimeric transcription factors. This may explain the phenotypic differences between CBFB-related and RUNX2-related CCD. CONCLUSION We confirm the previously suggested locus heterogeneity for CCD by identifying five pathogenic variants in CBFB in a cohort of eight individuals with clinical and radiographic features reminiscent of CCD.
Collapse
Affiliation(s)
- Tessi Beyltjens
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc and University of Louvain, Brussels, Belgium
| | - Nele Boeckx
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Leon Schütz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Axel Weber
- Institute of Human Genetics, Justus Liebig University, Giessen, Germany
| | - Eleni Biliouri
- Institute of Human Genetics, Justus Liebig University, Giessen, Germany
| | - Mateja Vinkšel
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana Division of Internal Medicine, Ljubljana, Slovenia
| | - Anja Zagožen
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana Division of Internal Medicine, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana Division of Internal Medicine, Ljubljana, Slovenia
| | - Shashidhar Pai
- Children's Health, Division of Genetics, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | - Courtney Ells
- Provincial Medical Genetics Program, Eastern Health, St. John's, Newfoundland, Canada
| | - Lesley Turner
- Provincial Medical Genetics Program, Eastern Health, St. John's, Newfoundland, Canada.,Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Wim Wuyts
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Gretl Hendrickx
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium .,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Geert R Mortier
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium.,Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Distal hereditary motor neuropathies (dHMN) are a clinically and genetically diverse group of disorders that are characterized by length-dependent axonal degeneration of lower motor neurons. In this review, we will provide an overview of dHMN, and we will correlate the distinct clinical subtypes with their causative genes, focusing on the most recent advances in the field. RECENT FINDINGS Despite the massive use of new-generation sequencing (NGS) and the discovery of new genes, only a third of dHMN patients receive a molecular diagnosis. Thanks to international cooperation between researchers, new genes have been implicated in dHMN, such as SORD and VWA1 . Mutations in SORD are the most frequent cause of autosomal recessive forms of dHMN. As a result of these findings, the potential benefits of some pharmacological compounds are being studied in cell and animal models, mainly targeting axonal transport and metabolic pathways. SUMMARY Despite the wide use of NGS, the diagnosis of dHMN remains a challenge. The low prevalence of dHMN makes international cooperation necessary in order to discover new genes and causal mechanisms. Genetic diagnosis of patients and identification of new pathomechanism are essential for the development of therapeutical clinical trials.
Collapse
Affiliation(s)
- Marina Frasquet
- Department of Neurology, Hospital Universitari Doctor Peset
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain
| | - Teresa Sevilla
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain
- Universitat de València, Valencia, Spain
| |
Collapse
|
11
|
Guo L, Cheng H, Fu S, Liu J, Zhang Y, Qiu Y, Chen H. Methylome and Transcriptome-Based Integration Analysis Identified Molecular Signatures Associated With Meningitis Induced by Glaesserella parasuis. Front Immunol 2022; 13:840399. [PMID: 35281072 PMCID: PMC8913945 DOI: 10.3389/fimmu.2022.840399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
Glaesserella parasuis (G. parasuis) can elicit serious inflammatory responses and cause meningitis in piglets. Previous epigenetic studies have indicated that alterations in host DNA methylation may modify the inflammatory response to bacterial infection. However, to date, genome-wide analysis of the DNA methylome during meningitis caused by G. parasuis infection is still lacking. In this study, we employed an unbiased approach using deep sequencing to profile the DNA methylome and transcriptome from G. parasuis infected porcine brain (cerebrum) and integrated the data to identify key differential methylation regions/sites involved in the regulation of the inflammatory response. Results showed that DNA methylation patterns and gene expression profiles from porcine brain were changed after G. parasuis infection. The majority of the altered DNA methylation regions were found in the intergenic regions and introns and not associated with CpG islands, with only a low percentage occurring at promoter or exon regions. Integrated analysis of the DNA methylome and transcriptome identified a number of inversely and positively correlated genes between DNA methylation and gene expression, following the criteria of |log2FC| > 0.5, |diffMethy| > 0.1, and P < 0.05. Differential expression and methylation of two significant genes, semaphoring 4D (SEMA4D) and von Willebrand factor A domain containing 1 (VWA1), were validated by qRT-PCR and bisulfite sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that DNA methylation inversely correlated genes in G. parasuis infected porcine brains were mainly involved with cell adhesion molecules (CAMs), bacterial invasion of epithelial cells, RIG-1-like receptor signaling pathways, and hematopoietic cell lineage signaling pathways. In addition, a protein-protein interaction network of differentially methylated genes found potential candidate molecular interactions relevant to the pathology of G. parasuis infection. To the best of our knowledge, this is the first attempt to integrate the DNA methylome and transcriptome data from G. parasuis infected porcine brains. Our findings will help understanding the contribution of genome-wide DNA methylation to the pathogenesis of meningitis in pigs and developing epigenetic biomarkers and therapeutic targets for the treatment of G. parasuis induced meningitis.
Collapse
Affiliation(s)
- Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Hongxing Cheng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Jun Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Yunfei Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
- *Correspondence: Yinsheng Qiu,
| | - Hongbo Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
12
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
13
|
Umair M, Farooq Khan M, Aldrees M, Nashabat M, Alhamoudi KM, Bilal M, Alyafee Y, Al Tuwaijri A, Aldarwish M, Al-Rumayyan A, Alkhalaf H, Wadaan MAM, Alfadhel M. Mutated VWA8 Is Associated With Developmental Delay, Microcephaly, and Scoliosis and Plays a Novel Role in Early Development and Skeletal Morphogenesis in Zebrafish. Front Cell Dev Biol 2021; 9:736960. [PMID: 34660594 PMCID: PMC8517341 DOI: 10.3389/fcell.2021.736960] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
Von Willebrand A domain-containing protein 8 (VWA8), also named KIAA0564, is a poorly characterized, mitochondrial matrix-targeted protein having a putative ATPase activity. VWA8 is comprising of ATPase-associated domains and a VWFA domain associated with ATPase activity inside the cell. In the present study, we describe a large consanguineous family of Saudi origin segregating a complex developmental syndrome in an autosomal recessive fashion. All the affected individuals exhibited severe developmental disorders. DNA from three patients was subjected to whole-exome sequencing followed by Sanger sequencing. VWA8 knock-down zebrafish morpholinos were used to study the phenotypic effect of this gene on zebrafish development. A homozygous missense variant [c.947A > G; p.(Asp316Gly)] was identified in exon 8 of the VWA8 gene, which perfectly segregated with the disease phenotype. Using zebrafish morpholino, we observed delayed development at an early stage, lack of movement, light sensitivity, severe skeletal deformity such as scoliosis, and facial dysmorphism. This is the first homozygous variant identified in the VWA8 gene underlying global developmental delay, microcephaly, scoliosis, limbs, and cardiovascular malformations in humans. We provide genetic and molecular evidence using zebrafish morpholino for a homozygous variant in the VWA8 gene, associated with such a complex developmental syndrome in humans.
Collapse
Affiliation(s)
- Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGH), King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Muhammad Farooq Khan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Aldrees
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGH), King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Marwan Nashabat
- Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Kheloud M Alhamoudi
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGH), King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yusra Alyafee
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGH), King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGH), King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Manar Aldarwish
- Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ahmed Al-Rumayyan
- Pediatric Neurology Division, Department of Pediatrics, Ministry of National Guard-Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hamad Alkhalaf
- Department of Pediatrics, Ministry of National Guard-Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohammad A M Wadaan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGH), King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Genetics and Precision Medicine Department (GPM), Ministry of National Guard Health Affairs (MNG-HA), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Arribat Y. Genetic alterations of VWA1: a new link between extracellular matrix and neuromuscular diseases. Brain 2021; 144:362-365. [PMID: 33693694 DOI: 10.1093/brain/awaa464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This scientific commentary refers to ‘Bi-allelic truncating mutations in VWA1 cause neuromyopathy’, by Deschauer et al. (doi:10.1093/brain/awaa418) and ‘An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy’, by Pagnamenta et al. (doi:10.1093/brain/awaa420)
Collapse
Affiliation(s)
- Yoan Arribat
- Department of Biomedical Sciences School of Biology and Medicine University of Lausanne, Lausanne Switzerland
| |
Collapse
|
15
|
Pagnamenta AT, Kaiyrzhanov R, Zou Y, Da'as SI, Maroofian R, Donkervoort S, Dominik N, Lauffer M, Ferla MP, Orioli A, Giess A, Tucci A, Beetz C, Sedghi M, Ansari B, Barresi R, Basiri K, Cortese A, Elgar G, Fernandez-Garcia MA, Yip J, Foley AR, Gutowski N, Jungbluth H, Lassche S, Lavin T, Marcelis C, Marks P, Marini-Bettolo C, Medne L, Moslemi AR, Sarkozy A, Reilly MM, Muntoni F, Millan F, Muraresku CC, Need AC, Nemeth AH, Neuhaus SB, Norwood F, O'Donnell M, O'Driscoll M, Rankin J, Yum SW, Zolkipli-Cunningham Z, Brusius I, Wunderlich G, Karakaya M, Wirth B, Fakhro KA, Tajsharghi H, Bönnemann CG, Taylor JC, Houlden H. An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy. Brain 2021; 144:584-600. [PMID: 33559681 PMCID: PMC8263055 DOI: 10.1093/brain/awaa420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 01/26/2023] Open
Abstract
The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Yaqun Zou
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Natalia Dominik
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Marlen Lauffer
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Matteo P Ferla
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrea Orioli
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Adam Giess
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | | | - Maryam Sedghi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Ansari
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rita Barresi
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Keivan Basiri
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Andrea Cortese
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Greg Elgar
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Miguel A Fernandez-Garcia
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Janice Yip
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Gutowski
- Department of Neurology, Royal Devon and Exeter NHS Trust, Exeter, UK
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
- Randall Division of Cell and Molecular Biophysics Muscle Signalling Section, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Saskia Lassche
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tim Lavin
- Department of Neurology, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Carlo Marcelis
- Department of Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter Marks
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Livija Medne
- Divisions of Neurology and Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ali-Reza Moslemi
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Sweden
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital Trust, London, UK
| | - Mary M Reilly
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital Trust, London, UK
| | | | - Colleen C Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Children's Hospital of Philadelphia, PA, USA
| | - Anna C Need
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Andrea H Nemeth
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Sarah B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Fiona Norwood
- Department of Neurology, King's College Hospital, London, UK
| | - Marie O'Donnell
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Mary O'Driscoll
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Julia Rankin
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Trust, Exeter, UK
| | - Sabrina W Yum
- Division of Pediatric Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Children's Hospital of Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabell Brusius
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Center for Rare Diseases Cologne, University Hospital Cologne, Cologne, Germany
| | - Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Homa Tajsharghi
- School of Health Science, Division Biomedicine and Translational Medicine, University of Skovde, Sweden
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Jenny C Taylor
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|