1
|
DeRosier F, Hibbs C, Alessi K, Padda I, Rodriguez J, Pradeep S, Parmar MS. Progressive supranuclear palsy: Neuropathology, clinical presentation, diagnostic challenges, management, and emerging therapies. Dis Mon 2024; 70:101753. [PMID: 38908985 DOI: 10.1016/j.disamonth.2024.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by the accumulation of 4R-tau protein aggregates in various brain regions. PSP leads to neuronal loss, gliosis, and tau-positive inclusions, such as neurofibrillary tangles, tufted astrocytes, and coiled bodies. These pathological changes mainly affect the brainstem and the basal ganglia, resulting in distinctive MRI features, such as the hummingbird and morning glory signs. PSP shows clinical heterogeneity and presents as different phenotypes, the most classical of which is Richardson's syndrome (PSP-RS). The region of involvement and the mode of atrophy spread can further distinguish subtypes of PSP. PSP patients can experience various signs and symptoms, such as postural instability, supranuclear ophthalmoplegia, low amplitude fast finger tapping, and irregular sleep patterns. The most common symptoms of PSP are postural instability, falls, vertical gaze palsy, bradykinesia, and cognitive impairment. These features often overlap with those of Parkinson's disease (PD) and other Parkinsonian syndromes, making the diagnosis challenging. PSP is an essential clinical topic to research because it is a devastating and incurable disease. However, there are still many gaps in knowledge about its pathophysiology, diagnosis, and treatment. Several clinical trials are underway to test noveltherapies that target tau in various ways, such as modulating its post-translational modifications, stabilizing its interaction with microtubules, or enhancing its clearance by immunotherapy. These approaches may offer new hope for slowing down the progression of PSP. In this review, we aim to provide an overview of the current knowledge on PSP, from its pathogenesis to its management. We also discuss the latest advances and future directions in PSP research.
Collapse
Affiliation(s)
- Frederick DeRosier
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America
| | - Cody Hibbs
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America
| | - Kaitlyn Alessi
- Department of Family Medicine, University of Florida, Gainesville, United States of America
| | - Inderbir Padda
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, New York, United States of America
| | - Jeanette Rodriguez
- Department of Family Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, Florida, United States of America
| | - Swati Pradeep
- Department of Movement Disorders, UTHealth Houston Neurosciences Neurology - Texas Medical Center, Texas, United States of America
| | - Mayur S Parmar
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America.
| |
Collapse
|
2
|
Liu H, Huang Z, Deng B, Chang Z, Yang X, Guo X, Yuan F, Yang Q, Wang L, Zou H, Li M, Zhu Z, Jin K, Wang Q. QEEG Signatures are Associated with Nonmotor Dysfunctions in Parkinson's Disease and Atypical Parkinsonism: An Integrative Analysis. Aging Dis 2023; 14:204-218. [PMID: 36818554 PMCID: PMC9937709 DOI: 10.14336/ad.2022.0514] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/14/2022] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) and atypical parkinsonism (AP), including progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), share similar nonmotor symptoms. Quantitative electroencephalography (QEEG) can be used to examine the nonmotor symptoms. This study aimed to characterize the patterns of QEEG and functional connectivity (FC) that differentiate PD from PSP or MSA, and explore the correlation between the differential QEEG indices and nonmotor dysfunctions in PD and AP. We enrolled 52 patients with PD, 31 with MSA, 22 with PSP, and 50 age-matched health controls to compare QEEG indices among specific brain regions. One-way analysis of variance was applied to assess QEEG indices between groups; Spearman's correlations were used to examine the relationship between QEEG indices and nonmotor symptoms scale (NMSS) and mini-mental state examination (MMSE). FCs using weighted phase lag index were compared between patients with PD and those with MSA/PSP. Patients with PSP revealed higher scores on the NMSS and lower MMSE scores than those with PD and MSA, with similar disease duration. The delta and theta powers revealed a significant increase in PSP, followed by PD and MSA. Patients with PD presented a significantly lower slow-to-fast ratio than those with PSP in the frontal region, while patients with PD presented significantly higher EEG-slowing indices than patients with MSA. The frontal slow-to-fast ratio showed a negative correlation with MMSE scores in patients with PD and PSP, and a positive correlation with NMSS in the perception and mood domain in patients with PSP but not in those with PD. Compared to PD, MSA presented enhanced FC in theta and delta bands in the posterior region, while PSP revealed decreased FC in the delta band within the frontal-temporal cortex. These findings suggest that QEEG might be a useful tool for evaluating the nonmotor dysfunctions in PD and AP. Our QEEG results suggested that with similar disease duration, the cortical neurodegenerative process was likely exacerbated in patients with PSP, followed by those with PD, and lastly in patients with MSA.
Collapse
Affiliation(s)
- Hailing Liu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China.
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Bin Deng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiaohua Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Xingfang Guo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Feilan Yuan
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Qin Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Liming Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Haiqiang Zou
- Department of Neurosurgery, General Hospital of Southern Theater Command of PLA, Guangdong, China.
| | - Mengyan Li
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Correspondence should be addressed to: Dr. Qing Wang, Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China. .
| |
Collapse
|
3
|
Zhang W, Deng B, Xie F, Zhou H, Guo JF, Jiang H, Sim A, Tang B, Wang Q. Efficacy of repetitive transcranial magnetic stimulation in Parkinson's disease: A systematic review and meta-analysis of randomised controlled trials. EClinicalMedicine 2022; 52:101589. [PMID: 35923424 PMCID: PMC9340539 DOI: 10.1016/j.eclinm.2022.101589] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive form of brain stimulation that positively regulates the motor and non-motor symptoms of Parkinson's disease (PD). Although, most reviews and meta-analysis have shown that rTMS intervention is effective in treating motor symptoms and depression, very few have used randomised controlled trials (RCTs) to analyse the efficacy of this intervention in PD. We aimed to review RCTs of rTMS in patients with PD to assess the efficacy of rTMS on motor and non-motor function in patients with PD. METHODS In this systematic review and meta-analysis, we searched PubMed, MEDLINE and Web of Science databases for RCTs on rTMS in PD published between January 1, 1988 to January 1, 2022. Eligible studies included sham-controlled RCTs that used rTMS stimulation for motor or non-motor symptoms in PD. RCTs not focusing on the efficacy of rTMS in PD were excluded. Summary data were extracting from those RCTs by two investigators independently. We then calculated standardised mean difference with random-effect models. The main outcome included motor and non-motor examination of scales that were used in PD motor or non-motor assessment. This study was registered with PROSPERO, CRD42022329633. FINDINGS Fourteen studies with 469 patients met the criteria for our meta-analysis. Twelve eligible studies with 381 patients were pooled to analyse the efficacy of rTMS on motor function improvement. The effect size on motor scale scores was 0.51 (P < 0.0001) and were not distinctly heterogeneous (I2 = 29%). Five eligible studies with 202 patients were collected to evaluate antidepressant-like effects. The effect size on depression scale scores was 0.42 (P = 0.004), and were not distinctly heterogeneous (I2 = 25%), indicating a significant anti-depressive effect (P = 0.004). The results suggest that high-frequency of rTMS on primary motor cortex (M1) is effective in improving motor symptoms; while the dorsolateral prefrontal cortex (DLPFC) may be a potentially effective area in alleviating depressive symptom. INTERPRETATION The findings suggest that rTMS could be used as a possible adjuvant therapy for PD mainly to improve motor symptoms, but could have potential efficacy on depressive symptoms of PD. However, further investigation is needed. FUNDING The National Natural Science Foundation of China (NO: 81873777, 82071414), Initiated Foundation of Zhujiang Hospital (NO: 02020318005), Scientific Research Foundation of Guangzhou (NO: 202206010005), and Science and Technology Program of Guangdong of China (NO: 2020A0505100037).
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Bin Deng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Amy Sim
- Department of Neurology, Texas Tech University Health Sciences Centre El Paso, El Paso, TX 79905, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
- Corresponding author at: Department of Neurology, Zhujiang Hospital, Southern Medical University, Gongye Road 253, Guangzhou, Guangdong Province 510282, PR China.
| |
Collapse
|
4
|
Tao X, Zhou H, Mo D, Zhang W, Chang Z, Zeng Y, Luo Y, Wu S, Tang W, Yang C, Wang Q. Erythrocytes Are an Independent Protective Factor for Vascular Cognitive Impairment in Patients With Severe White Matter Hyperintensities. Front Aging Neurosci 2022; 14:789602. [PMID: 35250538 PMCID: PMC8894857 DOI: 10.3389/fnagi.2022.789602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Hemoglobin is one of the main proteins in erythrocytes. There are significant correlations between low hemoglobin and white matter hyperintensities (WMH) and cognitive impairment. This study explored whether erythrocytopenia has predictive value for vascular cognitive impairment (VCI) in patients with WMH. Method: We conducted a cross-sectional study of 302 patients, including 62 with cerebral small vessel disease and 240 with stroke. Basic demographic data and fasting blood were collected. First, all patients were divided into normal cognition (NC), mild VCI (mVCI), and severe VCI (sVCI) groups (subgroups later) based on cognitive behavior scores. Second, all patients were divided into mild WMH (mWMH) and severe WMH (sWMH) groups based on Fazekas scores. The differences in blood markers between different groups or subgroups with different cognitive levels were analyzed by univariate analysis. Then, binary logistic regression was used to analyze the diagnostic value of erythrocyte counts for VCI in the sWMH group, and ordinal logistic regression was used to analyze the predictive value of multiple variables for different cognitive levels. Results: Univariate analysis showed that erythrocytes, hemoglobin, high-sensitivity C-reactive protein, retinol binding protein and prealbumin were potential blood markers for different cognitive levels in sWMH patients. Among them, erythrocytopenia has good predictive value for the diagnosis of mVCI (AUC = 0.685, P = 0.008) or sVCI (AUC = 0.699, P = 0.003) in patients with sWMH. Multivariate joint analysis showed that erythrocytes were an independent protective factor reducing the occurrence of VCI in patients with sWMH (OR = 0.633, P = 0.045). Even after adjusting for age, there was still a significant difference (P = 0.047). Conclusion: Erythrocytes are an independent protective factor for VCI in patients with sWMH. Promoting hematopoietic function may have potential value for prevention of cognitive decline in patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Xi Tao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurological Rehabilitation, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Danheng Mo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurological Rehabilitation, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wenjie Zhang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiheng Zeng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siyuan Wu
- Department of Neurological Rehabilitation, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wenjing Tang
- Department of Neurological Rehabilitation, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Chen Yang
- Department of Neurological Rehabilitation, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Qing Wang
| |
Collapse
|
5
|
Duc Nguyen H, Pal Yu B, Hoang NHM, Jo WH, Young Chung H, Kim MS. Prolactin and Its Altered Action in Alzheimer's Disease and Parkinson's Disease. Neuroendocrinology 2022; 112:427-445. [PMID: 34126620 DOI: 10.1159/000517798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prolactin (PRL) is one of the most diverse pituitary hormones and is known to modulate normal neuronal function and neurodegenerative conditions. Many studies have described the influence that PRL has on the central nervous system and addressed its contribution to neurodegeneration, but little is known about the mechanisms responsible for the effects of PRL on neurodegenerative disorders, especially on Alzheimer's disease (AD) and Parkinson's disease (PD). SUMMARY We review and summarize the existing literature and current understanding of the roles of PRL on various PRL aspects of AD and PD. KEY MESSAGES In general, PRL is viewed as a promising molecule for the treatment of AD and PD. Modulation of PRL functions and targeting of immune mechanisms are needed to devise preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
6
|
Fu Z, Zhao M, He Y, Wang X, Lu J, Li S, Li X, Kang G, Han Y, Li S. Divergent Connectivity Changes in Gray Matter Structural Covariance Networks in Subjective Cognitive Decline, Amnestic Mild Cognitive Impairment, and Alzheimer's Disease. Front Aging Neurosci 2021; 13:686598. [PMID: 34483878 PMCID: PMC8415752 DOI: 10.3389/fnagi.2021.686598] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer’s disease (AD) has a long preclinical stage that can last for decades prior to progressing toward amnestic mild cognitive impairment (aMCI) and/or dementia. Subjective cognitive decline (SCD) is characterized by self-experienced memory decline without any evidence of objective cognitive decline and is regarded as the later stage of preclinical AD. It has been reported that the changes in structural covariance patterns are affected by AD pathology in the patients with AD and aMCI within the specific large-scale brain networks. However, the changes in structural covariance patterns including normal control (NC), SCD, aMCI, and AD are still poorly understood. In this study, we recruited 42 NCs, 35 individuals with SCD, 43 patients with aMCI, and 41 patients with AD. Gray matter (GM) volumes were extracted from 10 readily identifiable regions of interest involved in high-order cognitive function and AD-related dysfunctional structures. The volume values were used to predict the regional densities in the whole brain by using voxel-based statistical and multiple linear regression models. Decreased structural covariance and weakened connectivity strength were observed in individuals with SCD compared with NCs. Structural covariance networks (SCNs) seeding from the default mode network (DMN), salience network, subfields of the hippocampus, and cholinergic basal forebrain showed increased structural covariance at the early stage of AD (referring to aMCI) and decreased structural covariance at the dementia stage (referring to AD). Moreover, the SCN seeding from the executive control network (ECN) showed a linearly increased extent of the structural covariance during the early and dementia stages. The results suggest that changes in structural covariance patterns as the order of NC-SCD-aMCI-AD are divergent and dynamic, and support the structural disconnection hypothesis in individuals with SCD.
Collapse
Affiliation(s)
- Zhenrong Fu
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Mingyan Zhao
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yirong He
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xuetong Wang
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Jiadong Lu
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Shaoxian Li
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China.,Measurement Technology and Instrumentation Key Laboratory of Hebei Province, Qinhuangdao, China
| | - Guixia Kang
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Biomedical Engineering Institute, Hainan University, Haikou, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Shuyu Li
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
7
|
Callizot N, Estrella C, Burlet S, Henriques A, Brantis C, Barrier M, Campanari ML, Verwaerde P. AZP2006, a new promising treatment for Alzheimer's and related diseases. Sci Rep 2021; 11:16806. [PMID: 34413330 PMCID: PMC8376949 DOI: 10.1038/s41598-021-94708-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Progranulin (PGRN) is a protein with multiple functions including the regulation of neuroinflammation, neuronal survival, neurite and synapsis growth. Although the mechanisms of action of PGRN are currently unknown, its potential therapeutic application in treating neurodegenerative diseases is huge. Thus, strategies to increase PGRN levels in patients could provide an effective treatment. In the present study, we investigated the effects of AZP2006, a lysotropic molecule now in phase 2a clinical trial in Progressive Supranuclear Palsy patients, for its ability to increase PGRN level and promote neuroprotection. We showed for the first time the in vitro and in vivo neuroprotective effects of AZP2006 in neurons injured with Aβ1-42 and in two different pathological animal models of Alzheimer's disease (AD) and aging. Thus, the chronic treatment with AZP2006 was shown to reduce the loss of central synapses and neurons but also to dramatically decrease the massive neuroinflammation associated with the animal pathology. A deeper investigation showed that the beneficial effects of AZP2006 were associated with PGRN production. Also, AZP2006 binds to PSAP (the cofactor of PGRN) and inhibits TLR9 receptors normally responsible for proinflammation when activated. Altogether, these results showed the high potential of AZP2006 as a new putative treatment for AD and related diseases.
Collapse
Affiliation(s)
- N Callizot
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France.
- Neuro-Sys, 410 Chemin Départemental 60, 13120, Gardanne, France.
| | - C Estrella
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| | - S Burlet
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| | - A Henriques
- Neuro-Sys, 410 Chemin Départemental 60, 13120, Gardanne, France
| | - C Brantis
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| | - M Barrier
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| | - M L Campanari
- Neuro-Sys, 410 Chemin Départemental 60, 13120, Gardanne, France
| | - P Verwaerde
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| |
Collapse
|
8
|
Huin V, Barbier M, Durr A, Le Ber I. Reply: Two heterozygous progranulin mutations in progressive supranuclear palsy. Brain 2021; 144:e28. [PMID: 33428710 DOI: 10.1093/brain/awaa456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vincent Huin
- Sorbonne Université, Paris Brain Institute, APHP, INSERM, CNRS, Paris, France.,Univ. Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neuroscience and Cognition, F-59000 Lille, France
| | - Mathieu Barbier
- Sorbonne Université, Paris Brain Institute, APHP, INSERM, CNRS, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute, APHP, INSERM, CNRS, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute, APHP, INSERM, CNRS, Paris, France.,AP-HP, National Reference center "rare and young dementias", IM2A, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|