1
|
Rosina M, Veltri F, Nesci V, Bissacco J, Bovenzi R, Mascioli D, Simonetta C, Zenuni H, Maftei D, Marano M, Pierantozzi M, Stefani A, Chiurchiù V, Longone P, Valle C, Mercuri NB, Ferri A, Schirinzi T. Immunometabolic Signature and Tauopathy Markers in Blood Cells of Progressive Supranuclear Palsy. Mov Disord 2024; 39:2211-2219. [PMID: 39283273 DOI: 10.1002/mds.30009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Peripheral immune cells critically contribute to the clinical-pathological progression of neurodegenerative diseases and also represent a reliable frame for translational applications. However, data on progressive supranuclear palsy (PSP) are almost scarce in this regard. OBJECTIVE Our goal is to provide a broad biological characterization of peripheral immune cells in a selected PSP cohort. METHODS Seventy-one PSP patients scored on the PSP Rating Scale (PSPRS), and 59 controls were enrolled. The blood cell count was collected, together with the neutrophil-to-lymphocyte ratio (NLR) calculation. In a subgroup of patients and controls, the peripheral blood mononuclear cells (PBMCs) were analyzed by the mitochondrial bioenergetic performance and the western blot assay of the nuclear factor erythroid 2-related factor (NRF2)/heme oxygenase 1 (HO-1) pathway and the total tau (t-tau) and phosphorylated tau (p-tau) proteins. Case-control comparison and correlation analyses were performed. RESULTS PSP patients had a NLR higher than controls, with increased circulating neutrophils. The leukocyte metabolism was also globally increased and the NRF2/HO-1 pathway activated in patients. P-tau, but not t-tau, significantly accumulated in PSP PBMCs and inversely correlated with the PSPRS. CONCLUSIONS PSP displays a systemic inflammatory shift of the peripheral immunity, which may justify a metabolic reprogramming of the blood leukocytes. Consistently, the NRF2/HO-1 pathway, a master regulator of inflammatory and metabolic response, was activated. PBMCs also engulf tau proteins, especially p-tau, in a way inverse to the disease severity, allowing for a peripheral tracking of tauopathy in patients. Immunometabolic targets may, therefore, gain relevance to PSP in biomarker or therapeutic purposes. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marco Rosina
- Neurology Unit, Fondazione PTV - Tor Vergata University Hospital, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Federica Veltri
- Neurology Unit, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Valentina Nesci
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Neurology Unit, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Jacopo Bissacco
- Neurology Unit, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Roberta Bovenzi
- Neurology Unit, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Davide Mascioli
- Neurology Unit, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Clara Simonetta
- Neurology Unit, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Henri Zenuni
- Neurology Unit, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Daniela Maftei
- Neurology Unit, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Massimo Marano
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Campus Bio-Medico University of Rome, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Mariangela Pierantozzi
- Neurology Unit, Fondazione PTV - Tor Vergata University Hospital, Rome, Italy
- Neurology Unit, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Alessandro Stefani
- Neurology Unit, Fondazione PTV - Tor Vergata University Hospital, Rome, Italy
- Neurology Unit, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Valerio Chiurchiù
- National Research Council (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Cristiana Valle
- IRCCS Fondazione Santa Lucia, Rome, Italy
- National Research Council (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Fondazione PTV - Tor Vergata University Hospital, Rome, Italy
- Neurology Unit, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, Rome, Italy
- National Research Council (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Tommaso Schirinzi
- Neurology Unit, Fondazione PTV - Tor Vergata University Hospital, Rome, Italy
- Neurology Unit, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
2
|
Wang Z, Wu L, Gerasimenko M, Gilliland T, Shah ZSA, Lomax E, Yang Y, Gunzler SA, Donadio V, Liguori R, Xu B, Zou WQ. Seeding activity of skin misfolded tau as a biomarker for tauopathies. Mol Neurodegener 2024; 19:92. [PMID: 39609917 PMCID: PMC11606191 DOI: 10.1186/s13024-024-00781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Tauopathies are a group of age-related neurodegenerative diseases characterized by the accumulation of pathologically hyperphosphorylated tau protein in the brain, leading to prion-like aggregation and propagation. They include Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Currently, reliable diagnostic biomarkers that directly reflect the capability of propagation and spreading of misfolded tau aggregates in peripheral tissues and body fluids are lacking. METHODS We utilized the seed-amplification assay (SAA) employing ultrasensitive real-time quaking-induced conversion (RT-QuIC) to assess the prion-like seeding activity of pathological tau in the skin of cadavers with neuropathologically confirmed tauopathies, including AD, PSP, CBD, and PiD, compared to normal controls. RESULTS We found that the skin tau-SAA demonstrated a significantly higher sensitivity (75-80%) and specificity (95-100%) for detecting tauopathy, depending on the tau substrates used. Moreover, the increased tau-seeding activity was also observed in biopsy skin samples from living AD and PSP patients examined. Analysis of the end products of skin-tau SAA confirmed that the increased seeding activity was accompanied by the formation of tau aggregates with different physicochemical properties related to two different tau substrates used. CONCLUSIONS Overall, our study provides proof-of-concept that the skin tau-SAA can differentiate tauopathies from normal controls, suggesting that the seeding activity of misfolded tau in the skin could serve as a diagnostic biomarker for tauopathies.
Collapse
Affiliation(s)
- Zerui Wang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Ling Wu
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Maria Gerasimenko
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tricia Gilliland
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zahid Syed Ali Shah
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Evalynn Lomax
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yirong Yang
- Institute of Neurology, Department of Neurology, Jiangxi Academy of Clinical Medical Sciences, Rare Disease Center, Key Laboratory of Rare Neurological Diseases of Jiangxi Province Health Commission, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Steven A Gunzler
- Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences of Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences of Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Bin Xu
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA.
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Institute of Neurology, Department of Neurology, Jiangxi Academy of Clinical Medical Sciences, Rare Disease Center, Key Laboratory of Rare Neurological Diseases of Jiangxi Province Health Commission, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
3
|
Ruiz-Barrio I, Vázquez-Oliver A, Puig-Davi A, Rivas-Asensio E, Perez-Perez J, Fernandez-Vizuete C, Horta-Barba A, Olmedo-Saura G, Salvat-Rovira N, Sampedro F, Vacchi E, Melli G, Pagonabarraga J, Kulisevsky J, Martinez-Horta S. Skin Tau Quantification as a Novel Biomarker in Huntington's Disease. Mov Disord 2024; 39:2067-2074. [PMID: 39192729 DOI: 10.1002/mds.29989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Emerging research implicates tau protein dysregulation in the pathophysiology of Huntington's disease. OBJECTIVE This study investigated skin tau quantification as a potential biomarker for Huntington's disease and its correlation with disease burden outcomes. METHODS In this cross-sectional study, we measured skin tau levels using enzyme-linked immunosorbent assay in 23 Huntington's disease mutations carriers and eight control subjects, examining group discrimination, correlations with genetic markers, clinical assessments, and neuroimaging data. Brain atrophy was quantified by both volumetric measurements from brain segmentation and a voxel-based morphometry approach. RESULTS Our findings showed elevated skin tau levels in manifest Huntington's disease compared with premanifest and healthy controls. These levels correlated with CAG repeat length, CAG-Age-Product score, composite Unified Huntington's Disease Rating Scale Total Motor Score, cognitive assessments, and disease-related cortical and subcortical volumes, all independent of age and gender. Using skin tau levels in cluster analysis along with genetic and clinical measures led to improved subject stratification, providing enhanced distinction and validity of clusters. CONCLUSIONS This study not only confirms the feasibility of skin tau quantification in Huntington's disease but also establishes its potential as a biomarker for enhancing group classification and assessing disease severity across the Huntington's disease spectrum, opening new directions in biomarker research. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Iñigo Ruiz-Barrio
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Anna Vázquez-Oliver
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Arnau Puig-Davi
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Elisa Rivas-Asensio
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Jesus Perez-Perez
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | | | - Andrea Horta-Barba
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Gonzalo Olmedo-Saura
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Nil Salvat-Rovira
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Frederic Sampedro
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Radiology Department, Hospital de Sant Pau, Barcelona, Spain
| | - Elena Vacchi
- Neurodegenerative Diseases Group, Laboratory for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Giorgia Melli
- Neurodegenerative Diseases Group, Laboratory for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Javier Pagonabarraga
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Jaime Kulisevsky
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Saul Martinez-Horta
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| |
Collapse
|
4
|
Bang J, Pantelyat A. Correlation between clinical and neuropathological subtypes of PSP: Do clinical symptoms reflect tau distribution? Parkinsonism Relat Disord 2024; 127:107108. [PMID: 39237424 DOI: 10.1016/j.parkreldis.2024.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Affiliation(s)
- Jee Bang
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-181C, Baltimore, Maryland, 21287, USA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-181C, Baltimore, Maryland, 21287, USA.
| |
Collapse
|
5
|
Rosenthal LS, Phillips O, Mari Z. Convention vs. Innovation II: Skin biopsy for synuclein inclusions will replace dopamine transporter imaging for Parkinson disease diagnosis. Parkinsonism Relat Disord 2024; 126:107083. [PMID: 39112124 DOI: 10.1016/j.parkreldis.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Affiliation(s)
- Liana S Rosenthal
- Neurology, Johns Hopkins University School of Medicine, Baltimore, 10751 Falls Rd, Ste 250, Lutherville, 21093, Maryland, United States.
| | - Oliver Phillips
- Neurology, Geisel School of Medicine at Dartmouth, 18 Old Etna Road, 03766, Lebanon, NH, United States.
| | - Zoltan Mari
- Parkinson Disease and Movement Disorders Program, Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Avenue, 89106, Las Vegas, NV, United States.
| |
Collapse
|
6
|
Dellarole IL, Vacchi E, Ruiz-Barrio I, Pinton S, Raimondi A, Rossi S, Morandi S, Bianco G, Begum Bacinoglu M, Lombardo A, Celauro L, Staedler C, Galati S, Pagonabarraga J, Kulisevsky J, Legname G, Gobbi C, Kaelin-Lang A, Moda F, Melli G. Tau seeding activity in skin biopsy differentiates tauopathies from synucleinopathies. NPJ Parkinsons Dis 2024; 10:116. [PMID: 38879633 PMCID: PMC11180195 DOI: 10.1038/s41531-024-00728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/24/2024] [Indexed: 06/19/2024] Open
Abstract
Most neurodegenerative diseases lack definitive diagnostic tests, and the identification of easily accessible and reliable biomarkers remains a critical unmet need. Since tau protein is highly expressed in skin of tauopathies patients, we aimed to exploit the ultrasensitive seeding activity assay (SAA) to assess tau seeding activity in skin of patients with tauopathies. In this multicentric, case-control study, patients with tauopathies and synucleinopathies were consecutively recruited and sex-matched to healthy controls (HC). Subjects underwent a double 3 mm skin biopsy in cervical area and ankle. Skin tau-SAA, using TauK18 and TauK19 as reaction substrates for 4R and 3R isoforms, seeding score, clinical scales, biochemical and morphological characterization of SAA end-products were evaluated. We analyzed 58 subjects: 24 tauopathies (18 progressive supranuclear palsy, PSP, and 6 corticobasal degeneration, CBD), 20 synucleinopathies (14 Parkinson's disease, PD, and 6 multiple system atrophy, MSA), and 14 HC. PSP and CBD showed higher tau seeding activity at both anatomical sites. A greater sensitivity of 4R-SAA than 3R-SAA was observed. 4R tau-SAA identified tauopathies with 71% sensitivity and 93% specificity. Accuracy was higher for PSP than CBD: PSP vs HC / PD (AUC 0.825), while CBD vs HC / PD (AUC 0.797), and PSP vs MSA (AU 0.778). SAA end-products showed differences in biochemical and morphological characterization according to the anatomical site. Skin tau-SAA identifies tauopathies with good accuracy and can be used to implement the in-vivo clinical diagnosis of patients with neurodegenerative diseases. Further characterization of peripheral tau seed in skin may elucidate the structure of tau deposits in brain.
Collapse
Affiliation(s)
- Ilaria Linda Dellarole
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Vacchi
- Neurodegenerative Diseases Group, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Inigo Ruiz-Barrio
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Sandra Pinton
- Neurodegenerative Diseases Group, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Andrea Raimondi
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Stefania Rossi
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Sara Morandi
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giovanni Bianco
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Merve Begum Bacinoglu
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Annalisa Lombardo
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Claudio Staedler
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Salvatore Galati
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Claudio Gobbi
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of Neurology, University Hospital of Basel, Basel, Switzerland
| | - Alain Kaelin-Lang
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabio Moda
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giorgia Melli
- Neurodegenerative Diseases Group, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.
| |
Collapse
|
7
|
Yuan Y, Wang Y, Liu M, Luo H, Liu X, Li L, Mao C, Yang T, Li S, Zhang X, Gao Y, Xu Y, Yang J. Peripheral cutaneous synucleinopathy characteristics in genetic Parkinson's disease. Front Neurol 2024; 15:1404492. [PMID: 38751879 PMCID: PMC11094647 DOI: 10.3389/fneur.2024.1404492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Background Cutaneous phosphorylated alpha-synuclein (p-α-syn) deposition is an important biomarker of idiopathic Parkinson's disease (iPD). Recent studies have reported synucleinopathies in patients with common genetic forms of PD. Objective This study aimed to detect p-α-syn deposition characteristic in rare genetic PD patients with CHCHD2 or RAB39B mutations. Moreover, this study also aimed to describe peripheral alpha-synuclein prion-like activity in genetic PD patients, and acquire whether the cutaneous synucleinopathy characteristics of genetic PD are consistent with central neuropathologies. Methods We performed four skin biopsy samples from the distal leg (DL) and proximal neck (C7) of 161 participants, including four patients with CHCHD2 mutations, two patients with RAB39B mutations, 16 patients with PRKN mutations, 14 patients with LRRK2 mutations, five patients with GBA mutations, 100 iPD patients, and 20 healthy controls. We detected cutaneous synucleinopathies using immunofluorescence staining and a seeding amplification assay (SAA). A systematic literature review was also conducted, involving 64 skin biopsies and 205 autopsies of genetic PD patients with synucleinopathy. Results P-α-syn was deposited in the peripheral cutaneous nerves of PD patients with CHCHD2, LRRK2, or GBA mutations but not in those with RAB39B or PRKN mutations. There were no significant differences in the location or rate of α-syn-positive deposits between genetic PD and iPD patients. Peripheral cutaneous synucleinopathy appears to well represent brain synucleinopathy of genetic PD, especially autosomal dominant PD (AD-PD). Cutaneous α-synuclein SAA analysis of iPD and LRRK2 and GBA mutation patients revealed prion-like activity. Conclusion P-α-syn deposition in peripheral cutaneous nerves, detected using SAA and immunofluorescence staining, may serve as an accurate biomarker for genetic PD and iPD in the future.
Collapse
Affiliation(s)
- Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Minglei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Xiaojing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Lanjun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Ting Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyun Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Tanaka H, Martinez-Valbuena I, Forrest SL, Couto B, Reyes NG, Morales-Rivero A, Lee S, Li J, Karakani AM, Tang-Wai DF, Tator C, Khadadadi M, Sadia N, Tartaglia MC, Lang AE, Kovacs GG. Distinct involvement of the cranial and spinal nerves in progressive supranuclear palsy. Brain 2024; 147:1399-1411. [PMID: 37972275 PMCID: PMC10994524 DOI: 10.1093/brain/awad381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
The most frequent neurodegenerative proteinopathies include diseases with deposition of misfolded tau or α-synuclein in the brain. Pathological protein aggregates in the PNS are well-recognized in α-synucleinopathies and have recently attracted attention as a diagnostic biomarker. However, there is a paucity of observations in tauopathies. To characterize the involvement of the PNS in tauopathies, we investigated tau pathology in cranial and spinal nerves (PNS-tau) in 54 tauopathy cases [progressive supranuclear palsy (PSP), n = 15; Alzheimer's disease (AD), n = 18; chronic traumatic encephalopathy (CTE), n = 5; and corticobasal degeneration (CBD), n = 6; Pick's disease, n = 9; limbic-predominant neuronal inclusion body 4-repeat tauopathy (LNT), n = 1] using immunohistochemistry, Gallyas silver staining, biochemistry, and seeding assays. Most PSP cases revealed phosphorylated and 4-repeat tau immunoreactive tau deposits in the PNS as follows: (number of tau-positive cases/available cases) cranial nerves III: 7/8 (88%); IX/X: 10/11 (91%); and XII: 6/6 (100%); anterior spinal roots: 10/10 (100%). The tau-positive inclusions in PSP often showed structures with fibrillary (neurofibrillary tangle-like) morphology in the axon that were also recognized with Gallyas silver staining. CBD cases rarely showed fine granular non-argyrophilic tau deposits. In contrast, tau pathology in the PNS was not evident in AD, CTE and Pick's disease cases. The single LNT case also showed tau pathology in the PNS. In PSP, the severity of PNS-tau involvement correlated with that of the corresponding nuclei, although, occasionally, p-tau deposits were present in the cranial nerves but not in the related brainstem nuclei. Not surprisingly, most of the PSP cases presented with eye movement disorder and bulbar symptoms, and some cases also showed lower-motor neuron signs. Using tau biosensor cells, for the first time we demonstrated seeding capacity of tau in the PNS. In conclusion, prominent PNS-tau distinguishes PSP from other tauopathies. The morphological differences of PNS-tau between PSP and CBD suggest that the tau pathology in PNS could reflect that in the central nervous system. The high frequency and early presence of tau lesions in PSP suggest that PNS-tau may have clinical and biomarker relevance.
Collapse
Affiliation(s)
- Hidetomo Tanaka
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - Ivan Martinez-Valbuena
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - Shelley L Forrest
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Nikolai Gil Reyes
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Alonso Morales-Rivero
- University Health Network Memory Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Seojin Lee
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - Jun Li
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - Ali M Karakani
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - David F Tang-Wai
- University Health Network Memory Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
- Department of Medicine/Division of Neurology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Charles Tator
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
- Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Mozhgan Khadadadi
- Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Nusrat Sadia
- Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Maria Carmela Tartaglia
- University Health Network Memory Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
- Department of Medicine/Division of Neurology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
- Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
- Department of Medicine/Division of Neurology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
- Department of Medicine/Division of Neurology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Ontario M5T 0S8, Canada
| |
Collapse
|
9
|
Lozupone M, Dibello V, Daniele A, Solfrizzi V, Resta E, Panza F. How can we manage progressive supranuclear palsy syndrome with pharmacotherapy? Expert Opin Pharmacother 2024; 25:571-584. [PMID: 38653731 DOI: 10.1080/14656566.2024.2345734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Tauopathies are a spectrum of clinicopathological neurodegenerative disorders with increased aggregates included in glia and/or neurons of hyperphosphorylated insoluble tau protein, a microtubule-associated protein. Progressive supranuclear palsy (PSP) is an atypical dopaminergic-resistant parkinsonian syndrome, considered as a primary tauopathy with possible alteration of tau isoform ratio, and tau accumulations characterized by 4 R tau species as the main neuropathological lesions. AREAS COVERED In the present review article, we analyzed and discussed viable disease-modifying and some symptomatic pharmacological therapeutics for PSP syndrome (PSPS). EXPERT OPINION Pharmacological therapy for PSPS may interfere with the aggregation process or promote the clearance of abnormal tau aggregates. A variety of past and ongoing disease-modifying therapies targeting tau in PSPS included genetic, microtubule-stabilizing compounds, anti-phosphorylation, and acetylation agents, antiaggregant, protein removal, antioxidant neuronal and synaptic growth promotion therapies. New pharmacological gene-based approaches may open alternative prevention pathways for the deposition of abnormal tau in PSPS such as antisense oligonucleotide (ASO)-based drugs. Moreover, kinases and ubiquitin-proteasome systems could also be viable targets.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| | - Vittorio Dibello
- Department of Interdisciplinary Medicine, "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Vincenzo Solfrizzi
- Department of Interdisciplinary Medicine, "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Emanuela Resta
- Translational Medicine and Health System Management, Department of Economy, University of Foggia, Foggia, Italy
| | - Francesco Panza
- Department of Interdisciplinary Medicine, "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
10
|
Lei HY, Pi GL, He T, Xiong R, Lv JR, Liu JL, Wu DQ, Li MZ, Shi K, Li SH, Yu NN, Gao Y, Yu HL, Wei LY, Wang X, Zhou QZ, Zou PL, Zhou JY, Liu YZ, Shen NT, Yang J, Ke D, Wang Q, Liu GP, Yang XF, Wang JZ, Yang Y. Targeting vulnerable microcircuits in the ventral hippocampus of male transgenic mice to rescue Alzheimer-like social memory loss. Mil Med Res 2024; 11:16. [PMID: 38462603 PMCID: PMC10926584 DOI: 10.1186/s40779-024-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Episodic memory loss is a prominent clinical manifestation of Alzheimer's disease (AD), which is closely related to tau pathology and hippocampal impairment. Due to the heterogeneity of brain neurons, the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear. Therefore, further investigation is necessary. METHODS We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis, social behavioural tests, hippocampal electrophysiology, immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR. Additionally, we utilized optogenetics and administered ursolic acid (UA) via oral gavage to examine the effects of these agents on social memory in mice. RESULTS The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1 (vCA1) under both physiological conditions and AD-like tau pathology. As tau progressively accumulated, vCA1, especially its excitatory and parvalbumin (PV) neurons, were fully filled with mislocated and phosphorylated tau (p-Tau). This finding was not observed for dorsal hippocampal CA1 (dCA1). The overexpression of human tau (hTau) in excitatory and PV neurons mimicked AD-like tau accumulation, significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1. Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory. Notably, 1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB (TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory. CONCLUSION This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation. Notably, our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future.
Collapse
Affiliation(s)
- Hui-Yang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gui-Lin Pi
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing-Ru Lv
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Le Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Qin Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng-Zhu Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Shi
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Hong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na-Na Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Gao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Ling Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin-Yu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu-Zhi Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei-Lin Zou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying-Zhou Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nai-Ting Shen
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, Jiangsu, China.
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Wang Z, Wu L, Gerasimenko M, Gilliland T, Gunzler SA, Donadio V, Liguori R, Xu B, Zou WQ. Seeding Activity of Skin Misfolded Tau as a Biomarker for Tauopathies. RESEARCH SQUARE 2024:rs.3.rs-3968879. [PMID: 38496453 PMCID: PMC10942562 DOI: 10.21203/rs.3.rs-3968879/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Tauopathies are a group of age-related neurodegenerative diseases characterized by the accumulation of pathologically phosphorylated tau protein in the brain, leading to prion-like propagation and aggregation. They include Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Currently, reliable diagnostic biomarkers that directly reflect the capability of propagation and spreading of misfolded tau aggregates in peripheral tissues and body fluids are lacking. Methods We utilized the seed-amplification assay (SAA) employing ultrasensitive real-time quaking-induced conversion (RT-QuIC) to assess the prion-like seeding activity of pathological tau in the skin of cadavers with neuropathologically confirmed tauopathies, including AD, PSP, CBD, and PiD, compared to normal controls. Results We found that the skin prion-SAA demonstrated a significantly higher sensitivity (75-80%) and specificity (95-100%) for detecting tauopathy, depending on the tau substrates used. Moreover, increased tau-seeding activity was also observed in biopsy skin samples from living AD and PSP patients examined. Analysis of the end products of skin-tau SAA confirmed that the increased seeding activity was accompanied by the formation of tau aggregates with different physicochemical properties related to two different tau substrates used. Conclusions Overall, our study provides proof-of-concept that the skin tau-SAA can differentiate tauopathies from normal controls, suggesting that the seeding activity of misfolded tau in the skin could serve as a diagnostic biomarker for tauopathies.
Collapse
Affiliation(s)
- Zerui Wang
- Case Western Reserve University School of Medicine
| | - Ling Wu
- North Carolina Central University
| | | | | | - Steven A Gunzler
- University Hospitals Cleveland Medical Center: UH Cleveland Medical Center
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences of Bolgna: IRCCS Istituto Delle Scienze Neurologiche di Bologna
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences of Bologna: IRCCS Istituto Delle Scienze Neurologiche di Bologna
| | - Bin Xu
- North Carolina Central University
| | - Wen-Quan Zou
- First Affiliated Hospital of Nanchang University
| |
Collapse
|
12
|
Piovesana E, Magrin C, Ciccaldo M, Sola M, Bellotto M, Molinari M, Papin S, Paganetti P. Tau accumulation in degradative organelles is associated to lysosomal stress. Sci Rep 2023; 13:18024. [PMID: 37865674 PMCID: PMC10590387 DOI: 10.1038/s41598-023-44979-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023] Open
Abstract
Neurodegenerative disorders are characterized by the brain deposition of insoluble amyloidogenic proteins, such as α-synuclein or Tau, and the concomitant deterioration of cell functions such as the autophagy-lysosomal pathway (ALP). The ALP is involved in the degradation of intracellular macromolecules including protein aggregates. ALP dysfunction due to inherited defects in lysosomal or non-lysosomal proteins causes a group of diseases called lysosomal storage disorders (LSD) because of abnormal accumulation of lysosomal degradation substrates. Supporting the contribution of ALP defects in neurodegenerative diseases, deposition of amyloidogenic proteins occurs in LSD. Moreover, heterozygous mutations of several ALP genes represent risk factors for Parkinson's disease. The reciprocal contribution of α-synuclein accumulation and lysosomal dysfunction have been extensively studied. However, whether this adverse crosstalk also embraces Tau pathology needs more investigation. Here, we show in human primary fibroblasts that Tau seeds isolated from the brain of Alzheimer's disease induce Tau accumulation in acidic degradative organelles and lysosomal stress. Furthermore, inhibition of glucocerebrosidase, a lysosomal enzyme mutated in Gaucher's disease and a main risk for Parkinson's disease, causes lysosomal dysfunction in primary fibroblasts and contributes to the accumulation of Tau. Considering the presence of Tau lesions in Parkinson's disease as well as in multiple neurodegenerative disorders including Alzheimer's disease, our data call for further studies on strategies to alleviate ALP dysfunction as new therapeutic opportunity for neurodegenerative diseases and LSD.
Collapse
Affiliation(s)
- Ester Piovesana
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- PhD Program in Neurosciences, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Claudia Magrin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- PhD Program in Neurosciences, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Matteo Ciccaldo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Martina Sola
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- PhD Program in Neurosciences, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | | | - Maurizio Molinari
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stéphanie Papin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Paolo Paganetti
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- PhD Program in Neurosciences, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
- Neurocentro della Svizzera Italiana, Ente Ospedaliero Cantonale, Lugano, Switzerland.
| |
Collapse
|
13
|
Buchman AS, Leurgans SE, Kim N, Agrawal S, Oveisgharan S, Zammit AR, VanderHorst V, Nag S, Bennett DA. Alzheimer's Disease Pathology Outside of the Cerebrum Is Related to a Higher Odds of Dementia. J Alzheimers Dis 2023; 96:563-578. [PMID: 37840485 PMCID: PMC11406461 DOI: 10.3233/jad-230223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND Assessments of Alzheimer's disease pathology do not routinely include lower brainstem, olfactory bulb, and spinal cord. OBJECTIVE Test if amyloid-β (Aβ) and paired helical filament (PHF) tau-tangles outside the cerebrum are associated with the odds of dementia. METHODS Autopsies were obtained in decedents with cognitive testing (n = 300). Aβ plaques and PHF tau-tangles were assessed in 24 sites: cerebrum (n = 14), brainstem (n = 5), olfactory bulb, and four spinal cord levels. Since spinal Aβ were absent in the first 165 cases, it was not assessed in the remaining cases. RESULTS Age at death was 91 years old. About 90% had Aβ in cerebrum and of these, half had Aβ in the brainstem. Of the latter, 85% showed Aβ in the olfactory bulb. All but one participant had tau-tangles in the cerebrum and 86% had brainstem tau-tangles. Of the latter, 80% had tau-tangles in olfactory bulb and 36% tau-tangles in one or more spinal cord levels. About 90% of adults with tau-tangles also had Aβ in one or more regions. In a logistic model controlling for demographics, Aβ and tau-tangles within the cerebrum, the presence of Aβ in olfactory bulb [OR, 1.74(1.00, 3.05)]; tau-tangles in brainstem [OR, 4.00(1.1.57,10.21)]; and spinal cord [OR, 1.87 (1.21,3.11)] were independently associated with higher odds of dementia. CONCLUSION Regional differences in Aβ and tau-tangle accumulation extend beyond cerebrum to spinal cord and their presence outside the cerebrum are associated with a higher odds of dementia. Further studies are needed to clarify the extent, burden, and consequences of AD pathology outside of cerebrum.
Collapse
Affiliation(s)
- Aron S Buchman
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Namhee Kim
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
| | - Sonal Agrawal
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Shahram Oveisgharan
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Andrea R Zammit
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | | | - Sukrit Nag
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Research Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
14
|
Dugger BN, Harvey D, Beach TG, Adler CH. Peripheral tau as a biomarker for neurodegenerative diseases: is life on Earth, life on Mars? Brain 2022; 145:2629-2631. [PMID: 35947169 PMCID: PMC9420015 DOI: 10.1093/brain/awac281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
This scientific commentary refers to ‘Tau protein quantification in skin biopsies differentiates tauopathies from alpha-synucleinopathies’ by Vacchi et al. (https://doi.org/10.1093/brain/awac161).
Collapse
Affiliation(s)
- Brittany N Dugger
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| |
Collapse
|