1
|
González Ibáñez F, VanderZwaag J, Deslauriers J, Tremblay MÈ. Ultrastructural features of psychological stress resilience in the brain: a microglial perspective. Open Biol 2024; 14:240079. [PMID: 39561812 PMCID: PMC11576122 DOI: 10.1098/rsob.240079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Psychological stress is the major risk factor for major depressive disorder. Sustained stress causes changes in behaviour, brain connectivity and in its cells and organelles. Resilience to stress is understood as the ability to recover from stress in a positive way or the resistance to the negative effects of psychological stress. Microglia, the resident immune cells of the brain, are known players of stress susceptibility, but less is known about their role in stress resilience and the cellular changes involved. Ultrastructural analysis has been a useful tool in the study of microglia and their function across contexts of health and disease. Despite increased access to electron microscopy, the interpretation of electron micrographs remains much less accessible. In this review, we will first present microglia and the concepts of psychological stress susceptibility and resilience. Afterwards, we will describe ultrastructural analysis, notably of microglia, as a readout to study the mechanisms underlying psychological stress resilience. Lastly, we will cover nutritional ketosis as a therapeutic intervention that was shown to be effective in promoting psychological stress resilience as well as modifying microglial function and ultrastructure.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, British Columbia, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
2
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
3
|
Luo W, Yang Z, Zheng J, Cai Z, Li X, Liu J, Guo X, Luo M, Fan X, Cheng M, Tang T, Liu J, Wang Y. Small Molecule Hydrogels Loading Small Molecule Drugs from Chinese Medicine for the Enhanced Treatment of Traumatic Brain Injury. ACS NANO 2024; 18:28894-28909. [PMID: 39383335 DOI: 10.1021/acsnano.4c09097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Self-assembly of hydrogels for mechanical support and drug delivery has been extensively researched in traumatic brain injury (TBI), where treatment options are limited. The chief challenge is that most self-assembled hydrogels rely on high molecular carriers or the incorporation of exogenous inactive substances as mediators. It is difficult for these drug delivery systems to achieve clinical translation due to concerns regarding biological safety. Here we report a small molecule hydrogel (GBR-gel) loading small molecule drugs (glycyrrhizic acid, berberine, and rhein) that originated from popular Chinese medicines without additional drug loading or inactive components under physiological conditions. In the long run, GBR-gel possesses several advantages, including ease of preparation, cost-effectiveness, and high biocompatibility. As a proof-of-concept, GBR-gel allows for prompt administration at the site of brain injury to exert potent pharmacodynamic effects. Further single-cell RNA sequencing and experimental validation indicated that GBR-gel can effectively rescue the suppressed glutamatergic synapse pathway after TBI, thereby attenuating inflammatory responses and neural impairments. Our work provides an alternative strategy for timely intervention of TBI.
Collapse
Affiliation(s)
- Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zexuan Cai
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xuexuan Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
| | - Jingjing Liu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Ming Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xudong Fan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Menghan Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| |
Collapse
|
4
|
Zhao J, Zhao G, Lang J, Sun B, Feng S, Li D, Sun G. Astragaloside IV ameliorated neuroinflammation and improved neurological functions in mice exposed to traumatic brain injury by modulating the PERK-eIF2α-ATF4 signaling pathway. J Investig Med 2024; 72:747-762. [PMID: 38869170 DOI: 10.1177/10815589241261293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Increasing evidence suggests that endoplasmic reticulum stress (ER stress) and neuroinflammation are involved in the complex pathological process of traumatic brain injury (TBI). However, the pathological mechanisms of their interactions in TBI remain incompletely elucidated. Therefore, investigating and ameliorating neuroinflammation and ER stress post-TBI may represent effective strategies for treating secondary brain injury. Astragaloside IV (AS-IV) has been reported as a potential neuroprotective and anti-inflammatory agent in neurological diseases. This study utilized a mouse TBI model to investigate the pathological mechanisms and crosstalk of ER stress, neuroinflammation, and microglial cell morphology in TBI, as well as the mechanisms and potential of AS-IV in improving TBI. The research revealed that post-TBI, inflammatory factors IL-6, IL-1β, and TNF-α increased, microglial cells were activated, and the specific inhibitor of PERK phosphorylation, GSK2656157, intervened to alleviate neuroinflammation and inhibit microglial cell activation. Post-TBI, levels of ER stress-related proteins (p-PERK, p-eIF2a, ATF4, ATF6, and p-IRE1a) increased. Following AS-IV treatment, neurological dysfunction in TBI mice improved. Levels of p-PERK, p-eIF2a, and ATF4 decreased, along with reductions in inflammatory factors IL-6, IL-1β, and TNF-α. Changes in microglial/macrophage M1/M2 polarization were observed. Additionally, the PERK activator CCT020312 intervention eliminated the impact of AS-IV on post-TBI inflammation and ER stress-related proteins p-PERK, p-eIF2a, and ATF4. These results indicate that AS-IV alleviates neuroinflammation and brain damage post-TBI through the PERK pathway, offering new directions and theoretical insights for TBI treatment.
Collapse
Affiliation(s)
- Jianfei Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
- Department of Neurosurgery, The People's Hospital of Shijiazhuang City, Shijiazhuang, The People's Republic of China
| | - Gengshui Zhao
- Department of Neurosurgery, The People's Hospital of Hengshui City, Hengshui, The People's Republic of China
| | - Jiadong Lang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| | - Boyu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| | - Shiyao Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| | - Dongsheng Li
- Department of Neurosurgery, The People's Hospital of Shijiazhuang City, Shijiazhuang, The People's Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| |
Collapse
|
5
|
Kim Y, Hrncir H, Meyer CE, Tabbaa M, Moats RA, Levitt P, Harris NG, MacKenzie-Graham A, Shattuck DW. Mouse Brain Extractor: Brain segmentation of mouse MRI using global positional encoding and SwinUNETR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611106. [PMID: 39282435 PMCID: PMC11398355 DOI: 10.1101/2024.09.03.611106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
In spite of the great progress that has been made towards automating brain extraction in human magnetic resonance imaging (MRI), challenges remain in the automation of this task for mouse models of brain disorders. Researchers often resort to editing brain segmentation results manually when automated methods fail to produce accurate delineations. However, manual corrections can be labor-intensive and introduce interrater variability. This motivated our development of a new deep-learning-based method for brain segmentation of mouse MRI, which we call Mouse Brain Extractor. We adapted the existing SwinUNETR architecture (Hatamizadeh et al., 2021) with the goal of making it more robust to scale variance. Our approach is to supply the network model with supplementary spatial information in the form of absolute positional encoding. We use a new scheme for positional encoding, which we call Global Positional Encoding (GPE). GPE is based on a shared coordinate frame that is relative to the entire input image. This differs from the positional encoding used in SwinUNETR, which solely employs relative pairwise image patch positions. GPE also differs from the conventional absolute positional encoding approach, which encodes position relative to a subimage rather than the entire image. We trained and tested our method on a heterogeneous dataset of N=223 mouse MRI, for which we generated a corresponding set of manually-edited brain masks. These data were acquired previously in other studies using several different scanners and imaging protocols and included in vivo and ex vivo images of mice with heterogeneous brain structure due to different genotypes, strains, diseases, ages, and sexes. We evaluated our method's results against those of seven existing rodent brain extraction methods and two state-of-the art deep-learning approaches, nnU-Net (Isensee et al., 2018) and SwinUNETR. Overall, our proposed method achieved average Dice scores on the order of 0.98 and average HD95 measures on the order of 100 μm when compared to the manually-labeled brain masks. In statistical analyses, our method significantly outperformed the conventional approaches and performed as well as or significantly better than the nnU-Net and SwinUNETR methods. These results suggest that Global Positional Encoding provides additional contextual information that enables our Mouse Brain Extractor to perform competitively on datasets containing multiple resolutions.
Collapse
Affiliation(s)
- Yeun Kim
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Haley Hrncir
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Cassandra E. Meyer
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Manal Tabbaa
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California 90027, USA
- Dept. of Biomedical Engineering, University of Southern California, Los Angeles, California, 90089 USA
| | - Rex A. Moats
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California 90027, USA
- Dept. of Biomedical Engineering, University of Southern California, Los Angeles, California, 90089 USA
| | - Pat Levitt
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California 90027, USA
- Dept. of Biomedical Engineering, University of Southern California, Los Angeles, California, 90089 USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Intellectual Development and Disabilities Research Center, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Allan MacKenzie-Graham
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - David W. Shattuck
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Li Y, Xin X, Zhou X, Liu J, Liu H, Yuan S, Liu H, Hao W, Sun J, Wang Y, Gong W, Yang M, Li Z, Han Y, Gao C, Yang Y. ROS-responsive biomimetic nanosystem camouflaged by hybrid membranes of platelet-exosomes engineered with neuronal targeting peptide for TBI therapy. J Control Release 2024; 372:531-550. [PMID: 38851535 DOI: 10.1016/j.jconrel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Recovery and survival following traumatic brain injury (TBI) depends on optimal amelioration of secondary injuries at lesion site. Delivering mitochondria-protecting drugs to neurons may revive damaged neurons at sites secondarily traumatized by TBI. Pioglitazone (PGZ) is a promising candidate for TBI treatment, limited by its low brain accumulation and poor targetability to neurons. Herein, we report a ROS-responsive nanosystem, camouflaged by hybrid membranes of platelets and engineered extracellular vesicles (EVs) (C3-EPm-|TKNPs|), that can be used for targeted delivery of PGZ for TBI therapy. Inspired by intrinsic ability of macrophages for inflammatory chemotaxis, engineered M2-like macrophage-derived EVs were constructed by fusing C3 peptide to EVs membrane integrator protein, Lamp2b, to confer them with ability to target neurons in inflamed lesions. Platelets provided hybridized EPm with capabilities to target hemorrhagic area caused by trauma via surface proteins. Consequently, C3-EPm-|PGZ-TKNPs| were orientedly delivered to neurons located in the traumatized hemisphere after intravenous administration, and triggered the release of PGZ from TKNPs via oxidative stress. The current work demonstrate that C3-EPm-|TKNPs| can effectively deliver PGZ to alleviate mitochondrial damage via mitoNEET for neuroprotection, further reversing behavioral deficits in TBI mice. Our findings provide proof-of-concept evidence of C3-EPm-|TKNPs|-derived nanodrugs as potential clinical approaches against neuroinflammation-related intracranial diseases.
Collapse
Affiliation(s)
- Yi Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Xin Xin
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Xun Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China; College of Pharmacy, Henan University, Kaifeng 475000, People's Republic of China
| | - Jingzhou Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Hangbing Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shuo Yuan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hanhan Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Wenyan Hao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Jiejie Sun
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Yuli Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Wei Gong
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Meiyan Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Zhiping Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Yang Han
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Chunsheng Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China.
| | - Yang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China.
| |
Collapse
|
7
|
Kalimon OJ, Vekaria HJ, Prajapati P, Short SL, Hubbard WB, Sullivan PG. The Uncoupling Effect of 17β-Estradiol Underlies the Resilience of Female-Derived Mitochondria to Damage after Experimental TBI. Life (Basel) 2024; 14:961. [PMID: 39202703 PMCID: PMC11355196 DOI: 10.3390/life14080961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Current literature finds females have improved outcomes over their male counterparts after severe traumatic brain injury (TBI), while the opposite seems to be true for mild TBI. This begs the question as to what may be driving these sex differences after TBI. Estrogen is thought to be neuroprotective in certain diseases, and its actions have been shown to influence mitochondrial function. Mitochondrial impairment is a major hallmark of TBI, and interestingly, this dysfunction has been shown to be more severe in males than females after brain injury. This suggests estrogen could be playing a role in promoting "mitoprotection" following TBI. Despite the existence of estrogen receptors in mitochondria, few studies have examined the direct role of estrogen on mitochondrial function, and no studies have explored this after TBI. We hypothesized ex vivo treatment of isolated mitochondria with 17β-estradiol (E2) would improve mitochondrial function after experimental TBI in mice. Total mitochondria from the ipsilateral (injured) and contralateral (control) cortices of male and female mice were isolated 24 h post-controlled severe cortical impact (CCI) and treated with vehicle, 2 nM E2, or 20 nM E2 immediately before measuring reactive oxygen species (ROS) production, bioenergetics, electron transport chain complex (ETC) activities, and β-oxidation of palmitoyl carnitine. Protein expression of oxidative phosphorylation (OXPHOS) complexes was also measured in these mitochondrial samples to determine whether this influenced functional outcomes with respect to sex or injury. While mitochondrial ROS production was affected by CCI in both sexes, there were other sex-specific patterns of mitochondrial injury 24 h following severe CCI. For instance, mitochondria from males were more susceptible to CCI-induced injury with respect to bioenergetics and ETC complex activities, whereas mitochondria from females showed only Complex II impairment and reduced β-oxidation after injury. Neither concentration of E2 influenced ETC complex activities themselves, but 20 nM E2 appeared to uncouple mitochondria isolated from the contralateral cortex in both sexes, as well as the injured ipsilateral cortex of females. These studies highlight the significance of measuring mitochondrial dysfunction in both sexes after TBI and also shed light on another potential neuroprotective mechanism in which E2 may attenuate mitochondrial dysfunction after TBI in vivo.
Collapse
Affiliation(s)
- Olivia J. Kalimon
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA;
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; (H.J.V.); (P.P.); (S.L.S.); (W.B.H.)
- Lexington Veterans Affairs Healthcare System, Lexington, KY 40502, USA
| | - Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; (H.J.V.); (P.P.); (S.L.S.); (W.B.H.)
- Lexington Veterans Affairs Healthcare System, Lexington, KY 40502, USA
| | - Paresh Prajapati
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; (H.J.V.); (P.P.); (S.L.S.); (W.B.H.)
- Lexington Veterans Affairs Healthcare System, Lexington, KY 40502, USA
| | - Sydney L. Short
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; (H.J.V.); (P.P.); (S.L.S.); (W.B.H.)
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; (H.J.V.); (P.P.); (S.L.S.); (W.B.H.)
- Lexington Veterans Affairs Healthcare System, Lexington, KY 40502, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Patrick G. Sullivan
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA;
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; (H.J.V.); (P.P.); (S.L.S.); (W.B.H.)
- Lexington Veterans Affairs Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
8
|
Dooley J, Hughes JG, Needham EJ, Palios KA, Liston A. The potential of gene delivery for the treatment of traumatic brain injury. J Neuroinflammation 2024; 21:183. [PMID: 39069631 DOI: 10.1186/s12974-024-03156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Therapeutics for traumatic brains injuries constitute a global unmet medical need. Despite the advances in neurocritical care, which have dramatically improved the survival rate for the ~ 70 million patients annually, few treatments have been developed to counter the long-term neuroinflammatory processes and accompanying cognitive impairments, frequent among patients. This review looks at gene delivery as a potential therapeutic development avenue for traumatic brain injury. We discuss the capacity of gene delivery to function in traumatic brain injury, by producing beneficial biologics within the brain. Gene delivery modalities, promising vectors and key delivery routes are discussed, along with the pathways that biological cargos could target to improve long-term outcomes for patients. Coupling blood-brain barrier crossing with sustained local production, gene delivery has the potential to convert proteins with useful biological properties, but poor pharmacodynamics, into effective therapeutics. Finally, we review the limitations and health economics of traumatic brain injury, and whether future gene delivery approaches will be viable for patients and health care systems.
Collapse
Affiliation(s)
- James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Jasmine G Hughes
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Edward J Needham
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Vekaria HJ, Kalimon OJ, Prajapati P, Velmurugan GV, Sullivan PG. An efficient and high-throughput method for the evaluation of mitochondrial dysfunction in frozen brain samples after traumatic brain injury. Front Mol Biosci 2024; 11:1378536. [PMID: 38983247 PMCID: PMC11232470 DOI: 10.3389/fmolb.2024.1378536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 07/11/2024] Open
Abstract
Mitochondrial function analysis is a well-established method used in preclinical and clinical investigations to assess pathophysiological changes in various disease states, including traumatic brain injury (TBI). Although there are multiple approaches to assess mitochondrial function, one common method involves respirometric assays utilizing either Clark-type oxygen electrodes or fluorescent-based Seahorse analysis (Agilent). However, these functional analysis methods are typically limited to the availability of freshly isolated tissue samples due to the compromise of the electron transport chain (ETC) upon storage, caused by freeze-thaw-mediated breakdown of mitochondrial membranes. In this study, we propose and refine a method for evaluating electron flux through the ETC, encompassing complexes I, II, and IV, in frozen homogenates or mitochondrial samples within a single well of a Seahorse plate. Initially, we demonstrate the impact of TBI on freshly isolated mitochondria using the conventional oxidative phosphorylation protocol (OxPP), followed by a comparison with ETC analysis conducted on frozen tissue samples within the context of a controlled cortical impact (CCI) model of TBI. Additionally, we explore the effects of mitochondrial isolation from fresh versus snap-frozen brain tissues and their storage at -80°C, assessing its impact on electron transport chain protocol (ETCP) activity. Our findings indicate that while both sets of samples were frozen at a single time point, mitochondria from snap-frozen tissues exhibited reduced injury effects compared to preparations from fresh tissues, which were either homogenized or isolated into mitochondria and subsequently frozen for later use. Thus, we demonstrate that the preparation of homogenates or isolated mitochondria can serve as an appropriate method for storing brain samples, allowing for later analysis of mitochondrial function, following TBI using ETCP.
Collapse
Affiliation(s)
- Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
- Lexington VA Medical Center, United States Department of Veterans Affairs, Lexington, KY, United States
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Olivia J. Kalimon
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
- Lexington VA Medical Center, United States Department of Veterans Affairs, Lexington, KY, United States
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Paresh Prajapati
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Gopal V. Velmurugan
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
- Lexington VA Medical Center, United States Department of Veterans Affairs, Lexington, KY, United States
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
10
|
Dong W, Jiang Y, Yao Q, Xu M, Jin Y, Dong L, Li Z, Yu D. Inhibition of CISD1 attenuates cisplatin-induced hearing loss in mice via the PI3K and MAPK pathways. Biochem Pharmacol 2024; 223:116132. [PMID: 38492782 DOI: 10.1016/j.bcp.2024.116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Cisplatin is an effective chemotherapeutic drug for different cancers, but it also causes severe and permanent hearing loss. Oxidative stress and mitochondrial dysfunction in cochlear hair cells (HCs) have been shown to be important in the pathogenesis of cisplatin-induced hearing loss (CIHL). CDGSH iron sulfur domain 1 (CISD1, also known as mitoNEET) plays a critical role in mitochondrial oxidative capacity and cellular bioenergetics. Targeting CISD1 may improve mitochondrial function in various diseases. However, the role of CISD1 in cisplatin-induced ototoxicity is unclear. Therefore, this study was performed to assess the role of CISD1 in cisplatin-induced ototoxicity. We found that CISD1 expression was significantly increased after cisplatin treatment in both HEI-OC1 cells and cochlear HCs. Moreover, pharmacological inhibition of CISD1 with NL-1 inhibited cell apoptosis and reduced mitochondrial reactive oxygen species accumulation in HEI-OC1 cells and cochlear explants. Inhibition of CISD1 with small interfering RNA in HEI-OC1 cells had similar protective effects. Furthermore, NL-1 protected against CIHL in adult C57 mice, as evaluated by the auditory brainstem response and immunofluorescent staining. Mechanistically, RNA sequencing revealed that NL-1 attenuated CIHL via the PI3K and MAPK pathways. Most importantly, NL-1 did not interfere with the antitumor efficacy of cisplatin. In conclusion, our study revealed that targeting CISD1 with NL-1 reduced reactive oxygen species accumulation, mitochondrial dysfunction, and apoptosis via the PI3K and MAPK pathways in HEI-OC1 cell lines and mouse cochlear explants in vitro, and it protected against CIHL in adult C57 mice. Our study suggests that CISD1 may serve as a novel target for the prevention of CIHL.
Collapse
Affiliation(s)
- Wenqi Dong
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yumeng Jiang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingxiu Yao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Maoxiang Xu
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Yuchen Jin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingkang Dong
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuangzhuang Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dongzhen Yu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Liu J, Xin X, Sun J, Fan Y, Zhou X, Gong W, Yang M, Li Z, Wang Y, Yang Y, Gao C. Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury. Neural Regen Res 2024; 19:629-635. [PMID: 37721294 PMCID: PMC10581548 DOI: 10.4103/1673-5374.380907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 09/19/2023] Open
Abstract
Traumatic brain injury results in neuronal loss and glial scar formation. Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury. Neuronal reprogramming is a promising strategy to convert glial scars to neural tissue. However, previous studies have reported inconsistent results. In this study, an AAV9P1 vector incorporating an astrocyte-targeting P1 peptide and glial fibrillary acidic protein promoter was used to achieve dual-targeting of astrocytes and the glial scar while minimizing off-target effects. The results demonstrate that AAV9P1 provides high selectivity of astrocytes and reactive astrocytes. Moreover, neuronal reprogramming was induced by downregulating the polypyrimidine tract-binding protein 1 gene via systemic administration of AAV9P1 in a mouse model of traumatic brain injury. In summary, this approach provides an improved gene delivery vehicle to study neuronal programming and evidence of its applications for traumatic brain injury.
Collapse
Affiliation(s)
- Jingzhou Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Xin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiejie Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xun Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
12
|
Hubbard WB, Velmurugan GV, Sullivan PG. The role of mitochondrial uncoupling in the regulation of mitostasis after traumatic brain injury. Neurochem Int 2024; 174:105680. [PMID: 38311216 PMCID: PMC10922998 DOI: 10.1016/j.neuint.2024.105680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mitostasis, the maintenance of healthy mitochondria, plays a critical role in brain health. The brain's high energy demands and reliance on mitochondria for energy production make mitostasis vital for neuronal function. Traumatic brain injury (TBI) disrupts mitochondrial homeostasis, leading to secondary cellular damage, neuronal degeneration, and cognitive deficits. Mild mitochondrial uncoupling, which dissociates ATP production from oxygen consumption, offers a promising avenue for TBI treatment. Accumulating evidence, from endogenous and exogenous mitochondrial uncoupling, suggests that mitostasis is closely regulating by mitochondrial uncoupling and cellular injury environments may be more sensitive to uncoupling. Mitochondrial uncoupling can mitigate calcium overload, reduce oxidative stress, and induce mitochondrial proteostasis and mitophagy, a process that eliminates damaged mitochondria. The interplay between mitochondrial uncoupling and mitostasis is ripe for further investigation in the context of TBI. These multi-faceted mechanisms of action for mitochondrial uncoupling hold promise for TBI therapy, with the potential to restore mitochondrial health, improve neurological outcomes, and prevent long-term TBI-related pathology.
Collapse
Affiliation(s)
- W Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA; Lexington Veterans' Affairs Healthcare System, Lexington, KY, USA.
| | - Gopal V Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA; Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA; Lexington Veterans' Affairs Healthcare System, Lexington, KY, USA; Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
13
|
Huang L, Xia L, Nie T, Cui B, Lu J, Lu F, Fan F, Ren D, Lu Y, Gao G, Yang Q. Maintaining Drosha expression with Cdk5 inhibitors as a potential therapeutic strategy for early intervention after TBI. Exp Mol Med 2024; 56:210-219. [PMID: 38200156 PMCID: PMC10834983 DOI: 10.1038/s12276-023-01152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/23/2023] [Accepted: 10/26/2023] [Indexed: 01/12/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in adults. The pathological process of TBI involves a multifactorial cascade in which kinases have been proven contribute to interactions between relevant factors and amplification of signaling cascades. Cyclin-dependent kinase 5 (Cdk5) is a promising kinase that has been implicated in various brain disorders, including TBI. However, the mechanism by which Cdk5 induces neuronal damage remains unclear. Here, we show for the first time that Drosha, a key enzyme in microRNA biogenesis, is a pivotal substrate of abnormally activated Cdk5. Cdk5-mediated phosphorylation decreases Drosha expression and exacerbates nerve injury in TBI. We proved that maintaining Drosha expression via the administration of repurposed Cdk5 inhibitors that were previously studied in clinical trials is a promising approach for the early treatment of TBI. Together, our work identifies Drosha as a novel target for neuroprotective strategies after TBI and suggests Cdk5-mediated regulation of Drosha expression as a potential therapeutic strategy for early TBI intervention.
Collapse
Affiliation(s)
- Lu Huang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Li Xia
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jianjun Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Fangfang Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Feiyan Fan
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Dongni Ren
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yuan Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
14
|
Hubbard WB, Vekaria HJ, Velmurugan GV, Kalimon OJ, Prajapati P, Brown E, Geisler JG, Sullivan PG. Mitochondrial Dysfunction After Repeated Mild Blast Traumatic Brain Injury Is Attenuated by a Mild Mitochondrial Uncoupling Prodrug. J Neurotrauma 2023; 40:2396-2409. [PMID: 37476976 PMCID: PMC10653072 DOI: 10.1089/neu.2023.0102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Mild traumatic brain injury (mTBI) results in impairment of brain metabolism, which is propagated by mitochondrial dysfunction in the brain. Mitochondrial dysfunction has been identified as a pathobiological therapeutic target to quell cellular dyshomeostasis. Further, therapeutic approaches targeting mitochondrial impairments, such as mild mitochondrial uncoupling, have been shown to alleviate behavioral alterations after TBI. To examine how mild mitochondrial uncoupling modulates acute mitochondrial outcomes in a military-relevant model of mTBI, we utilized repeated blast overpressure of 11 psi peak overpressure to model repeated mild blast traumatic brain injury (rmbTBI) in rats followed by assessment of mitochondrial respiration and mitochondrial-related oxidative damage at 2 days post-rmbTBI. Treatment groups were administered 8 or 80 mg/kg MP201, a prodrug of 2,4 dinitrophenol (DNP) that displays improved pharmacokinetics compared with its metabolized form. Synaptic and glia-enriched mitochondria were isolated using fractionated a mitochondrial magnetic separation technique. There was a consistent physiological response, decreased heart rate, following mbTBI among experimental groups. Although there was a lack of injury effect in mitochondrial respiration of glia-enriched mitochondria, there were impairments in mitochondrial respiration in synaptic mitochondria isolated from the prefrontal cortex (PFC) and the amygdala/entorhinal/piriform cortex (AEP) region. Impairments in synaptic mitochondrial respiration were rescued by oral 80 mg/kg MP201 treatment after rmbTBI, which may be facilitated by increases in complex II and complex IV activity. Mitochondrial oxidative damage in glia-enriched mitochondria was increased in the PFC and hippocampus after rmbTBI. MP201 treatment alleviated elevated glia-enriched mitochondrial oxidative damage following rmbTBI. However, there was a lack of injury-associated differences in oxidative damage in synaptic mitochondria. Overall, our report demonstrates that rmbTBI results in mitochondrial impairment diffusely throughout the brain and mild mitochondrial uncoupling can restore mitochondrial bioenergetics and oxidative balance.
Collapse
Affiliation(s)
- W. Brad Hubbard
- Lexington Veterans' Affairs Healthcare System, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Hemendra J. Vekaria
- Lexington Veterans' Affairs Healthcare System, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| | - Gopal V. Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Olivia J. Kalimon
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| | - Paresh Prajapati
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Emily Brown
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - John G. Geisler
- Mitochon Pharmaceuticals, Inc., Blue Bell, Pennsylvania, USA
| | - Patrick G. Sullivan
- Lexington Veterans' Affairs Healthcare System, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
15
|
Strogulski NR, Portela LV, Polster BM, Loane DJ. Fundamental Neurochemistry Review: Microglial immunometabolism in traumatic brain injury. J Neurochem 2023; 167:129-153. [PMID: 37759406 PMCID: PMC10655864 DOI: 10.1111/jnc.15959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain-infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro- and anti-inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro-inflammatory activation is associated with decreased mitochondrial respiration, whereas anti-inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post-traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non-resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post-traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI.
Collapse
Affiliation(s)
- Nathan R. Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Luis V. Portela
- Neurotrauma and Biomarkers Laboratory, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Brian M. Polster
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David J. Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
White BA, Ivey JT, Velazquez-Cruz R, Oliverio R, Whitehead B, Pinti M, Hollander J, Ma L, Hu G, Weil ZM, Karelina K. Exercise intensity and sex alter neurometabolic, transcriptional, and functional recovery following traumatic brain injury. Exp Neurol 2023; 368:114483. [PMID: 37479019 PMCID: PMC10529465 DOI: 10.1016/j.expneurol.2023.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Physical exercise represents a potentially inexpensive, accessible, and optimizable rehabilitation approach to traumatic brain injury (TBI) recovery. However, little is known about the impact of post-injury exercise on the neurometabolic, transcriptional, and cognitive outcomes following a TBI. In the current study, we examined TBI outcomes in adolescent male and female mice following a controlled cortical impact (CCI) injury. Mice underwent a 10-day regimen of sedentary, low-, moderate-, or high-intensity treadmill exercise and were assessed for cognitive function, histopathology, mitochondrial function, and oxidative stress. Among male mice, low-moderate exercise improved cognitive recovery, and reduced cortical lesion volume and oxidative stress, whereas high-intensity exercise impaired both cognitive recovery and mitochondrial function. On the other hand, among female mice, exercise had an intermediate effect on cognitive recovery but significantly improved brain mitochondrial function. Moreover, single nuclei RNA sequencing of perilesional brain tissue revealed neuronal plasticity-related differential gene expression that was largely limited to the low-intensity exercise injured males. Taken together, these data build on previous reports of the neuroprotective capacity of exercise in a TBI model, and reveal that this rehabilitation strategy impacts neurometabolic, functional, and transcriptional outcome measures in an intensity- and sex-dependent manner.
Collapse
Affiliation(s)
- Brishti A White
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Julia T Ivey
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Ruth Velazquez-Cruz
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Robin Oliverio
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Bailey Whitehead
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Mark Pinti
- Department of Human Performance and Mitochondria, Metabolism, & Bioenergetics Working Group, West Virginia University, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - John Hollander
- Department of Human Performance and Mitochondria, Metabolism, & Bioenergetics Working Group, West Virginia University, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Li Ma
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Gangquin Hu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Zachary M Weil
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Kate Karelina
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA.
| |
Collapse
|
17
|
Schimmel S, El Sayed B, Lockard G, Gordon J, Young I, D’Egidio F, Lee JY, Rodriguez T, Borlongan CV. Identifying the Target Traumatic Brain Injury Population for Hyperbaric Oxygen Therapy. Int J Mol Sci 2023; 24:14612. [PMID: 37834059 PMCID: PMC10572450 DOI: 10.3390/ijms241914612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Traumatic brain injury (TBI) results from direct penetrating and indirect non-penetrating forces that alters brain functions, affecting millions of individuals annually. Primary injury following TBI is exacerbated by secondary brain injury; foremost is the deleterious inflammatory response. One therapeutic intervention being increasingly explored for TBI is hyperbaric oxygen therapy (HBOT), which is already approved clinically for treating open wounds. HBOT consists of 100% oxygen administration, usually between 1.5 and 3 atm and has been found to increase brain oxygenation levels after hypoxia in addition to decreasing levels of inflammation, apoptosis, intracranial pressure, and edema, reducing subsequent secondary injury. The following review examines recent preclinical and clinical studies on HBOT in the context of TBI with a focus on contributing mechanisms and clinical potential. Several preclinical studies have identified pathways, such as TLR4/NF-kB, that are affected by HBOT and contribute to its therapeutic effect. Thus far, the mechanisms mediating HBOT treatment have yet to be fully elucidated and are of interest to researchers. Nonetheless, multiple clinical studies presented in this review have examined the safety of HBOT and demonstrated the improved neurological function of TBI patients after HBOT, deeming it a promising avenue for treatment.
Collapse
Affiliation(s)
- Samantha Schimmel
- Morsani College of Medicine, University of South Florida, 560 Channelside Dr., Tampa, FL 33602, USA; (S.S.); (B.E.S.); (G.L.); (J.G.)
| | - Bassel El Sayed
- Morsani College of Medicine, University of South Florida, 560 Channelside Dr., Tampa, FL 33602, USA; (S.S.); (B.E.S.); (G.L.); (J.G.)
| | - Gavin Lockard
- Morsani College of Medicine, University of South Florida, 560 Channelside Dr., Tampa, FL 33602, USA; (S.S.); (B.E.S.); (G.L.); (J.G.)
| | - Jonah Gordon
- Morsani College of Medicine, University of South Florida, 560 Channelside Dr., Tampa, FL 33602, USA; (S.S.); (B.E.S.); (G.L.); (J.G.)
| | | | - Francesco D’Egidio
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (F.D.); (J.Y.L.)
| | - Jea Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (F.D.); (J.Y.L.)
| | - Thomas Rodriguez
- School of Medicine, Loma Linda University, 11175 Campus St., Loma Linda, CA 92350, USA;
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (F.D.); (J.Y.L.)
| |
Collapse
|
18
|
Kalimon OJ, Vekaria HJ, Velmurugan GV, Hubbard WB, Sullivan PG. Characterizing Sex Differences in Mitochondrial Dysfunction After Severe Traumatic Brain Injury in Mice. Neurotrauma Rep 2023; 4:627-642. [PMID: 37752924 PMCID: PMC10518693 DOI: 10.1089/neur.2023.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Traumatic brain injury (TBI) is caused by an impact or penetrating injury to the head resulting in abnormal brain function. Mitochondrial dysfunction is an important hallmark of TBI and has been thoroughly studied in male rodent models of brain injury, but relatively little is known about these outcomes in females. These studies were designed to examine sex as a biological variable for mitochondria-related outcomes after the severe controlled cortical impact (CCI) mouse model of TBI. Synaptic and non-synaptic mitochondria were isolated from the sham- or CCI-injured cortex as well as the hippocampus ipsilateral to the craniotomy 3, 12, 24, or 48 h post-surgery, and then bioenergetics were measured. Subtle variations were observed in the timeline of mitochondrial dysfunction between sexes. Non-synaptic cortical mitochondria from injured females showed early impairment at 12 h post-CCI compared to mitochondria from injured males at 24 h post-CCI. Contrastingly, in the synaptic fraction, mitochondria from injured males showed early impairment at 12 h post-CCI, whereas mitochondria from injured females showed impairment at 24 h post-CCI. Based on bioenergetic impairments at 24 h post-CCI, synaptic and non-synaptic mitochondrial calcium loading was also measured at this time point. Consistent with bioenergetic data at 24 h, non-synaptic mitochondria from injured males had increased calcium loading compared to uninjured control, but this effect was not observed in females. Finally, histological assessment of cortical tissue sparing in each sex was measured at 7 days post-injury. There was a lack of sex-based differences in cortical tissue sparing after severe CCI. Overall, there were some subtle sex differences in mitochondrial outcomes after CCI, but these findings were not statistically significant. This study highlights the importance of utilizing both sexes when measuring mitochondrial function after severe CCI.
Collapse
Affiliation(s)
- Olivia J. Kalimon
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Lexington VA Healthcare System, Lexington, Kentucky, USA
| | - Hemendra J. Vekaria
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Lexington VA Healthcare System, Lexington, Kentucky, USA
| | - Gopal V. Velmurugan
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Lexington VA Healthcare System, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Patrick G. Sullivan
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Lexington VA Healthcare System, Lexington, Kentucky, USA
| |
Collapse
|
19
|
Smith G, Thapak P, Paydar A, Ying Z, Gomez-Pinilla F, Harris NG. Altering the Trajectory of Perfusion-Diffusion Deficits Using A BDNF Mimetic Acutely After TBI is Associated with Improved Functional Connectivity. PROGRESS IN NEUROBIOLOGY (DOVER, DEL.) 2023; 10:10.60124/j.pneuro.2023.10.07. [PMID: 38037566 PMCID: PMC10689006 DOI: 10.60124/j.pneuro.2023.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Traumatic brain injury (TBI) results in metabolic deficits and functionally compromised tissue. The BDNF mimetic R13 has a significant positive effect on both tissue metabolism and behavioral outcome after TBI, indicating a promising therapeutic. To understand the mechanism of action for this intervention, we determined whether there was any association between the underlying metabolic insult and any improvement in resting state functional connectivity (FC) with MRI, or whether R13 acts through mechanisms unrelated to metabolic recovery. We found perfusion deficits could be reasonably approximated by reductions in mean diffusivity (MD) acutely after injury, because a majority of regions with low perfusion matched to regions of low MD, indicative of cell swelling. Injury alone resulted in reduced cross-brain FC and contralateral hyperconnectivity at 1d compared to sham and these were spatially coincident with regions of low MD. R13 intervention at 1-7d altered the tissue trajectory of MD pathology away from pseudo-normalization so that a greater volume of tissue remained with low MD at 7d. These same regions were associated with significant changes in cross-brain and contralateral FC in R13 treated rats compared to injured vehicle-treated rats. These data indicate a likely metabolic effect of R13 acutely after injury.
Collapse
Affiliation(s)
- Gregory Smith
- Department of Neurosurgery, UCLA David Geffen School. of Medicine, Los Angeles, California, USA
- UCLA Brain Injury Research Center, Los Angeles, California, USA
| | - Pavan Thapak
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
| | - Afshin Paydar
- Department of Neurosurgery, UCLA David Geffen School. of Medicine, Los Angeles, California, USA
- UCLA Brain Injury Research Center, Los Angeles, California, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
| | - Fernando Gomez-Pinilla
- UCLA Brain Injury Research Center, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
| | - Neil G. Harris
- Department of Neurosurgery, UCLA David Geffen School. of Medicine, Los Angeles, California, USA
- UCLA Brain Injury Research Center, Los Angeles, California, USA
- Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
20
|
Velmurugan GV, Hubbard WB, Prajapati P, Vekaria HJ, Patel SP, Rabchevsky AG, Sullivan PG. LRP1 Deficiency Promotes Mitostasis in Response to Oxidative Stress: Implications for Mitochondrial Targeting after Traumatic Brain Injury. Cells 2023; 12:1445. [PMID: 37408279 PMCID: PMC10217498 DOI: 10.3390/cells12101445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
The brain undergoes oxidative stress and mitochondrial dysfunction following physiological insults such as Traumatic brain injury (TBI), ischemia-reperfusion, and stroke. Pharmacotherapeutics targeting mitochondria (mitoceuticals) against oxidative stress include antioxidants, mild uncouplers, and enhancers of mitochondrial biogenesis, which have been shown to improve pathophysiological outcomes after TBI. However, to date, there is no effective treatment for TBI. Studies have suggested that the deletion of LDL receptor-related protein 1 (LRP1) in adult neurons or glial cells could be beneficial and promote neuronal health. In this study, we used WT and LRP1 knockout (LKO) mouse embryonic fibroblast cells to examine mitochondrial outcomes following exogenous oxidative stress. Furthermore, we developed a novel technique to measure mitochondrial morphometric dynamics using transgenic mitochondrial reporter mice mtD2g (mitochondrial-specific Dendra2 green) in a TBI model. We found that oxidative stress increased the quantity of fragmented and spherical-shaped mitochondria in the injury core of the ipsilateral cortex following TBI, whereas rod-like elongated mitochondria were seen in the corresponding contralateral cortex. Critically, LRP1 deficiency significantly decreased mitochondrial fragmentation, preserving mitochondrial function and cell growth following exogenous oxidative stress. Collectively, our results show that targeting LRP1 to improve mitochondrial function is a potential pharmacotherapeutic strategy against oxidative damage in TBI and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Gopal V. Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Paresh Prajapati
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| | - Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| | - Samir P. Patel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Alexander G. Rabchevsky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
21
|
Kalimon OJ, Vekaria HJ, Gerhardt GA, Sullivan PG. Inhibition of monoamine oxidase-a increases respiration in isolated mouse cortical mitochondria. Exp Neurol 2023; 363:114356. [PMID: 36841465 PMCID: PMC10073304 DOI: 10.1016/j.expneurol.2023.114356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Monoamine oxidase (MAO) is an enzyme located on the outer mitochondrial membrane that metabolizes amine substrates like serotonin, norepinephrine and dopamine. MAO inhibitors (MAOIs) are frequently utilized to treat disorders such as major depression or Parkinson's disease (PD), though their effects on brain mitochondrial bioenergetics are unclear. These studies measured bioenergetic activity in mitochondria isolated from the mouse cortex in the presence of inhibitors of either MAO-A, MAO-B, or both isoforms. We found that only 10 μM clorgyline, the selective inhibitor of MAO-A and not MAO-B, increased mitochondrial oxygen consumption rate in State V(CI) respiration compared to vehicle treatment. We then assessed mitochondrial bioenergetics, reactive oxygen species (ROS) production, and Electron Transport Chain (ETC) complex function in the presence of 0, 5, 10, 20, 40, or 80 μM of clorgyline to determine if this change was dose-dependent. The results showed increased oxygen consumption rates across the majority of respiration states in mitochondria treated with 5, 10, or 20 μM with significant bioenergetic inhibition at 80 μM clorgyline. Next, we assessed mitochondrial ROS production in the presence of the same concentrations of clorgyline in two different states: high mitochondrial membrane potential (ΔΨm) induced by oligomycin and low ΔΨm induced by carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP). There were no changes in ROS production in the presence of 5, 10, 20, or 40 μM clorgyline compared to vehicle after the addition of oligomycin or FCCP. There was a significant increase in mitochondrial ROS in the presence of 80 μM clorgyline after FCCP addition, as well as reduced Complex I and Complex II activities, which are consistent with inhibition of bioenergetics seen at this dose. There were no changes in Complex I, II, or IV activities in mitochondria treated with low doses of clorgyline. These studies shed light on the direct effect of MAO-A inhibition on brain mitochondrial bioenergetic function, which may be a beneficial outcome for those taking these medications.
Collapse
Affiliation(s)
- Olivia J Kalimon
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40356, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA; Lexington VA Healthcare System, Lexington, KY 40502, USA
| | - Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40356, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA; Lexington VA Healthcare System, Lexington, KY 40502, USA
| | - Greg A Gerhardt
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40356, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40356, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA; Lexington VA Healthcare System, Lexington, KY 40502, USA.
| |
Collapse
|
22
|
Qi Y, Hu M, Qiu Y, Zhang L, Yan Y, Feng Y, Feng C, Hou X, Wang Z, Zhang D, Zhao J. Mitoglitazone ameliorates renal ischemia/reperfusion injury by inhibiting ferroptosis via targeting mitoNEET. Toxicol Appl Pharmacol 2023; 465:116440. [PMID: 36870574 DOI: 10.1016/j.taap.2023.116440] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Ischemia/reperfusion- (I/R-) induced injury is unavoidable and a major risk factor for graft failure and acute rejection following kidney transplantation. However, few effective interventions are available to improve the outcome due to the complicated mechanisms and lack of appropriate therapeutic targets. Hence, this research aimed to explore the effect of the thiazolidinedione (TZD) compounds on I/R-induced kidney damage. One of the main causes of renal I/R injury is the ferroptosis of renal tubular cells. In this study, compared with the antidiabetic TZD pioglitazone (PGZ), we found its derivative mitoglitazone (MGZ) exerted significantly inhibitory effects on erastin-induced ferroptosis by suppressing mitochondrial membrane potential hyperpolarization and lipid ROS production in HEK293 cells. Moreover, MGZ pretreatment remarkably alleviated I/R-induced renal damages by inhibiting cell death and inflammation, upregulating the expression of glutathione peroxidase 4 (GPX4), and reducing iron-related lipid peroxidation in C57BL/6 N mice. Additionally, MGZ exhibited excellent protection against I/R-induced mitochondrial dysfunction by restoring ATP production, mitochondrial DNA copy numbers, and mitochondrial morphology in kidney tissues. Mechanistically, molecular docking and surface plasmon resonance experiments demonstrated that MGZ exhibited a high binding affinity with the mitochondrial outer membrane protein mitoNEET. Collectively, our findings indicated the renal protective effect of MGZ was closely linked to regulating the mitoNEET-mediated ferroptosis pathway, thus offering potential therapeutic strategies for ameliorating I/R injuries.
Collapse
Affiliation(s)
- Yuanbo Qi
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Mingyao Hu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Qiu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luyu Zhang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yongchuang Yan
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yi Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Chenghao Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xinyue Hou
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Di Zhang
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
23
|
Hubbard WB, Vekaria HJ, Kalimon OJ, Spry ML, Brown EP, Kilbaugh TJ, Sullivan PG. Pioglitazone restores mitochondrial function but does not spare cortical tissue following mild brain contusion. Brain Commun 2023; 5:fcad032. [PMID: 36879917 PMCID: PMC9985333 DOI: 10.1093/braincomms/fcad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/22/2022] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Pioglitazone interacts through the mitochondrial protein mitoNEET to improve brain bioenergetics following traumatic brain injury. To provide broader evidence regarding the therapeutic effects of pioglitazone after traumatic brain injury, the current study is focused on immediate and delayed therapy in a model of mild brain contusion. To assess pioglitazone therapy on mitochondrial bioenergetics in cortex and hippocampus, we use a technique to isolate subpopulations of total, glia-enriched and synaptic mitochondria. Pioglitazone treatment was initially administered at either 0.25, 3, 12 or 24 h following mild controlled cortical impact. At 48 h post-injury, ipsilateral cortex and hippocampus were dissected and mitochondrial fractions were isolated. Maximal mitochondrial respiration injury-induced deficits were observed in total and synaptic fractions, and 0.25 h pioglitazone treatment following mild controlled cortical impact was able to restore respiration to sham levels. While there are no injury-induced deficits in hippocampal fractions, we do find that 3 h pioglitazone treatment after mild controlled cortical impact can significantly increase maximal mitochondrial bioenergetics compared to vehicle-treated mild controlled cortical impact group. However, delayed pioglitazone treatment initiated at either 3 or 24 h after mild brain contusion does not improve spared cortical tissue. We demonstrate that synaptic mitochondrial deficits following mild focal brain contusion can be restored with early initiation of pioglitazone treatment. Further investigation is needed to determine functional improvements with pioglitazone beyond that of overt cortical tissue sparing following mild contusion traumatic brain injury.
Collapse
Affiliation(s)
- W Brad Hubbard
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Olivia J Kalimon
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Malinda L Spry
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Emily P Brown
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick G Sullivan
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
24
|
Patel SP, Michael FM, Gollihue JL, Brad Hubbard W, Sullivan PG, Rabchevsky AG. Delivery of mitoceuticals or respiratory competent mitochondria to sites of neurotrauma. Mitochondrion 2023; 68:10-14. [PMID: 36371072 PMCID: PMC9805511 DOI: 10.1016/j.mito.2022.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
Herein, we review evidence that targeting mitochondrial dysfunction with 'mitoceuticals' is an effective neuroprotective strategy following neurotrauma, and that isolated exogenous mitochondria can be effectively transplanted into host spinal cord parenchyma to increase overall cellular metabolism. We further discuss control measures to ensure greatest potential for mitochondrial transfer, notably using erodible thermogelling hydrogels to deliver respiratory competent mitochondria to the injured spinal cord.
Collapse
Affiliation(s)
- Samir P Patel
- University of Kentucky, Spinal Cord & Brain Injury Research Center, United States; Departments of Physiology & Neuroscience, College of Medicine, Lexington, KY 40536-0509, United States
| | - Felicia M Michael
- University of Kentucky, Spinal Cord & Brain Injury Research Center, United States; Departments of Physiology & Neuroscience, College of Medicine, Lexington, KY 40536-0509, United States
| | - Jenna L Gollihue
- Sanders-Brown Center on Aging, College of Medicine, Lexington, KY 40536-0230, United States
| | - W Brad Hubbard
- University of Kentucky, Spinal Cord & Brain Injury Research Center, United States; Lexington VA Healthcare System, Lexington, KY 40502, United States
| | - Patrick G Sullivan
- Departments of Physiology & Neuroscience, College of Medicine, Lexington, KY 40536-0509, United States; Lexington VA Healthcare System, Lexington, KY 40502, United States
| | - Alexander G Rabchevsky
- University of Kentucky, Spinal Cord & Brain Injury Research Center, United States; Departments of Physiology & Neuroscience, College of Medicine, Lexington, KY 40536-0509, United States; Lexington VA Healthcare System, Lexington, KY 40502, United States.
| |
Collapse
|
25
|
de Veij Mestdagh CF, Koopmans F, Breiter JC, Timmerman JA, Vogelaar PC, Krenning G, Mansvelder HD, Smit AB, Henning RH, van Kesteren RE. The hibernation-derived compound SUL-138 shifts the mitochondrial proteome towards fatty acid metabolism and prevents cognitive decline and amyloid plaque formation in an Alzheimer's disease mouse model. Alzheimers Res Ther 2022; 14:183. [PMID: 36482297 PMCID: PMC9733344 DOI: 10.1186/s13195-022-01127-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and remains without effective cure. Increasing evidence is supporting the mitochondrial cascade hypothesis, proposing that loss of mitochondrial fitness and subsequent ROS and ATP imbalance are important contributors to AD pathophysiology. METHODS Here, we tested the effects of SUL-138, a small hibernation-derived molecule that supports mitochondrial bioenergetics via complex I/IV activation, on molecular, physiological, behavioral, and pathological outcomes in APP/PS1 and wildtype mice. RESULTS SUL-138 treatment rescued long-term potentiation and hippocampal memory impairments and decreased beta-amyloid plaque load in APP/PS1 mice. This was paralleled by a partial rescue of dysregulated protein expression in APP/PS1 mice as assessed by mass spectrometry-based proteomics. In-depth analysis of protein expression revealed a prominent effect of SUL-138 in APP/PS1 mice on mitochondrial protein expression. SUL-138 increased the levels of proteins involved in fatty acid metabolism in both wildtype and APP/PS1 mice. Additionally, in APP/PS1 mice only, SUL-138 increased the levels of proteins involved in glycolysis and amino acid metabolism pathways, indicating that SUL-138 rescues mitochondrial impairments that are typically observed in AD. CONCLUSION Our study demonstrates a SUL-138-induced shift in metabolic input towards the electron transport chain in synaptic mitochondria, coinciding with increased synaptic plasticity and memory. In conclusion, targeting mitochondrial bioenergetics might provide a promising new way to treat cognitive impairments in AD and reduce disease progression.
Collapse
Affiliation(s)
- Christina F. de Veij Mestdagh
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands ,grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands ,grid.16872.3a0000 0004 0435 165XAlzheimer Center Amsterdam, Vrije Universiteit Amsterdam and Amsterdam UMC location VUmc , Amsterdam, The Netherlands
| | - Frank Koopmans
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jonathan C. Breiter
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands
| | - Jaap A. Timmerman
- grid.12380.380000 0004 1754 9227Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pieter C. Vogelaar
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands ,Sulfateq B.V., Groningen, The Netherlands
| | - Guido Krenning
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands ,Sulfateq B.V., Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Huibert D. Mansvelder
- grid.12380.380000 0004 1754 9227Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - August B. Smit
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Robert H. Henning
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands
| | - Ronald E. van Kesteren
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Boos JR, Jandrain HN, Hagiuda E, Taguchi AT, Hasegawa K, Fedun BL, Taylor SJ, Elad SM, Faber SE, Kumasaka T, Iwasaki T, Geldenhuys WJ. Structure and biological evaluation of Caenorhabditis elegans CISD-1/mitoNEET, a KLP-17 tail domain homologue, supports attenuation of paraquat-induced oxidative stress through a p38 MAPK-mediated antioxidant defense response. ADVANCES IN REDOX RESEARCH : AN OFFICIAL JOURNAL OF THE SOCIETY FOR REDOX BIOLOGY AND MEDICINE AND THE SOCIETY FOR FREE RADICAL RESEARCH-EUROPE 2022; 6:100048. [PMID: 36533211 PMCID: PMC9757825 DOI: 10.1016/j.arres.2022.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
CISD-1/mitoNEET is an evolutionarily conserved outer mitochondrial membrane [2Fe-2S] protein that regulates mitochondrial function and morphology. The [2Fe-2S] clusters are redox reactive and shown to mediate oxidative stress in vitro and in vivo. However, there is limited research studying CISD-1/mitoNEET mediation of oxidative stress in response to environmental stressors. In this study, we have determined the X-ray crystal structure of Caenorhabditis elegans CISD-1/mitoNEET homologue and evaluated the mechanisms of oxidative stress resistance to the pro-oxidant paraquat in age-synchronized populations by generating C. elegans gain and loss of function CISD-1 models. The structure of the C. elegans CISD-1/mitoNEET soluble domain refined at 1.70-Å resolution uniquely shows a reversible disulfide linkage at the homo-dimeric interface and also represents the N-terminal tail domain for dimerization of the cognate kinesin motor protein KLP-17 involved in chromosome segregation dynamics and germline development of the nematode. Moreover, overexpression of CISD-1/mitoNEET in C. elegans has revealed beneficial effects on oxidative stress resistance against paraquat-induced reactive oxygen species generation, corroborated by increased activation of the p38 mitogen-activated protein kinase (MAPK) signaling cascade.
Collapse
Affiliation(s)
- Jacob R. Boos
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Hanna N. Jandrain
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Emi Hagiuda
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Alexander T. Taguchi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Kazuya Hasegawa
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Bailey L. Fedun
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sarah J. Taylor
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sofhia M. Elad
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sarah E. Faber
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Toshio Iwasaki
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Werner J. Geldenhuys
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
27
|
Bharath LP, Hart SN, Nikolajczyk BS. T-cell Metabolism as Interpreted in Obesity-associated Inflammation. Endocrinology 2022; 163:6657752. [PMID: 35932471 PMCID: PMC9756079 DOI: 10.1210/endocr/bqac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/19/2022]
Abstract
The appreciation of metabolic regulation of T-cell function has exploded over the past decade, as has our understanding of how inflammation fuels comorbidities of obesity, including type 2 diabetes. The likelihood that obesity fundamentally alters T-cell metabolism and thus chronic obesity-associated inflammation is high, but studies testing causal relationships remain underrepresented. We searched PubMed for key words including mitochondria, obesity, T cell, type 2 diabetes, cristae, fission, fusion, redox, and reactive oxygen species to identify foundational and more recent studies that address these topics or cite foundational work. We investigated primary papers cited by reviews found in these searches and highlighted recent work with >100 citations to illustrate the state of the art in understanding mechanisms that control metabolism and thus function of various T-cell subsets in obesity. However, "popularity" of a paper over the first 5 years after publication cannot assess long-term impact; thus, some likely important work with fewer citations is also highlighted. We feature studies of human cells, supplementing with studies from animal models that suggest future directions for human cell research. This approach identified gaps in the literature that will need to be filled before we can estimate efficacy of mitochondria-targeted drugs in clinical trials to alleviate pathogenesis of obesity-associated inflammation.
Collapse
Affiliation(s)
- Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA 01845, USA
| | - Samantha N Hart
- Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Barbara S Nikolajczyk
- Correspondence: Barbara S. Nikolajczyk, PhD, Healthy Kentucky Research Bldg. Rm. 217, 760 Press Ave, Lexington, KY 40536, USA.
| |
Collapse
|
28
|
Alhowail A, Alsikhan R, Alsaud M, Aldubayan M, Rabbani SI. Protective Effects of Pioglitazone on Cognitive Impairment and the Underlying Mechanisms: A Review of Literature. Drug Des Devel Ther 2022; 16:2919-2931. [PMID: 36068789 PMCID: PMC9441149 DOI: 10.2147/dddt.s367229] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Correspondence: Ahmad Alhowail, Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia, Tel +9665672025858, Email
| | - Rawan Alsikhan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Al Qassim, 51911, Kingdom of Saudi Arabia
| | - May Alsaud
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Brain Shock—Toward Pathophysiologic Phenotyping in Traumatic Brain Injury. Crit Care Explor 2022; 4:e0724. [PMID: 35815183 PMCID: PMC9257295 DOI: 10.1097/cce.0000000000000724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Severe traumatic brain injury (TBI) is a heterogeneous pathophysiologic entity where multiple interacting mechanisms are operating. This viewpoint offers an emerging, clinically actionable understanding of the pathophysiologic heterogeneity and phenotypic diversity that comprise secondary brain injury based on multimodality neuromonitoring data. This pathophysiologic specification has direct implications for diagnostic, monitoring, and therapeutic planning. Cerebral shock can be helpfully subanalyzed into categories via an examination of the different types of brain tissue hypoxia and substrate failure: a) ischemic or flow dependent; b) flow-independent, which includes oxygen diffusion limitation, mitochondrial failure, and arteriovenous shunt; c) low extraction; and d) hypermetabolic. This approach could lead to an alternative treatment paradigm toward optimizing cerebral oxidative metabolism and energy crisis avoidance. Our bedside approach to TBI should respect the pathophysiologic diversity involved; operationalizing it in types of “brain shock” can be one such approach.
Collapse
|
30
|
Neuroprotective and Anti-inflammatory Effects of Pioglitazone on Traumatic Brain Injury. Mediators Inflamm 2022; 2022:9860855. [PMID: 35757108 PMCID: PMC9232315 DOI: 10.1155/2022/9860855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is still a major cause of concern for public health, and out of all the trauma-related injuries, it makes the highest contribution to death and disability worldwide. Patients of TBI continue to suffer from brain injury through an intricate flow of primary and secondary injury events. However, when treatment is provided in a timely manner, there is a significant window of opportunity to avoid a few of the serious effects. Pioglitazone (PG), which has a neuroprotective impact and can decrease inflammation after TBI, activates peroxisome proliferator-activated receptor-gamma (PPARγ). The objective of the study is to examine the existing literature to assess the neuroprotective and anti-inflammatory impact of PG in TBI. It also discusses the part played by microglia and cytokines in TBI. According to the findings of this study, PG has the ability to enhance neurobehavior, decrease brain edema and neuronal injury following TBI. To achieve the protective impact of PG the following was required: (1) stimulating PPARγ; (2) decreasing oxidative stress; (3) decreasing nuclear factor kappa B (NF-κB), interleukin 6 (IL-6), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), and C-C motif chemokine ligand 20 (CCL20) expression; (4) limiting the increase in the number of activated microglia; and (5) reducing mitochondrial dysfunction. The findings indicate that when PIG is used clinically, it may serve as a neuroprotective anti-inflammatory approach in TBI.
Collapse
|
31
|
Hubbard WB, Sim MMS, Saatman KE, Sullivan PG, Wood JP. Tissue factor release following traumatic brain injury drives thrombin generation. Res Pract Thromb Haemost 2022; 6:e12734. [PMID: 35702585 PMCID: PMC9175244 DOI: 10.1002/rth2.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022] Open
Abstract
Background Traumatic brain injury (TBI) results in neurovascular damage that initiates intrinsic mechanisms of hypercoagulation, which can contribute to the development of life-threatening complications, such as coagulopathy and delayed thrombosis. Clinical studies have hypothesized that tissue factor (TF) induces hypercoagulability after TBI; however, none have directly shown this relationship. Objectives In the current study, we took a stepwise approach to understand what factors are driving thrombin generation following experimental TBI. Methods We employed the contusion-producing controlled cortical impact (CCI) model and the diffuse closed head injury (CHI) model to investigate these mechanisms as a function of injury severity and modality. Whole blood was collected at 6 hours and 24 hours after injury, and platelet-poor plasma was used to measure thrombin generation and extracellular vesicle (EV) TF. Results We found that plasma thrombin generation, dependent on TF present in the plasma, was greater in CCI-injured animals compared to sham at both 6 hours (120.4 ± 36.9 vs 0.0 ± 0.0 nM*min endogenous thrombin potential) and 24 hours (131.0 ± 34.0 vs 32.1 ± 20.6 nM*min) after injury. This was accompanied by a significant increase in EV TF at 24 hours (328.6 ± 62.1 vs 167.7 ± 20.8 fM) after CCI. Further, EV TF is also increased at 6 hours (126.6 ± 17.1 vs 63.3 ± 14.4 fM) but not 24 hours following CHI. Conclusion TF-mediated thrombin generation is time-dependent after injury and TF increases resolve earlier following CHI as compared to CCI. Taken together, these data support a TF-mediated pathway of thrombin generation after TBI and pinpoint TF as a major player in TBI-induced coagulopathy.
Collapse
Affiliation(s)
- W. Brad Hubbard
- Lexington Veterans' Affairs Healthcare SystemLexingtonKentuckyUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Martha M. S. Sim
- Department of Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonKentuckyUSA
| | - Kathryn E. Saatman
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Patrick G. Sullivan
- Lexington Veterans' Affairs Healthcare SystemLexingtonKentuckyUSA
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKentuckyUSA
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Jeremy P. Wood
- Department of Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonKentuckyUSA
- Division of Cardiovascular MedicineThe Gill Heart and Vascular InstituteUniversity of KentuckyLexingtonKentuckyUSA
- Saha Cardiovascular Research CenterUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|