1
|
Tin O, Saltık S, Kara HÇ, Koyuncu Z, Sak K, Sarı AA, Doğangün B, Güler S. Exploring the Correlations Between Language Impairments, Central Auditory Processing Disorder, Neuropsychiatric Functions, and Seizure Timing in Children With Self-Limited Epilepsy With Centrotemporal Spikes. J Child Neurol 2024:8830738241304864. [PMID: 39676505 DOI: 10.1177/08830738241304864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
BACKGROUND Children with self-limited epilepsy with centrotemporal spikes often face language impairments and central auditory processing difficulties. The correlations between these issues, seizure timing, and neuropsychiatric challenges are not fully understood. This study delves into the connections between language impairments and central auditory processing difficulties in cases with self-limited epilepsy with centrotemporal spikes, examining their links with seizure occurrence and neuropsychiatric function. MATERIALS AND METHODS Patients with self-limited epilepsy with centrotemporal spikes were categorized based on seizure timing: group 1 experienced seizures postbedtime, and group 2 prewaking. Both, alongside controls, underwent the Turkish Expressive and Receptive Language Test (TIFALDI) for language skills, and the Frequency Pattern and Duration Pattern tests for central auditory processing difficulties. Neuropsychiatric assessments involved the Wechsler Intelligence Scale for Children-Revised, the Strengths and Difficulties Questionnaire, the Conners Parent Rating Scale-Revised Short, and the Barratt Impulsiveness Scale-11. RESULTS The study comprised 56 patients with self-limited epilepsy with centrotemporal spikes (ages 6-13) and 32 healthy controls. Both groups significantly lagged behind controls on the Frequency Pattern and Duration Pattern tests (P < .001). In the TIFALDI, the expressive language scores varied between group 1 and controls (P = .04) but not the receptive language scores or the test's expressive and receptive language results between group 2 and controls (P > .05). In the Strengths and Difficulties Questionnaire, group 1 diverged from controls in behavioral and kind and helpful behavior scores (P = .016 and P = .012). Group 1's Barratt Impulsiveness Scale-11 values surpassed controls' (P = .038). CONCLUSION Children with self-limited epilepsy with centrotemporal spikes have a high central auditory processing difficulties prevalence, regardless of seizure timing. Those with postsleep seizures tend to confront expressive language difficulties, alongside issues in prosocial behavior and impulsivity.
Collapse
Affiliation(s)
- Oğuzhan Tin
- Department of Pediatrics, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sema Saltık
- Department of Pediatric Neurology, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Halide Çetin Kara
- Department of Otorhinolaryngology, Audiology, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zehra Koyuncu
- Department of Child and Adolescent Psychiatry, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kevser Sak
- Department of Public Health, Dulkadiroğlu District Health Directorate, Kahramanmaras, Turkey
| | - Aysun Ayaz Sarı
- Department of Pediatric Neurology, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Burak Doğangün
- Department of Child and Adolescent Psychiatry, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serhat Güler
- Department of Pediatric Neurology, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
2
|
Yin Y, Ma M, Wang F, Ju C, Luo X, Yu H, Nie L, Liu J, Liu H. Unraveling the Diffusion MRI-Based Glymphatic System Alterations in Children with Rolandic Epilepsy. Acad Radiol 2024:S1076-6332(24)00856-0. [PMID: 39592382 DOI: 10.1016/j.acra.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
RATIONALE AND OBJECTIVES Although dysfunction of the glymphatic system in adult epilepsy has been extensively studied, there is a lack of research on the changes in this system during childhood development, particularly in children with Rolandic epilepsy (RE). This study aimed to investigate the changes in diffusion MRI measures related to the glymphatic function in children with RE. MATERIALS AND METHODS A total of thirty-eight children with RE and thirty-six demographically matched healthy children were enrolled in the study. All participants performed structural and diffusion MRI using a 3.0 T MRI scanner, and children with RE also underwent intellectual assessment. Diffusion MRI measures, including fractional volume of free water in white matter (FW-WM) and diffusion tensor imaging-along the perivascular space (DTI-ALPS) indices, were calculated and compared between the two groups. Spearman correlation were employed to assess the associations of the MRI indices with epilepsy age and intelligence quotients. RESULTS Children with RE had significantly higher cerebral FW-WM (0.227 vs. 0.210; p < 0.001) and lower ALPS index (1.482 vs. 1.667; p < 0.001) than controls. The higher cerebral FW-WM was negatively correlated with full-scale IQ (r = -0.389, p = 0.021), while the lower ALPS index was positively correlated with age (r = 0.529, p = 0.001). CONCLUSION Children with RE exhibited altered diffusion MRI measures, which could be triggered by impairment of the glymphatic system. Additionally, our findings also indicate the associations of diffusion MRI measures with epilepsy age and lower intelligence levels.
Collapse
Affiliation(s)
- Yu Yin
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha 410011, China (Y.Y., C.J., J.L.)
| | - Mengqiu Ma
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education Institutions, Zunyi 563003, China (M.M., F.W., X.L., H.Y., H.L.)
| | - Fuqin Wang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education Institutions, Zunyi 563003, China (M.M., F.W., X.L., H.Y., H.L.)
| | - Chao Ju
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha 410011, China (Y.Y., C.J., J.L.)
| | - Xinyu Luo
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education Institutions, Zunyi 563003, China (M.M., F.W., X.L., H.Y., H.L.)
| | - Haoyue Yu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education Institutions, Zunyi 563003, China (M.M., F.W., X.L., H.Y., H.L.)
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China (L.N.)
| | - Jun Liu
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha 410011, China (Y.Y., C.J., J.L.); Clinical Research Center for Medical Imaging, Changsha 410011, China (J.L.); Department of Radiology Quality Control Center, Changsha 410011, China (J.L.)
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education Institutions, Zunyi 563003, China (M.M., F.W., X.L., H.Y., H.L.).
| |
Collapse
|
3
|
Ameen Fateh A, Hassan M, Mo T, Hu Z, Smahi A, A Q Mohammed A, Liao J, Alarefi A, Zeng H. Static and dynamic changes in amplitude of Low-Frequency fluctuations in patients with Self-Limited epilepsy with centrotemporal Spikes (SeLECTS): A Resting-State fMRI study. J Clin Neurosci 2024; 129:110817. [PMID: 39244976 DOI: 10.1016/j.jocn.2024.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE This study aims to explore differences in the static and dynamic amplitude of low-frequency fluctuations (sALFF and dALFF) in resting-state functional MRI (rs-fMRI) data between patients with Benign childhood epilepsy with centrotemporal spikes (SeLECTS) and healthy controls (HCs). MATERIALS AND METHODS We recruited 45 patient with SeLECTS and 55 HCs, employing rs-fMRI to assess brain activity. The analysis utilized a two-sample t-test for primary comparisons, supplemented by stratification and matching based on clinical and demographic characteristics to ensure comparability between groups. Post hoc analyses assessed the relationships between sALFF/dALFF alterations and clinical demographics, incorporating statistical adjustments for potential confounders and performing sensitivity analysis to test the robustness of our findings. RESULTS Our analysis identified significant differences in sALFF and dALFF between patient with SeLECTS and HCs. Notably, increases in sALFF and dALFF were observed in the right middle temporal gyrus and left superior temporal gyrus among patient with SeLECTS, while a decrease in dALFF was seen in the right cerebellum crus 1. Additionally, a positive correlation was found between abnormal dALFF variability in specific brain regions and various clinical and demographic factors of patient with SeLECTS, with age being one such influential factor. CONCLUSION This investigation provides insights into the assessment of local brain activity in SeLECTS through both static and dynamic approaches. It highlights the significance of non-invasive neuroimaging techniques in understanding the complexities of epilepsy syndromes like SeLECTS and emphasizes the need to consider a range of clinical and demographic factors in neuroimaging studies of neurological disorders.
Collapse
Affiliation(s)
- Ahmed Ameen Fateh
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Muhammad Hassan
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Tong Mo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Zhanqi Hu
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Abla Smahi
- Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Adam A Q Mohammed
- School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Abdulqawi Alarefi
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China.
| |
Collapse
|
4
|
Yin Y, Qiu X, Nie L, Wang F, Luo X, Zhao C, Yu H, Luo D, Wang J, Liu H. Individual-based morphological brain network changes in children with Rolandic epilepsy. Clin Neurophysiol 2024; 165:90-96. [PMID: 38991378 DOI: 10.1016/j.clinph.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/09/2024] [Accepted: 06/15/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVE To investigate the local cortical morphology and individual-based morphological brain networks (MBNs) changes in children with Rolandic epilepsy (RE). METHODS Based on the structural MRI data of 56 children with RE and 56 healthy controls (HC), we constructed four types of individual-based MBNs using morphological indices (cortical thickness [CT], fractal dimension [FD], gyrification index [GI], and sulcal depth [SD]). The global and nodal properties of the brain networks were analyzed using graph theory. The between-group difference in local morphology and network topology was estimated, and partial correlation analysis was further analyzed. RESULTS Compared with the HC, children with RE showed regional GI increases in the right posterior cingulate gyrus and SD increases in the right anterior cingulate gyrus and medial prefrontal cortex. Regarding the network level, RE exhibited increased characteristic path length in CT-based and FD-based networks, while decreased FD-based network node efficiency in the right inferior frontal gyrus. No significant correlation between altered morphological features and clinical variables was found in RE. CONCLUSIONS These findings indicated that children with RE have disrupted morphological brain network organization beyond local morphology changes. SIGNIFICANCE The present study could provide more theoretical basis for exploring the neuropathological mechanisms in RE.
Collapse
Affiliation(s)
- Yu Yin
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education Institutions, Zunyi 563003, China; Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Xiaofan Qiu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Fuqin Wang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education Institutions, Zunyi 563003, China
| | - Xinyu Luo
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education Institutions, Zunyi 563003, China
| | - Chunfeng Zhao
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education Institutions, Zunyi 563003, China
| | - Haoyue Yu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education Institutions, Zunyi 563003, China
| | - Dan Luo
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education Institutions, Zunyi 563003, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education Institutions, Zunyi 563003, China.
| |
Collapse
|
5
|
Felgueiras A, Bolas S, Ferreira DM, Raimundo D. Self-Limited Epilepsy With Autonomic Seizures: A Case Report. Cureus 2024; 16:e66355. [PMID: 39246861 PMCID: PMC11378130 DOI: 10.7759/cureus.66355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
This case report describes a six-year-old girl without relevant personal or family history, who had a seizure at awakening with loss of muscle tone, sialorrhea and ocular retroversion. The episode lasted >5 minutes, with vomiting and post-ictal confusion. Upon the hospital visit, she was misdiagnosed with acute gastroenteritis and discharged with symptomatic treatment. After another seizure, she was diagnosed with Panayiotopoulos syndrome and started receiving treatment. Since then, the child has been followed up through neuropediatric appointments and by her family doctor. The psychological assessment revealed normal general intellectual functioning with vulnerability in the language area.
Collapse
Affiliation(s)
- Armando Felgueiras
- Family Medicine, USF (Unidade de Saúde Familiar) Cuidar Saúde, Seixal, PRT
| | - Sérgio Bolas
- Family Medicine, USF (Unidade de Saúde Familiar) Cuidar Saúde, Seixal, PRT
| | - Diogo M Ferreira
- Pediatric Medicine, Unidade Local de Saúde da Região de Aveiro, Aveiro, PRT
| | - Dina Raimundo
- Pediatric Medicine, Unidade Local de Saúde da Região de Aveiro, Aveiro, PRT
| |
Collapse
|
6
|
Talami F, Lemieux L, Avanzini P, Ballerini A, Cantalupo G, Laufs H, Meletti S, Vaudano AE. The influence of wakefulness fluctuations on brain networks involved in centrotemporal spike occurrence. Clin Neurophysiol 2024; 164:47-56. [PMID: 38848666 DOI: 10.1016/j.clinph.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE Drowsiness has been implicated in the modulation of centro-temporal spikes (CTS) in Self-limited epilepsy with Centro-Temporal Spikes (SeLECTS). Here, we explore this relationship and whether fluctuations in wakefulness influence the brain networks involved in CTS generation. METHODS Functional MRI (fMRI) and electroencephalography (EEG) was simultaneously acquired in 25 SeLECTS. A multispectral EEG index quantified drowsiness ('EWI': EEG Wakefulness Index). EEG (Pearson Correlation, Cross Correlation, Trend Estimation, Granger Causality) and fMRI (PPI: psychophysiological interactions) analytic approaches were adopted to explore respectively: (a) the relationship between EWI and changes in CTS frequency and (b) the functional connectivity of the networks involved in CTS generation and wakefulness oscillations. EEG analyses were repeated on a sample of routine EEG from the same patient's cohort. RESULTS No correlation was found between EWI fluctuations and CTS density during the EEG-fMRI recordings, while they showed an anticorrelated trend when drowsiness was followed by proper sleep in routine EEG traces. According to PPI findings, EWI fluctuations modulate the connectivity between the brain networks engaged by CTS and the left frontal operculum. CONCLUSIONS While CTS frequency per se seems unrelated to drowsiness, wakefulness oscillations modulate the connectivity between CTS generators and key regions of the language circuitry, a cognitive function often impaired in SeLECTS. SIGNIFICANCE This work advances our understanding of (a) interaction between CTS occurrence and vigilance fluctuations and (b) possible mechanisms responsible for language disruption in SeLECTS.
Collapse
Affiliation(s)
- Francesca Talami
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy; Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Louis Lemieux
- Department of Clinical and Experimental and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Alice Ballerini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gaetano Cantalupo
- Innovation Biomedicine Section, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy; Child Neuropsychiatry Unit and Center for Research on Epilepsies in Pediatric age (CREP), University Hospital of Verona (full member of the European Reference Network EpiCARE), Verona, Italy
| | - Helmut Laufs
- University Medical Center Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Germany
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurophysiology Unit and Epilepsy Centre, Neuroscience Department, AOU Modena, Italy.
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurophysiology Unit and Epilepsy Centre, Neuroscience Department, AOU Modena, Italy.
| |
Collapse
|
7
|
Liu H, Chen D, Liu C, Liu P, Yang H, Lu H. Brain structural changes and molecular analyses in children with benign epilepsy with centrotemporal spikes. Pediatr Res 2024; 96:184-189. [PMID: 38431664 DOI: 10.1038/s41390-024-03118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Benign epilepsy with centrotemporal spikes (BECTS) is a common childhood epilepsy syndrome, accompanied by behavioral problems and cognitive impairments. Previous studies of BECTS-related brain structures applied univariate analysis and showed inconsistent results. And neurotransmitter patterns associated with brain structural alterations were still unclear. METHODS Structural images of twenty-one drug-naïve children with BECTS and thirty-five healthy controls (HCs) were scanned. Segmented gray matter volume (GMV) images were decomposed into independent components (ICs) using the source-based morphometry method. Then spatial correlation analyses were applied to examine possible relationships between GMV changes and neurotransmitter systems. RESULTS Compared with HCs, drug-naïve children with BECTS showed increased volume in one GMV component (IC7), including bilateral precentral gyrus, bilateral supplementary motor area, left superior frontal cortex, bilateral middle/ inferior frontal cortex and bilateral anterior/ middle cingulate cortex. A positive correlation was observed between one GMV component (IC6) and seizure frequency. There were significantly positive correlations between abnormal GMV in IC7 and serotonergic, GABAergic and glutamatergic systems. CONCLUSION These findings provided further evidence of changed GMV in drug-naïve children with BECTS related to their behavioral problems and cognitive impairments, and associated neurotransmitters which could help to better understand neurobiological mechanisms and underlying molecular mechanisms of BECTS. IMPACT The article provides further evidence of changed gray matter volume in drug-naïve children with BECTS related to their behavioral problems and cognitive impairments as well as associated neurotransmitters. Most literature to date has applied univariate analysis and showed inconsistent results, and neurotransmitter patterns associated with brain structural alterations were still unclear. Therefore, this article uses multivariate method and JuSpace toolbox to fill the gap. Significantly increased gray matter volume was found in drug-naïve children with BECTS compared with healthy controls. Abnormal gray matter volume was significantly correlated with clinical data and specific neurotransmitters.
Collapse
Affiliation(s)
- Heng Liu
- Department of Radiology, The Seventh People's Hospital of Chongqing, The Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China.
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Duoli Chen
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Chengxiang Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Peng Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Hua Yang
- Department of Medical Imaging, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| | - Hong Lu
- Department of Radiology, The Seventh People's Hospital of Chongqing, The Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China.
| |
Collapse
|
8
|
Ye X, Hu P, Yang B, Yang Y, Gao D, Zeng GQ, Wang K. Using scalp EEG to predict seizure recurrence and electrical status epilepticus in children with idiopathic focal epilepsy. Seizure 2024; 118:8-16. [PMID: 38613879 DOI: 10.1016/j.seizure.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024] Open
Abstract
PURPOSE Some individuals with idiopathic focal epilepsy (IFE) experience recurring seizures accompanied by the evolution of electrical status epilepticus during sleep (ESES). Here, we aimed to develop a predictor for the early detection of seizure recurrence with ESES in children with IFE using resting state electroencephalogram (EEG) data. METHODS The study group included 15 IFE patients who developed seizure recurrence with ESES. There were 17 children in the control group who did not experience seizure recurrence with ESES during at least 2-year follow-up. We used the degree value of the partial directed coherence (PDC) from the EEG data to predict seizure recurrence with ESES via 6 machine learning (ML) algorithms. RESULTS Among the models, the Xgboost Classifier (XGBC) model achieved the highest specificity of 0.90, and a remarkable sensitivity and accuracy of 0.80 and 0.85, respectively. The CATC showed balanced performance with a specificity of 0.85, sensitivity of 0.73, and an accuracy of 0.80, with an AUC equal to 0.78. For both of these models, F4, Fz and T4 were the overlaps of the top 4 features. CONCLUSIONS Considering its high classification accuracy, the XGBC model is an effective and quantitative tool for predicting seizure recurrence with ESES evolution in IFE patients. We developed an ML-based tool for predicting the development of IFE using resting state EEG data. This could facilitate the diagnosis and treatment of patients with IFE.
Collapse
Affiliation(s)
- Xiaofei Ye
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Neurology, Children's Hospital of Fudan University/Anhui Hospital, Hefei, China
| | - Panpan Hu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bin Yang
- Department of Neurology, Children's Hospital of Fudan University/Anhui Hospital, Hefei, China
| | - Yang Yang
- Department of Neurology, Children's Hospital of Fudan University/Anhui Hospital, Hefei, China
| | - Ding Gao
- Department of Neurology, Children's Hospital of Fudan University/Anhui Hospital, Hefei, China
| | - Ginger Qinghong Zeng
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, China.
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
9
|
Fu Y, Zhang J, Cao Y, Ye L, Zheng R, Li Q, Shen B, Shi Y, Cao J, Fang J. Recognition memory deficits detected through eye-tracking in well-controlled children with self-limited epilepsy with centrotemporal spikes. Epilepsia 2024; 65:1128-1140. [PMID: 38299621 DOI: 10.1111/epi.17902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
OBJECTIVE Children with self-limited epilepsy characterized by centrotemporal spikes (SeLECTS) exhibit cognitive deficits in memory during the active phase, but there is currently a lack of studies and techniques to assess their memory development after well-controlled seizures. In this study, we employed eye-tracking techniques to investigate visual memory and its association with clinical factors and global intellectual ability, aiming to identify potential risk factors by examining encoding and recognition processes. METHODS A total of 26 recruited patients diagnosed with SeLECTS who had been seizure-free for at least 2 years, along with 24 control subjects, underwent Wechsler cognitive assessment and an eye-movement-based memory task while video-electroencephalographic (EEG) data were recorded. Fixation and pupil data related to eye movements were utilized to detect distinct memory processes and subsequently to compare the cognitive performance of patients exhibiting different regression patterns on EEG. RESULTS The findings revealed persistent impairments in visual memory among children with SeLECTS after being well controlled, primarily observed in the recognition stage rather than the encoding phase. Furthermore, the age at onset, frequency of seizures, and interictal epileptiform discharges exhibited significant correlations with eye movement data. SIGNIFICANCE Children with SeLECTS exhibit persistent recognition memory impairment after being well controlled for the disease. Controlling the frequency of seizures and reducing prolonged epileptiform activity may improve memory cognitive development. The application of the eye-tracking technique may provide novel insights into exploring memory cognition as well as underlying mechanisms associated with pediatric epilepsy.
Collapse
Affiliation(s)
- Yanlu Fu
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jingxin Zhang
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yina Cao
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Linmei Ye
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Runze Zheng
- Artificial Intelligence Institute, Hangzhou Dianzi University School of Automation, Hangzhou, Zhejiang, China
| | - Qiwei Li
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Beibei Shen
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yi Shi
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jiuwen Cao
- Artificial Intelligence Institute, Hangzhou Dianzi University School of Automation, Hangzhou, Zhejiang, China
| | - Jiajia Fang
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
10
|
Neumann H, Daseking M, Thiels C, Köhler C, Lücke T. Cognitive development in children with new-onset Rolandic epilepsy and Rolandic discharges without seizures: Focusing on intelligence, visual perception, working memory and the role of parents' education. Epilepsy Behav 2024; 152:109596. [PMID: 38350362 DOI: 10.1016/j.yebeh.2023.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/15/2024]
Abstract
PURPOSE Our aim was to assess intelligence, visual perception and working memory in children with new-onset Rolandic epilepsy (RE) and children with Rolandic discharges without seizures (RD). METHODS The participants in the study were 12 children with RE and 26 children with RD aged 4 to 10 years (all without medication and shortly after diagnosis) and 31 healthy controls. Their cognitive performance was assessed using the German versions of the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III), the Wechsler Intelligence Scale for Children (WISC-IV), the Developmental Test of Visual Perception-2 (DTVP-2), the Developmental Test of Visual Perception-Adolescent and Adult (DTVP-A) (each according to age) and the Word Order, Hand Movements and Spatial Memory subtests of the German version of the Kaufman Assessment Battery for Children (K-ABC). RESULTS The comparison of the entire group of children with RE/RD and the control group conducted in the first step of our analysis revealed a weaker performance of the children with RE/RD in all cognitive domains. Significant deficits, however, were found exclusively in the RD group. Compared to the controls, they performed significantly weaker regarding IQ (full scale IQ: p < 0.001; verbal IQ: p < 0.001; performance IQ: p = 0.002; processing speed: p = 0.005), visual perception (general visual perception: p = 0.005; visual-motor integration: p = 0.002) and working memory (WISC working memory: p = 0.002 and K-ABC Word Order (p = 0.010) and Hand Movements (p = 0.001) subtests. Also, the children without seizures scored significantly lower than those with seizures on the WISC Working Memory Index (p = 0.010) and on the K-ABC Word Order (p = 0.021) and Hand Movements (p = 0.027) subtests. Further analysis of our data demonstrated the particular importance of the family context for child development. Significant cognitive deficits were found only in children with RD from parents with lower educational levels. This group consistently scored lower compared to the control group regarding IQ (full scale IQ: p < 0.001; verbal IQ: p < 0.001; performance IQ: p = 0.012; processing speed: p = 0.034), visual perception (general visual perception: p = 0.018; visual-motor integration: p = 0.010) and auditory working memory (WISC working memory: p = 0.014). Furthermore, compared to the children with RE, they performed significantly weaker on verbal IQ (p = 0.020), auditory working memory consistently (WISC working memory: p = 0.027; K-ABC: Word Order: p = 0.046) as well as in one of the K-ABC spatial working memory subtests (Hand Movements: p = 0.029). Although we did not find significant deficits in children with new-onset RE compared to healthy controls, the performance of this group tended to be weaker more often. No statistically significant associations were observed between selected clinical markers (focus types: centrotemporal/other foci/laterality of foci and spread of Rolandic discharges) and cognitive test results. Except for spatial working memory, we also found no evidence that the age of our patients at the time of study participation was of significant importance to their cognitive performance. CONCLUSIONS Our study provides some evidence that children with Rolandic discharges, with and without seizures, may be at higher risk of cognitive impairment. In addition to medical care, we emphasise early differentiated psychosocial diagnostics to provide these children and their families with targeted support if developmental problems are present.
Collapse
Affiliation(s)
- Helmut Neumann
- University Children's Hospital, Ruhr University Bochum, Department of Neuropediatrics Bochum, Germany.
| | - Monika Daseking
- Department of Educational Psychology, Helmut Schmidt University/University of the Armed Forces Hamburg, Hamburg, Germany
| | - Charlotte Thiels
- University Children's Hospital, Ruhr University Bochum, Department of Neuropediatrics Bochum, Germany
| | - Cornelia Köhler
- University Children's Hospital, Ruhr University Bochum, Department of Neuropediatrics Bochum, Germany
| | - Thomas Lücke
- University Children's Hospital, Ruhr University Bochum, Department of Neuropediatrics Bochum, Germany
| |
Collapse
|
11
|
Chiang CT, Yang RC, Kao YC, Wu RC, Ouyang CS, Lin LC. Connectivity Disturbances in Self-Limited Epilepsy with Centrotemporal Spikes: A Partial Directed Coherence Analysis of Electroencephalogram. Clin EEG Neurosci 2024; 55:257-264. [PMID: 37229662 DOI: 10.1177/15500594231177979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although the remission of self-limited epilepsy with centrotemporal spikes (SeLECTS) usually occurs by adolescence, deficits in cognition and behavior are not uncommon. Several functional magnetic resonance imaging (fMRI) studies have revealed connectivity disturbances in patients with SeLECTS associated with cognitive impairment. However, the disadvantages of fMRI are expensive, time-consuming, and motion sensitive. In the current study, we used a partial directed coherence (PDC) method to analyze electroencephalogram (EEG) for exploring brain connectivity in patients with SeLECTS. This study enrolled 38 participants (19 patients with SeLECTS and 19 healthy controls) for PDC analysis. Our results demonstrated that the controls had significantly higher PDC inflow connectivity in the F7, T3, FP1, and F8 channels than patients with SeLECTS. By contrast, the patients with SeLECTS demonstrated significantly higher PDC inflow connectivity than did the controls in the T5, Pz, and P4 channels. We also compared the PDC connectivity in different Brodmann areas between the patients with SeLECTS and the controls. The results revealed that the inflow connectivity in the BA9_46_L area was significantly higher in the controls than in the patients with SeLECTS, whereas the inflow connectivity in the MIF_L area 4 was significantly higher in the patients with SeLECTS than in the controls. Our proposed approach of combining EEG with PDC provides a convenient and useful tool for investigating functional connectivity in patients with SeLECTS. This approach is time-saving and inexpensive compared with fMRI, but it achieves similar results to fMRI.
Collapse
Affiliation(s)
- Ching-Tai Chiang
- Department of Computer and Communication, National Pingtung University, Pingtung, Taiwan (R.O.C.)
| | - Rei-Cheng Yang
- Departments of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (R.O.C.)
| | - Yu-Chia Kao
- Departments of Pediatrics, E-Da Hospital, Kaohsiung, Taiwan (R.O.C.), Taiwan (R.O.C.)
| | - Rong-Ching Wu
- Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan (R.O.C.)
| | - Chen-Sen Ouyang
- Department of Information Management, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan (R.O.C.)
| | - Lung-Chang Lin
- Departments of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (R.O.C.)
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (R.O.C)
| |
Collapse
|
12
|
Dilber B, Serdaroğlu E, Kanmaz S, Kılıç B, İpek R, Menderes DK, Yıldız N, Topçu Y, Arhan EP, Serdaroğlu A, Okuyaz Ç, Aydın K, Tekgül H, Cansu A. A Multicenter Study of Self-Limited Epilepsy With Centrotemporal Spikes: Effectiveness of Antiseizure Medication With Respect to Spike-Wave Index. Pediatr Neurol 2024; 152:79-86. [PMID: 38237317 DOI: 10.1016/j.pediatrneurol.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024]
Abstract
BACKGROUND There is no certain validated electroencephalographic (EEG) parameters for outcome prediction in children with self-limited epilepsy with centrotemporal spikes. To assess the effectiveness of antiseizure medication (ASM) for seizure outcome with respect to the spike-wave index (SWI) on serial EEG recordings. METHODS In this multicenter study, the study cohort consisted of 604 children with self-limited epilepsy with centrotemporal spikes. A data set of epilepsy centers follow-up between 2010 and 2022. The cohort was divided into 4 groups as those receiving 3 different monotherapy (carbamazepine [CBZ]/valproic acid [VPA]/levetiracetam [LEV]) and dual therapy. SWI analysis was performed with the percent of spikes in the 2-minute epoch in the 5th 6th minutes of the nonrapid eye movement sleep EEG record. The study group were also categorized according to seizure burden with seizure frequency (I) >2 seizures and (II) >5 seizures. Seizure outcome was evaluated based on the reduction in seizure frequency over 6-month periods: (1) 50% reduction and (2) seizure-free (complete response). RESULTS ASM monotherapy was achieved in 74.5% children with VPA, CBZ, and LEV with similar rates of 85.8%, 85.7%, and 77.9%. Dual therapy was need in the 25.5% of children with SeLECT. More dual therapy was administered in children aged below 5 years with a rate of 46.2%. Earlier seizure-free achievement time was seen in children with LEV monotherapy with more complete-response rate (86.7%) compared the VPA and CBZ. CONCLUSIONS We also determined that the children on dual therapy had more SWI clearance in the subsequent EEG recordings. The ROC curve analyses were performed to predict initial drug selection with using the SWI% might be used for the prediction of ASM type and drug selection in children.
Collapse
Affiliation(s)
- Beril Dilber
- Department of Pediatric Neurology, Karadeniz Technical University, Trabzon, Turkey
| | - Esra Serdaroğlu
- Department of Pediatric Neurology, Gazi University, Ankara, Turkey
| | - Seda Kanmaz
- Department of Pediatric Neurology, Ege University, İzmir, Turkey
| | - Betül Kılıç
- Department of Pediatric Neurology, Medipol University, İstanbul Turkey
| | - Rojan İpek
- Department of Pediatric Neurology, Mersin University, Mersin, Turkey
| | | | - Nihal Yıldız
- Department of Pediatric Neurology, Karadeniz Technical University, Trabzon, Turkey
| | - Yasemin Topçu
- Department of Pediatric Neurology, Medipol University, İstanbul Turkey
| | - Ebru Petek Arhan
- Department of Pediatric Neurology, Gazi University, Ankara, Turkey
| | - Ayşe Serdaroğlu
- Department of Pediatric Neurology, Gazi University, Ankara, Turkey
| | - Çetin Okuyaz
- Department of Pediatric Neurology, Mersin University, Mersin, Turkey
| | - Kürşad Aydın
- Department of Pediatric Neurology, Medipol University, İstanbul Turkey
| | - Hasan Tekgül
- Department of Pediatric Neurology, Ege University, İzmir, Turkey
| | - Ali Cansu
- Department of Pediatric Neurology, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
13
|
Liu WK, Kothare S, Jain S. Sleep and Epilepsy. Semin Pediatr Neurol 2023; 48:101087. [PMID: 38065633 DOI: 10.1016/j.spen.2023.101087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 12/18/2023]
Abstract
The relationship between sleep and epilepsy is both intimate and bidirectional. The molecular mechanisms which control circadian rhythm and the sleep/wake cycle are dysregulated in epileptogenic tissue and are themselves effected by molecular pathways for epilepsy. Sleep affects the frequency of interictal epileptiform discharges and recent research has raised new questions regarding the impact of discharges on sleep function and cognition. Epileptiform discharges themselves affect sleep architecture and increase the risk of sleep disorders. Several sleep-related epilepsy syndromes have undergone changes in their classification which highlights their intimate relationship to sleep and novel screening tools have been developed to help clinicians better differentiate epileptic seizures from sleep-related paroxysmal events. Improving sleep and addressing sleep disorders has been associated with improved seizure control and increased well-being in people with epilepsy. These interactions are discussed in detail in this review.
Collapse
Affiliation(s)
- Wei K Liu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital, Cincinnati, OH.
| | - Sanjeev Kothare
- Division of Pediatric Neurology, Department of Pediatrics, Cohen Children's Medical Center, New York, NY
| | - Sejal Jain
- Department of Anesthesiology and Pain Medicine, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
14
|
Smith SDW, McGinnity CJ, Smith AB, Barker GJ, Richardson MP, Pal DK. A prospective 5-year longitudinal study detects neurocognitive and imaging correlates of seizure remission in self-limiting Rolandic epilepsy. Epilepsy Behav 2023; 147:109397. [PMID: 37619460 DOI: 10.1016/j.yebeh.2023.109397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE Self-limiting Rolandic epilepsy (RE) is the most common epilepsy in school-age children. Seizures are generally infrequent, but cognitive, language, and motor coordination problems can significantly impact the child's life. To better understand brain structure and function changes in RE, we longitudinally assessed neurocognition, cortical thickness, and subcortical volumes. METHODS At baseline, we recruited 30 participants diagnosed with RE and 24-healthy controls and followed up for 4.94 ± 0.8 years when the participants with RE were in seizure remission. Measures included were as follows: T1-weighted magnetic resonance brain imaging (MRI) with FreeSurfer analysis and detailed neuropsychological assessments. MRI and neuropsychological data were compared between baseline and follow-up in seizure remission. RESULTS Longitudinal MRI revealed excess cortical thinning in the left-orbitofrontal (p = 0.0001) and pre-central gyrus (p = 0.044). There is a significant association (p = 0.003) between a reduction in cortical thickness in the left-orbitofrontal cluster and improved processing of filtered words. Longitudinal neuropsychology revealed significant improvements in the symptoms of developmental coordination disorder (DCD, p = 0.005) in seizure remission. CONCLUSIONS There is evidence for altered development of neocortical regions between active seizure state and seizure remission in RE within two clusters maximal in the left-orbitofrontal and pre-central gyrus. There is significant evidence for improvement in motor coordination between active seizures and seizure remission and suggestive evidence for a decline in fluid intelligence and gains in auditory processing.
Collapse
Affiliation(s)
- Stuart D W Smith
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; Evelina London Children's Hospital, London, UK; Great Ormond Street Hospital, London, UK
| | - Colm J McGinnity
- Department of PET Neuroimaging, St-Thomas Hospital, Kings College London, UK
| | - Anna B Smith
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Mark P Richardson
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK; King's College Hospital, UK
| | - Deb K Pal
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK; King's College Hospital, UK.
| |
Collapse
|
15
|
Katsaras G, Samartzi P, Tsitsani P. A Case Report of a 5-Year-Old Girl with Self-Limited Epilepsy with Autonomic Seizures. Pediatr Rep 2023; 15:494-501. [PMID: 37606449 PMCID: PMC10443352 DOI: 10.3390/pediatric15030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Self-limited epilepsy with autonomic seizures (SeLEAS), formerly known as Panayiotopoulos syndrome (PS), is a common multifocal autonomic childhood epileptic syndrome. SeLEAS affects 6% of children in between the ages of 1 and 15 years who have had one or more afebrile seizures in their lifetime. CASE A 5-year-old girl was admitted to the paediatric emergency room (ER) of our hospital due to a reported episode of vomiting during her sleep, followed by central cyanosis perorally of sort duration (<5'), a right turn of her head, and gaze fixation with right eye deviation. She was dismissed after a one-day hospitalization free of symptoms. A month later, the patient was admitted to the paediatric ER of a tertiary health unit due to a similar episode. The patient underwent EEG, which revealed pathologic paroxysmal abnormalities of high-amplitude sharp waves and spike-wave complexes in temporal-occipital areas of the left hemisphere, followed by enhancement of focal abnormalities in temporal-occipital areas of the left hemisphere during sleep. The patient was diagnosed with SeLEAS and started levetiracetam. CONCLUSIONS SeLEAS can be easily misdiagnosed as many physicians may not be very familiar with this disease, and, on the other hand, the autonomic manifestations can be easily disregarded as seizures. The physician must always be alert and search beneath the symptoms to find the cause rather than only treat them.
Collapse
Affiliation(s)
- Georgios Katsaras
- Paediatric Department, General Hospital of Pella—Hospital Unit of Edessa, 58200 Edessa, Greece; (P.S.); (P.T.)
| | | | | |
Collapse
|
16
|
Zhang Q, Li J, He Y, Yang F, Xu Q, Larivière S, Bernhardt BC, Liao W, Lu G, Zhang Z. Atypical functional connectivity hierarchy in Rolandic epilepsy. Commun Biol 2023; 6:704. [PMID: 37429897 DOI: 10.1038/s42003-023-05075-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Functional connectivity hierarchy is an important principle in the process of brain functional organization and an important feature reflecting brain development. However, atypical brain network hierarchy organization in Rolandic epilepsy have not been systematically investigated. We examined connectivity alteration with age and its relation to epileptic incidence, cognition, or underlying genetic factors in 162 cases of Rolandic epilepsy and 117 typically developing children, by measuring fMRI multi-axis functional connectivity gradients. Rolandic epilepsy is characterized by contracting and slowing expansion of the functional connectivity gradients, highlighting the atypical age-related change of the connectivity hierarchy in segregation properties. The gradient alterations are relevant to seizure incidence, cognition, and connectivity deficit, and development-associated genetic basis. Collectively, our approach provides converging evidence for atypical connectivity hierarchy as a system-level substrate of Rolandic epilepsy, suggesting this is a disorder of information processing across multiple functional domains, and established a framework for large-scale brain hierarchical research.
Collapse
Affiliation(s)
- Qirui Zhang
- Department of Diagnostic Radiology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yan He
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Qiang Xu
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210002, China
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Guangming Lu
- Department of Diagnostic Radiology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.
| | - Zhiqiang Zhang
- Department of Diagnostic Radiology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.
| |
Collapse
|
17
|
Halász P, Szũcs A. Self-limited childhood epilepsies are disorders of the perisylvian communication system, carrying the risk of progress to epileptic encephalopathies-Critical review. Front Neurol 2023; 14:1092244. [PMID: 37388546 PMCID: PMC10301767 DOI: 10.3389/fneur.2023.1092244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/04/2023] [Indexed: 07/01/2023] Open
Abstract
"Sleep plasticity is a double-edged sword: a powerful machinery of neural build-up, with a risk to epileptic derailment." We aimed to review the types of self-limited focal epilepsies..."i.e. keep as two separate paragraphs" We aimed to review the types of self-limited focal epilepsies: (1) self-limited focal childhood epilepsy with centrotemporal spikes, (2) atypical Rolandic epilepsy, and (3) electrical status epilepticus in sleep with mental consequences, including Landau-Kleffner-type acquired aphasia, showing their spectral relationship and discussing the debated topics. Our endeavor is to support the system epilepsy concept in this group of epilepsies, using them as models for epileptogenesis in general. The spectral continuity of the involved conditions is evidenced by several features: language impairment, the overarching presence of centrotemporal spikes and ripples (with changing electromorphology across the spectrum), the essential timely and spatial independence of interictal epileptic discharges from seizures, NREM sleep relatedness, and the existence of the intermediate-severity "atypical" forms. These epilepsies might be the consequences of a genetically determined transitory developmental failure, reflected by widespread neuropsychological symptoms originating from the perisylvian network that have distinct time and space relations from secondary epilepsy itself. The involved epilepsies carry the risk of progression to severe, potentially irreversible encephalopathic forms.
Collapse
Affiliation(s)
- Péter Halász
- Department of Neurology, University Medical School, Pécs, Hungary
| | - Anna Szũcs
- Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Xu Y, Wang Y, Xu F, Li Y, Sun J, Niu K, Wang P, Li Y, Zhang K, Wu D, Chen Q, Wang X. Impact of interictal epileptiform discharges on brain network in self-limited epilepsy with centrotemporal spikes: A magnetoencephalography study. Brain Behav 2023; 13:e3038. [PMID: 37137814 PMCID: PMC10275544 DOI: 10.1002/brb3.3038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the differences on resting-state brain networks between the interictal epileptiform discharge (IED) group with self-limited epilepsy with centrotemporal spikes (SeLECTS), the non-IED group with SeLECTS, and the healthy control (HC) group. METHODS Patients were divided into the IED and non-IED group according to the presence or absence of IED during magnetoencephalography (MEG). We used Wechsler Intelligence Scale for Children, fourth edition (WISC-IV) to assess cognition in 30 children with SeLECTS and 15 HCs. Functional networks were constructed at the whole-brain level and graph theory (GT) analysis was used to quantify the topology of the brain network. RESULTS The IED group had the lowest cognitive function scores, followed by the non-IED group and then HCs. Our MEG results showed that the IED group had more dispersed functional connectivity (FC) in the 4-8 Hz frequency band, and more brain regions were involved compared to the other two groups. Furthermore, the IED group had fewer FC between the anterior and posterior brain regions in the 12-30 Hz frequency band. Both the IED group and the non-IED group had fewer FC between the anterior and posterior brain regions in the 80-250 Hz frequency band compared to the HC group. GT analysis showed that the IED group had a higher clustering coefficient compared to the HC group and a higher degree compared to the non-IED group in the 80-250 Hz frequency band. The non-IED group had a lower path length in the 30-80 Hz frequency band compared to the HC group. CONCLUSIONS The study data obtained in this study suggested that intrinsic neural activity was frequency-dependent and that FC networks of the IED group and the non-IED group underwent changes in different frequency bands. These network-related changes may contribute to cognitive dysfunction in children with SeLECTS.
Collapse
Affiliation(s)
- Yue Xu
- Department of NeurologyThe Affiliated Brain HospitalNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Yingfan Wang
- Department of NeurologyThe Affiliated Brain HospitalNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Fengyuan Xu
- Department of NeurologyThe Affiliated Brain HospitalNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Yihan Li
- Department of NeurologyThe Affiliated Brain HospitalNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Jintao Sun
- Department of NeurologyThe Affiliated Brain HospitalNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Kai Niu
- Department of NeurologyThe Affiliated Brain HospitalNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Pengfei Wang
- Department of NeurologyThe Affiliated Brain HospitalNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Yanzhang Li
- Department of NeurologyThe Affiliated Brain HospitalNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Ke Zhang
- Department of NeurologyThe Affiliated Brain HospitalNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Di Wu
- Department of NeurologyThe Affiliated Brain HospitalNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Qiqi Chen
- MEG CenterNanjing Brain HospitalNanjingJiangsuP. R. China
| | - Xiaoshan Wang
- Department of NeurologyThe Affiliated Brain HospitalNanjing Medical UniversityNanjingJiangsuP. R. China
| |
Collapse
|
19
|
Yang Y, Han Y, Wang J, Zhou Y, Chen D, Wang M, Li T. Effects of altered excitation-inhibition imbalance by repetitive transcranial magnetic stimulation for self-limited epilepsy with centrotemporal spikes. Front Neurol 2023; 14:1164082. [PMID: 37305755 PMCID: PMC10250617 DOI: 10.3389/fneur.2023.1164082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Objectives Patients with self-limited epilepsy with centrotemporal spikes (SeLECTS) with electrical status epilepticus in sleep (ESES) have generalized cognitive impairment, yet treatment options are limited. Our study aimed to examine the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on SeLECTS with ESES. In addition, we applied electroencephalography (EEG) aperiodic components (offset and slope) to investigate the improvement of rTMS on the excitation-inhibition imbalance (E-I imbalance) in the brain of this group of children. Methods Eight SeLECTS patients with ESES were included in this study. Low-frequency rTMS (≤1 Hz) was applied for 10 weekdays in each patient. To assess the clinical efficacy and changes in E-I imbalance, EEG recordings were performed both before and after rTMS. Seizure-reduction rate and spike-wave index (SWI) were measured to investigate the clinical effects of rTMS. The aperiodic offset and slope were calculated to explore the effect of rTMS on E-I imbalance. Results Five of the eight patients (62.5%) were seizure-free within 3 months after stimulation, with treatment effects decreasing with longer follow-ups. The SWI decreased significantly at 3 and 6 months after rTMS compared with the baseline (P = 0.0157 and P = 0.0060, respectively). The offset and slope were compared before rTMS and within 3 months after stimulation. The results showed a significant reduction in the offset after stimulation (P < 0.0001). There was a remarkable increase in slope after the stimulation (P < 0.0001). Conclusion Patients achieved favorable outcomes in the first 3 months after rTMS. The ameliorative effect of rTMS on SWI may last up to 6 months. Low-frequency rTMS could reduce firing rates in neuronal populations throughout the brain, which was most pronounced at the site of stimulation. A significant reduction in the slope after rTMS treatment suggested an improvement in the E-I imbalance in the SeLECTS.
Collapse
Affiliation(s)
- Yujiao Yang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yixian Han
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yongkang Zhou
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Mengyang Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Akyuz E, Arulsamy A, Hasanli S, Yilmaz EB, Shaikh MF. Elucidating the visual phenomena in epilepsy: A mini review. Epilepsy Res 2023; 190:107093. [PMID: 36652852 DOI: 10.1016/j.eplepsyres.2023.107093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/26/2022] [Accepted: 01/13/2023] [Indexed: 01/16/2023]
Abstract
Epilepsy is one of the most recognizable neurological diseases, globally. Epilepsy may be accompanied by various complications, including vision impairments, which may severely impact one's quality of life. These visual phenomena may occur in the preictal, ictal and/or postictal periods of seizures. Examples of epilepsy associated visual phenomena include visual aura, visual hallucinations, transient visual loss and amaurosis (blindness). These ophthalmologic signs/symptoms of epilepsy may be temporary or permanent and may vary depending of the type of epilepsy and location of the seizure foci (occipital or temporal lobe). Some visual phenomena may even be utilized to diagnose the epilepsy type, although solely depending on visual symptoms for diagnosis may lead to mistreatment. Some antiseizure medications (ASMs) may also contribute to certain visual disturbances, thereby impacting its therapeutic efficiency for patients with epilepsy (PWE). Although the development of visual comorbidities has been observed diversely among PWE, there may still be a lack of understanding on their relevance and manifestation in epilepsy, which may contribute to the rate of misdiagnosis and the current scarcity in therapeutic relieve. Therefore, this mini narrative review aimed to discuss the common epilepsy associated visual phenomena, based on the available literature. This review also showcased the relationship between the type of visual complications and the site of seizure onset, as well as compared the visual phenomena between occipital lobe epilepsy and temporal lobe epilepsy. Evaluation of these findings may be crucial in reducing the risk of permanent seizure/epilepsy related vision deficits among PWE.
Collapse
Affiliation(s)
- Enes Akyuz
- University of Health Sciences, Hamidiye International Faculty of Medicine, Department of Biophysics, Istanbul, Turkey
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Shams Hasanli
- University of Health Sciences, Hamidiye International School of Medicine, Istanbul, Turkey
| | - Elif Bilge Yilmaz
- University of Health Sciences, Hamidiye International School of Medicine, Istanbul, Turkey
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia; School of Dentistry and Medical Sciences, Charles Sturt University, Orange 2800, New South Wales, Australia.
| |
Collapse
|
21
|
Goad BS, Lee-Messer C, He Z, Porter BE, Baumer FM. Connectivity increases during spikes and spike-free periods in self-limited epilepsy with centrotemporal spikes. Clin Neurophysiol 2022; 144:123-134. [PMID: 36307364 PMCID: PMC10883644 DOI: 10.1016/j.clinph.2022.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To understand the impact of interictal spikes on brain connectivity in patients with Self-Limited Epilepsy with Centrotemporal Spikes (SeLECTS). METHODS Electroencephalograms from 56 consecutive SeLECTS patients were segmented into periods with and without spikes. Connectivity between electrodes was calculated using the weighted phase lag index. To determine if there are chronic alterations in connectivity in SeLECTS, we compared spike-free connectivity to connectivity in 65 matched controls. To understand the acute impact of spikes, we compared connectivity immediately before, during, and after spikes versus baseline, spike-free connectivity. We explored whether behavioral state, spike laterality, or antiseizure medications affected connectivity. RESULTS Children with SeLECTS had markedly higher connectivity than controls during sleep but not wakefulness, with greatest difference in the right hemisphere. During spikes, connectivity increased globally; before and after spikes, left frontal and bicentral connectivity increased. Right hemisphere connectivity increased more during right-sided than left-sided spikes; left hemisphere connectivity was equally affected by right and left spikes. CONCLUSIONS SeLECTS patient have persistent increased connectivity during sleep; connectivity is further elevated during the spike and perispike periods. SIGNIFICANCE Testing whether increased connectivity impacts cognition or seizure susceptibility in SeLECTS and more severe epilepsies could help determine if spikes should be treated.
Collapse
Affiliation(s)
- Beatrice S Goad
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA.
| | | | - Zihuai He
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Brenda E Porter
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Fiona M Baumer
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
22
|
Abnormalities of hemispheric specialization in drug-naïve and drug-receiving self-limited epilepsy with centrotemporal spikes. Epilepsy Behav 2022; 136:108940. [PMID: 36228484 DOI: 10.1016/j.yebeh.2022.108940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Self-limited epilepsy with centrotemporal spikes (SLECTS) is a pediatric benign epilepsy but often accompanied by subsequent (in adulthood) functional changes such as language, which are thought to have distinct areas of hemispheric lateralization and functional differentiation. This study aimed to explore hemispheric specialization measured by resting-state functional magnetic resonance imaging (rs-fMRI) functional connectivity in drug-naïve and drug-receiving SLECTS. METHODS Hemispheric specialization was quantified in three groups of children, including 21 drug-naïve patients (DNP) with SLECTS, 34 drug-receiving patients (DRP) with SLECTS and 36 demographically matched typical development (TD). RESULTS Compared with the TD group, both the DNP and DRP groups exhibited significantly higher specialization in the left superior temporal gyrus, right parahippocampus, left putamen, and right caudate. The DNP group exhibited significantly higher hemispheric specialization in the right precentral gyrus and right inferior temporal gyrus, while the DRP group demonstrated significantly higher hemispheric specialization in the left postcentral gyrus and right hippocampus than the TD group. Furthermore, bilateral cerebellum_6 showed opposing hemispheric specialization trends in the two patient groups. Further meta-analytical mapping demonstrated that hemispheric specialization-related differential brain regions are primarily involved in language processing. CONCLUSION Our findings showed that children with SLECTS had altered hemispheric specialization, mainly in language processing regions, suggesting both abnormal intrahemispheric segregation and interhemispheric integration in these children.
Collapse
|
23
|
Wu Y, Fang F, Li K, Jin Z, Ren X, Lv J, Ding C, Chen C, Han T, Zhang W, Wang N, Lin Z. Functional connectivity differences in speech production networks in Chinese children with Rolandic epilepsy. Epilepsy Behav 2022; 135:108819. [PMID: 35835716 DOI: 10.1016/j.yebeh.2022.108819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/01/2023]
Abstract
Previous studies have demonstrated that language impairments are frequently observed in patients with benign epilepsy with centrotemporal spikes (BECTS). However, how BECTS affects language processing in the Chinese population remains unclear. With the use of functional magnetic resonance imaging (fMRI) in an overt picture-naming task, the present study examined functional connectivity in 27 children with BECTS and 26 healthy controls. The results indicated that children with BECTS showed altered functional connectivity associated with speech production between the left precuneus and the right cerebellum, between the right precuneus and the bilateral thalamus and the left superior temporal gyrus, between the right cuneus and the right postcentral gyrus and the right inferior parietal lobule, and between the right cerebellum and right middle frontal gyrus. Collectively, the findings in this study demonstrate the abnormal functional connectivity basis of speech production in Chinese children with BECTS, providing clues to understanding the brain mechanisms of language-related network in patients with BECTS.
Collapse
Affiliation(s)
- Yun Wu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ke Li
- fMRI Center, The 306 Hospital of People's Liberation Army, Beijing, China
| | - Zhen Jin
- fMRI Center, The 306 Hospital of People's Liberation Army, Beijing, China
| | - Xiaotun Ren
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Junlan Lv
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Changhong Ding
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chunhong Chen
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tongli Han
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Weihua Zhang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Nizhuan Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Artificial Intelligence & Neuro-Informatics Engineering (ARINE) Laboratory, School of Computer Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Zhenglong Lin
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China; Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen, China.
| |
Collapse
|
24
|
Kim HJ, Ko YJ, Kim SY, Cho A, Kim H, Lim BC, Hwang H, Chae JH, Choi J, Kim KJ. Generalized Tonic-Clonic Seizures after Self-Limited Epilepsy with Centrotemporal Spikes: A Case Series. ANNALS OF CHILD NEUROLOGY 2022. [DOI: 10.26815/acn.2022.00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose: Patients with self-limited epilepsy with centrotemporal spikes (SLECTS) rarely experience generalized tonic-clonic seizures (GTCS) after remission, and post-remission GTCS has not been thoroughly described in earlier studies. Herein, we describe the clinical and electrographic features of GTCS after a substantial period of seizure freedom in patients with SLECTS.Methods: This study included six patients (three boys and three girls) diagnosed with SLECTS who later developed GTCS after or near remission. Medical records, including clinical data and serial electroencephalography (EEG) recordings, were retrospectively reviewed for all patients.Results: Patients’ age at SLECTS onset ranged from 5.2 to 10.2 years (mean, 8.4 years), while seizure cessation was achieved between 8 and 12.2 years. During SLECTS, typical centrotemporal spikes were observed in all patients, and generalized spike-and-wave discharges were observed in three patients. The age at the first episode of subsequent GTCS ranged from 14.4 to 17.3 years (mean, 15.8 years), constituting an average interval of 5.6 years after the last episode of seizures (range, 4.1 to 8.1 years). EEG at subsequent episodes of GTCS revealed generalized discharges in two patients, focal discharges in two other patients, and normal discharges in the remaining two patients. Two patients had multiple episodes of GTCS.Conclusion: Although rare, GTCS may occur near or after remission in patients with SLECTS, and clinicians should be aware of this. Subsequent GTCS may be a manifestation of idiopathic generalized epilepsy. However, large-scale studies are needed to determine the nature of such episodes of GTCS and their associated risk factors.
Collapse
|
25
|
Teixeira J, Santos ME, Oom P. Writing and Reading Skills in Children with Benign Childhood Epilepsy with Centrotemporal Spikes: Systematic Review. JOURNAL OF PEDIATRIC EPILEPSY 2022. [DOI: 10.1055/s-0042-1749190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractIn this study, we present the results from a systematic literature review that aimed to gather information about the writing and reading capacities of children with benign childhood epilepsy with centrotemporal spikes. This research comprises studies published between 2005 and 2016 in PubMed, Science Direct, and PsycInfo that included the keywords “benign childhood epilepsy with centrotemporal spikes”/ “rolandic epilepsy” with “written language”/ “reading” / “writing” / “literacy”/ “learning disabilities.” The study selection criteria were: (i) conducted with children with this epileptic syndrome aged between 5:11 and 16; (ii) involving children with active epilepsy or in remission; (iii) assessing written language or learning skills involving reading and writing; and (iv) published in journals with scientific refereeing. From the articles that met all the criteria defined, we compiled and synthesized the information about written language abilities. Reading problems appear to have higher incidence in this population, mostly with regard to the speed and reading accuracy and the ability to comprehend a written text. Fewer limitations were found in writing skills, but some studies showed difficulties in words writing, punctuation/ accentuation, and spontaneous writing coherence and cohesion. We also found disparities in the results regarding the relationship between writing skills and the clinical variables associated with epilepsy. Despite the heterogeneity of this population, it was possible to synthesize and define more precisely the written language variations presented. However, more concrete information is needed about written language disorders in this population, to present valid data to support clinical and pedagogical practices.
Collapse
Affiliation(s)
- Joana Teixeira
- Institute of Health Sciences, Portuguese Catholic University, Lisbon, Portugal
| | | | - Paulo Oom
- Department of Pediatrics, Hospital Beatriz Ângelo, Loures, Portugal
| |
Collapse
|
26
|
Retrospective Study of the Relationship between Variable Benign Epilepsy of Childhood with Centrotemporal Spikes and the Changes of Zinc, MRS, VEEG, and IQ Test. DISEASE MARKERS 2022; 2022:3132824. [PMID: 35855849 PMCID: PMC9288304 DOI: 10.1155/2022/3132824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
Benign epilepsy in childhood with centrotemporal spikes (VBECT) has been associated with electroencephalography (EEG), but the relationship of VBECT with zinc, magnetic resonance spectroscopy (MRS), and intelligence quotient (IQ) tests is unclear. The aim of this study was to investigate the association of VBECT with zinc, MRS, EEG, and IQ tests. In this retrospective study, we selected 58 children with variable benign epilepsy with centrotemporal spikes as the experimental group. A total of 120 children with typical benign childhood epilepsy with centrotemporal spikes were selected as the control group. The zinc, MRS, EEG, and IQ test results of 178 children were measured and analyzed. The results showed that the zinc, MRS, and IQ test results of the patients in the experimental group decreased significantly. The spinal slow wave results in the experimental group showed a significant upward trend. Linear correlation analysis of zinc with MRS, EEG, and IQ tests showed that 13 pairs of indicators were significantly negatively correlated. Our results suggest the importance of zinc, MRS, EEG, and IQ during VBECT.
Collapse
|
27
|
Kokkinos V, Koupparis AM, Koutroumanidis M, Kostopoulos GK. Editorial: Brain Mechanisms Linking Sleep and Epilepsy. Front Hum Neurosci 2022; 16:922372. [PMID: 35620153 PMCID: PMC9128402 DOI: 10.3389/fnhum.2022.922372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | | | - Michalis Koutroumanidis
- Department of Clinical Neurophysiology and Epilepsies, Guy's and St. Thomas' NHS Foundation Trust, St. Thomas' Hospital, London, United Kingdom
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - George K. Kostopoulos
- Neurophysiology Unit, Department of Physiology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
28
|
Specchio N, Wirrell EC, Scheffer IE, Nabbout R, Riney K, Samia P, Guerreiro M, Gwer S, Zuberi SM, Wilmshurst JM, Yozawitz E, Pressler R, Hirsch E, Wiebe S, Cross HJ, Perucca E, Moshé SL, Tinuper P, Auvin S. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022; 63:1398-1442. [PMID: 35503717 DOI: 10.1111/epi.17241] [Citation(s) in RCA: 304] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
Abstract
The 2017 International League Against Epilepsy classification has defined a three-tier system with epilepsy syndrome identification at the third level. Although a syndrome cannot be determined in all children with epilepsy, identification of a specific syndrome provides guidance on management and prognosis. In this paper, we describe the childhood onset epilepsy syndromes, most of which have both mandatory seizure type(s) and interictal electroencephalographic (EEG) features. Based on the 2017 Classification of Seizures and Epilepsies, some syndrome names have been updated using terms directly describing the seizure semiology. Epilepsy syndromes beginning in childhood have been divided into three categories: (1) self-limited focal epilepsies, comprising four syndromes: self-limited epilepsy with centrotemporal spikes, self-limited epilepsy with autonomic seizures, childhood occipital visual epilepsy, and photosensitive occipital lobe epilepsy; (2) generalized epilepsies, comprising three syndromes: childhood absence epilepsy, epilepsy with myoclonic absence, and epilepsy with eyelid myoclonia; and (3) developmental and/or epileptic encephalopathies, comprising five syndromes: epilepsy with myoclonic-atonic seizures, Lennox-Gastaut syndrome, developmental and/or epileptic encephalopathy with spike-and-wave activation in sleep, hemiconvulsion-hemiplegia-epilepsy syndrome, and febrile infection-related epilepsy syndrome. We define each, highlighting the mandatory seizure(s), EEG features, phenotypic variations, and findings from key investigations.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Scientific Institute for Research and Health Care, Full Member of EpiCARE, Rome, Italy
| | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey Institute, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Sick Children Hospital, Public Hospital Network of Paris, member of EpiCARE, Imagine Institute, National Institute of Health and Medical Research, Mixed Unit of Research 1163, University of Paris, Paris, France
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, South Brisbane, Queensland, Australia
| | - Pauline Samia
- Department of Pediatrics and Child Health, Aga Khan University, Nairobi, Kenya
| | | | - Sam Gwer
- School of Medicine, Kenyatta University, and Afya Research Africa, Nairobi, Kenya
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children and Institute of Health & Wellbeing, member of EpiCARE, University of Glasgow, Glasgow, UK
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elissa Yozawitz
- Isabelle Rapin Division of Child Neurology of the Saul R. Korey Department of Neurology, Montefiore Medical Center, Bronx, New York, USA
| | - Ronit Pressler
- Programme of Developmental Neurosciences, University College London National Institute for Health Research Biomedical Research Centre Great Ormond Street Institute of Child Health, Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children, London, UK
| | - Edouard Hirsch
- Neurology Epilepsy Units "Francis Rohmer", INSERM 1258, FMTS, Strasbourg University, Strasbourg, France
| | - Sam Wiebe
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Helen J Cross
- Programme of Developmental Neurosciences, University College London National Institute for Health Research Biomedical Research Centre Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, and Young Epilepsy Lingfield, London, UK
| | - Emilio Perucca
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, and Departments of Neuroscience and Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Institute of Neurological Sciences, Scientific Institute for Research and Health Care, Bologna, Italy
| | - Stéphane Auvin
- Robert Debré Hospital, Public Hospital Network of Paris, NeuroDiderot, National Institute of Health and Medical Research, Department Medico-Universitaire Innovation Robert-Debré, Pediatric Neurology, University of Paris, Paris, France
| |
Collapse
|
29
|
Irelli EC, Cocchi E, Ramantani G, Caraballo RH, Giuliano L, Yilmaz T, Morano A, Panagiotakaki E, Operto FF, Giraldez BG, Silvennoinen K, Casciato S, Comajuan M, Balestrini S, Fortunato F, Coppola A, Di Gennaro G, Labate A, Sofia V, Kluger GJ, Kasteleijn-Nolst Trenité DGA, Gambardella A, Baykan B, Sisodiya SM, Arzimanoglou A, Striano P, Di Bonaventura C. Electroclinical Features and Long-term Seizure Outcome in Patients With Eyelid Myoclonia With Absences. Neurology 2022; 98:e1865-e1876. [PMID: 35292555 DOI: 10.1212/wnl.0000000000200165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/21/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Eyelid myoclonia with absences (EMA) is a generalized epilepsy syndrome whose prognosis and clinical characteristics are still partially undefined. We investigated electroclinical endophenotypes and long-term seizure outcome in a large cohort of EMA patients. METHODS In this multicenter retrospective study, EMA patients with ≥5 years of follow-up were included. We investigated prognostic patterns and sustained terminal remission (STR), along with their prognostic factors. Moreover, a two-step cluster analysis was used to investigate the presence of distinct EMA endophenotypes. RESULTS We included 172 patients, with a median age at onset of 7 years (interquartile range (IQR) 5-10) and a median follow-up duration of 14 years (IQR 8.25-23.75). Sixty-six patients (38.4%) displayed a non-remission pattern, whereas remission and relapse patterns were encountered in 56 (32.6%) and 50 (29.1%) subjects. Early epilepsy onset, history of febrile seizures (FS) and eyelid myoclonia (EM) status epilepticus significantly predicted a non-remission pattern according to multinomial logistic regression analysis. STR was achieved by 68 (39.5%) patients with a mean latency of 14.05 years (SD ± 12.47). Early epilepsy onset, psychiatric comorbidities, and a history of FS and generalized tonic-clonic seizures (GTCS) were associated with a lower probability of achieving STR according to a Cox regression proportional hazards model. Antiseizure medication (ASM) withdrawal was attempted in 62/172 patients, and seizures relapsed in 74.2%. Cluster analysis revealed two distinct clusters with 86 patients each. Cluster 2, which we defined as "EMA-plus", was characterized by an earlier age at epilepsy onset, higher rate of intellectual disability, EM status epilepticus, generalized paroxysmal fast activity, self-induced seizures, FS, and poor ASM response, whereas Cluster 1, the "EMA-only" cluster, was characterized by a higher rate of seizure remission and more favorable neuropsychiatric outcome. DISCUSSION Early epilepsy onset was the most relevant prognostic factor for poor treatment response. A long latency between epilepsy onset and ASM response was observed, suggesting the impact of age-related brain changes in EMA remission. Finally, our cluster analysis showed a clear-cut distinction of EMA patients into an EMA-plus insidious subphenotype and an EMA-only benign cluster that strongly differed in terms of remission rates and cognitive outcomes.
Collapse
Affiliation(s)
| | - Enrico Cocchi
- Department of Precision Medicine and Genomics, Department of Medicine, Columbia University, New York
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital Zurich, Zurich, Switzerland
| | - Roberto H Caraballo
- Department of Neurology, Hospital de Pediatría "Prof. Dr. Juan P Garrahan", Buenos Aires, Argentina
| | - Loretta Giuliano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Section of Neurosciences, University of Catania, Catania, Italy
| | - Tulay Yilmaz
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Alessandra Morano
- Dvepartment of Human Neurosciences, Sapienza, University of Rome, Rome, Italy
| | - Eleni Panagiotakaki
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, University Hospitals of Lyon (HCL), Member of the ERN EpiCARE, Lyon, France
| | - Francesca F Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Beatriz Gonzalez Giraldez
- Epilepsy Unit, Neurology Service, Hospital Universitario and IIS Fundación Jiménez Díaz and CIBERER, Madrid, Spain
| | - Katri Silvennoinen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | | | - Marion Comajuan
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, University Hospitals of Lyon (HCL), Member of the ERN EpiCARE, Lyon, France
| | | | | | - Antonietta Coppola
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy
| | | | - Angelo Labate
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| | - Vito Sofia
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Section of Neurosciences, University of Catania, Catania, Italy
| | - Gerhard J Kluger
- Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen Clinic Vogtareuth, Vogtareuth, Germany
| | | | | | - Betul Baykan
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Alexis Arzimanoglou
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, University Hospitals of Lyon (HCL), Member of the ERN EpiCARE, Lyon, France
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS "Istituto Giannina Gaslini", Genova, Italy
| | | | | |
Collapse
|
30
|
Li Y, Zhang T, Feng J, Qian S, Wu S, Zhou R, Wang J, Sa G, Wang X, Li L, Chen F, Yang H, Zhang H, Tian M. Processing speed dysfunction is associated with functional corticostriatal circuit alterations in childhood epilepsy with centrotemporal spikes: a PET and fMRI study. Eur J Nucl Med Mol Imaging 2022; 49:3186-3196. [PMID: 35199226 PMCID: PMC9250469 DOI: 10.1007/s00259-022-05740-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022]
Abstract
Purpose Epilepsy with centrotemporal spikes (ECTS) is the most common epilepsy syndrome in children and usually presents with cognitive dysfunctions. However, little is known about the processing speed dysfunction and the associated neuroimaging mechanism in ECTS. This study aims to investigate the brain functional abnormality of processing speed dysfunction in ECTS patients by using the 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and resting-state functional magnetic resonance imaging (rs-fMRI). Methods This prospective study recruited twenty-eight ECTS patients who underwent the 18F-FDG PET, rs-fMRI, and neuropsychological examinations. Twenty children with extracranial tumors were included as PET controls, and 20 healthy children were recruited as MRI controls. The PET image analysis investigated glucose metabolism by determining standardized uptake value ratio (SUVR). The MRI image analysis explored abnormal functional connectivity (FC) within the cortical–striatal circuit through network-based statistical (NBS) analysis. Correlation analysis was performed to explore the relationship between SUVR, FC, and processing speed index (PSI). Results Compared with healthy controls, ECTS patients showed normal intelligence quotient but significantly decreased PSI (P = 0.04). PET analysis showed significantly decreased SUVRs within bilateral caudate, putamen, pallidum, left NAc, right rostral middle frontal gyrus, and frontal pole of ECTS patients (P < 0.05). Rs-fMRI analysis showed absolute values of 20 FCs were significantly decreased in ECTS patients compared with MRI controls, which connected 16 distinct ROIs. The average SUVR of right caudate and the average of 20 FCs were positively correlated with PSI in ECTS patients (P = 0.034 and P = 0.005, respectively). Conclusion This study indicated that ECTS patients presented significantly reduced PSI, which is closely associated with decreased SUVR and FC of cortical–striatal circuit. Caudate played an important role in processing speed dysfunction. Clinical trial registration NCT04954729; registered on July 8, 2021, public site, https://clinicaltrials.gov/ct2/show/NCT04954729 Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05740-w.
Collapse
Affiliation(s)
- Yuting Li
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Teng Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jianhua Feng
- Department of Pediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Qian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Shuang Wu
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jing Wang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Guo Sa
- Department of Radiology, The First Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiawan Wang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Lina Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Feng Chen
- Department of Radiology, The First Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Yang
- Department of Radiology, The First Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China. .,The College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
31
|
Wang Y, He C, Chen C, Wang Z, Ming W, Qiu J, Ying M, Chen W, Jin B, Li H, Ding M, Wang S. Focal cortical dysplasia links to sleep-related epilepsy in symptomatic focal epilepsy. Epilepsy Behav 2022; 127:108507. [PMID: 34968776 DOI: 10.1016/j.yebeh.2021.108507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 01/30/2023]
Abstract
OBJECTIVE In sleep-related epilepsy (SRE), epileptic seizures predominantly occur during sleep, but the clinical characteristics of SRE remain elusive. We aimed to identify the clinical features associated with the occurrence of SRE in a large cohort of symptomatic focal epilepsy. METHODS We retrospectively included patients with four etiologies, including focal cortical dysplasia (FCD), low-grade tumors (LGT), temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), and encephalomalacia. SRE was defined as more than 70% of seizures occurring during sleep according to the seizure diary. The correlation between SRE and other clinical variables, such as etiology of epilepsy, pharmacoresistance, seizure frequency, history of bilateral tonic-clonic seizures, and seizure localization was analyzed. RESULTS A total of 376 patients were included. Among them 95 (25.3%) were classified as SRE and the other 281(74.7%) as non-SRE. The incidence of SRE was 53.5% in the FCD group, which was significantly higher than the other three groups (LGT: 19.0%; TLE-HS: 9.9%; encephalomalacia: 16.7%; P < 0.001). The etiology of FCD (p < 0.001) was significantly associated with SRE (OR: 9.71, 95% CI: 3.35-28.14) as an independent risk factor. In addition, small lesion size (p = 0.009) of FCD further increased the risk of SRE (OR: 3.18, 95% CI: 1.33-7.62) in the FCD group. SIGNIFICANCE Our data highlight that FCD markedly increased the risk of sleep-related epilepsy independently of seizure localization. A small lesion of FCD further increased the risk of sleep-related epilepsy by 2.18 times in the FCD group.
Collapse
Affiliation(s)
- Yunling Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chenmin He
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongjin Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenjie Ming
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Qiu
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meiping Ying
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Neurology, Linhai Second People's Hospital, Taizhou, China
| | - Bo Jin
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hong Li
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meiping Ding
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
32
|
Luo T, Wang J, Zhou Y, Zhou S, Hu C, Yao P, Zhang Y, Wang Y. EMD-WOG-2DCNN based EEG signal processing for Rolandic seizure classification. Comput Methods Biomech Biomed Engin 2022; 25:1565-1575. [PMID: 35044293 DOI: 10.1080/10255842.2021.2023809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective Approximately 65 million people have epilepsy around the world. Recognition of epilepsy types is the basis to determine the treatment method and predict the prognosis in epilepsy patients. Childhood benign epilepsy with centrotemporal spikes (BECTS) or benign Rolandic epilepsy is the most common focal epilepsy in children, accounting for 15-20% of childhood epilepsies. These EEG patterns of individuals usually predict good treatment responses and prognosis. Until now, the interpretation of EEG still depends entirely on experienced neurologists, which may be a lengthy and tedious task. Method In this article, we proposed a novel machine learning model that efficiently distinguished Rolandic seizures from normal EEG signals. The proposed machine learning model processes the identification procedure in the following order (1) creating preliminary EEG features using signal empirical mode decomposition, (2) applying weighted overlook graph (WOG) to represent the decomposed EMD of IMF, and (3) classifying the results through a two Dimensional Convolutional Neural Network (2DCNN). The performance of our classification model is compared with other representative machine learning models. Results The model offered in this article gains an accuracy performance exceeding 97.6% in the Rolandic dataset, which is higher than other classification models. The effect of the model on the Bonn public dataset is also comparable to existing methods and even performs better in some subsets. Conclusion The purpose of this study is to introduce the most common childhood benign epilepsy type and propose a model that meets the real clinical needs to distinguish this Rolandic EEG pattern from normal signals accurately. Significance Future research will optimize the model to categorize other types of epilepsies beyond BECTS and finally implement them in the hospital system.
Collapse
Affiliation(s)
- Tian Luo
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Jialin Wang
- The Key Laboratory of ASIC and Systems, The Institute of Brain-Inspired Circuits and Systems, Fudan University, Shanghai, China
| | - Yuanfeng Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Chunhui Hu
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Peili Yao
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Yanjiong Zhang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
33
|
Casalia ML, Casabona JC, García C, Cavaliere Candedo V, Quintá HR, Farías MI, Gonzalez J, Gonzalez Morón D, Córdoba M, Consalvo D, Mostoslavsky G, Urbano FJ, Pasquini J, Murer MG, Rela L, Kauffman MA, Pitossi FJ. A familiar study on self-limited childhood epilepsy patients using hIPSC-derived neurons shows a bias towards immaturity at the morphological, electrophysiological and gene expression levels. Stem Cell Res Ther 2021; 12:590. [PMID: 34823607 PMCID: PMC8620942 DOI: 10.1186/s13287-021-02658-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/31/2021] [Indexed: 12/28/2022] Open
Abstract
Background Self-limited Childhood Epilepsies are the most prevalent epileptic syndrome in children. Its pathogenesis is unknown. In this disease, symptoms resolve spontaneously in approximately 50% of patients when maturity is reached, prompting to a maturation problem. The purpose of this study was to understand the molecular bases of this disease by generating and analyzing induced pluripotent stem cell-derived neurons from a family with 7 siblings, among whom 4 suffer from this disease.
Methods Two affected siblings and, as controls, a healthy sister and the unaffected mother of the family were studied. Using exome sequencing, a homozygous variant in the FYVE, RhoGEF and PH Domain Containing 6 gene was identified in the patients as a putative genetic factor that could contribute to the development of this familial disorder. After informed consent was signed, skin biopsies from the 4 individuals were collected, fibroblasts were derived and reprogrammed and neurons were generated and characterized by markers and electrophysiology. Morphological, electrophysiological and gene expression analyses were performed on these neurons. Results Bona fide induced pluripotent stem cells and derived neurons could be generated in all cases. Overall, there were no major shifts in neuronal marker expression among patient and control-derived neurons. Compared to two familial controls, neurons from patients showed shorter axonal length, a dramatic reduction in synapsin-1 levels and cytoskeleton disorganization. In addition, neurons from patients developed a lower action potential threshold with time of in vitro differentiation and the amount of current needed to elicit an action potential (rheobase) was smaller in cells recorded from NE derived from patients at 12 weeks of differentiation when compared with shorter times in culture. These results indicate an increased excitability in patient cells that emerges with the time in culture. Finally, functional genomic analysis showed a biased towards immaturity in patient-derived neurons. Conclusions We are reporting the first in vitro model of self-limited childhood epilepsy, providing the cellular bases for future in-depth studies to understand its pathogenesis. Our results show patient-specific neuronal features reflecting immaturity, in resonance with the course of the disease and previous imaging studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02658-2.
Collapse
Affiliation(s)
| | | | - Corina García
- Institute Leloir Foundation- IIBBA-CONICET, Buenos Aires, Argentina
| | | | - Héctor Ramiro Quintá
- CONICET and Laboratorio de Medicina Experimental "Dr. J Toblli", Hospital Alemán, Buenos Aires, Argentina
| | | | - Joaquín Gonzalez
- Institute Leloir Foundation- IIBBA-CONICET, Buenos Aires, Argentina
| | - Dolores Gonzalez Morón
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Marta Córdoba
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Damian Consalvo
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Gustavo Mostoslavsky
- Center For Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, USA
| | - Francisco J Urbano
- Department of Physiology, Molecular and Cellular Biology "Dr. Héctor Maldonado", Faculty of Exact and Natural Sciences, University of Buenos Aires, IFIBYNE-CONICET, Buenos Aires, Argentina
| | - Juana Pasquini
- Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Mario Gustavo Murer
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Buenos Aires, Argentina
| | - Lorena Rela
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Buenos Aires, Argentina
| | - Marcelo A Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina.
| | | |
Collapse
|
34
|
Klinzing JG, Tashiro L, Ruf S, Wolff M, Born J, Ngo HVV. Auditory stimulation during sleep suppresses spike activity in benign epilepsy with centrotemporal spikes. Cell Rep Med 2021; 2:100432. [PMID: 34841286 PMCID: PMC8606903 DOI: 10.1016/j.xcrm.2021.100432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/12/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
Benign epilepsy with centrotemporal spikes (BECTS) is a common form of childhood epilepsy linked to diverse cognitive abnormalities. The electroencephalogram of patients shows focal interictal epileptic spikes, particularly during non-rapid eye movement (NonREM) sleep. Spike formation involves thalamocortical networks, which also contribute to the generation of sleep slow oscillations (SOs) and spindles. Motivated by evidence that SO-spindle activity can be controlled through closed-loop auditory stimulation, here, we show in seven patients that auditory stimulation also reduces spike rates in BECTS. Stimulation during NonREM sleep decreases spike rates, with most robust reductions when tones are presented 1.5 to 3.5 s after spikes. Stimulation further reduces the amplitude of spikes closely following tones. Sleep spindles are negatively correlated with spike rates, suggesting that tone-evoked spindle activity mediates the spike suppression. We hypothesize spindle-related refractoriness in thalamocortical circuits as a potential mechanism. Our results open an avenue for the non-pharmacological treatment of BECTS. Spikes in BECTS epilepsy and sleep spindles may share thalamocortical generation Auditory stimulation during sleep evokes sleep spindles and suppresses spikes Stimulation may reduce spiking by inducing thalamocortical refractoriness
Collapse
Affiliation(s)
- Jens G Klinzing
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Lilian Tashiro
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Susanne Ruf
- University Children's Hospital Tübingen, 72076 Tübingen, Germany
| | - Markus Wolff
- Department of Pediatric Neurology, Vivantes Hospital Neukölln, 12351 Berlin, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Hong-Viet V Ngo
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
35
|
Dai XJ, Yang Y, Wang Y. Interictal epileptiform discharges changed epilepsy-related brain network architecture in BECTS. Brain Imaging Behav 2021; 16:909-920. [PMID: 34677785 DOI: 10.1007/s11682-021-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 11/25/2022]
Abstract
To investigate directed information flow of epileptiform activity in benign epilepsy with centrotemporal spikes (BECTS) during ictal epileptiform discharges (IEDs) and non-IEDs periods. In this multi-center study, a total of 188 subjects, including 50 BECTS and 138 normal children's controls (NCs) from three different centers (Center 1: females/males, 38/55; mean age, 9.33 ± 2.6 years; Center 2: females/males,7/10; mean age, 8.59 ± 2.32 years; Center 3: females/males, 14/14; mean age, 13 ± 3.42 years) were recruited. The BECTS were classified into IEDs (females/males, 12/15; mean age, 8.15 ± 1.68 years) and non-IEDs (females/males, 10/13; mean age, 9.09 ± 1.98 years) subgroups depending on presence of central-temporal spikes from an EEG-fMRI examination. Three new methods, structural equation parametric modeling, dynamic causal modeling and granger causality density (GCD) were used to determine optimal network architectures for BECTS. Three multicentric NCs determined a reliable and consistent network architecture by structural equation parametric modeling method. Further analyses were used for IEDs and non-IEDs to determine the brain network architecture by structural equation parametric modeling, dynamic causal modeling and GCD, respectively. The brain network architecture of IEDs substate, non-IEDs substate and NCs are different. IEDs promoted the driving effect of the Rolandic areas with more output information flows, and increased the targeted effect of the top of pre-/post-central gyrus with more input information flows. The information flow arises from the Rolandic areas, and subsequently propagates to the top of pre-/post-central gyrus and thalamus. From non-IEDs status to IEDs status, the thalamus load may play an important role in the modulation and regulation of epileptiform activity. These findings shed new light on pathophysiological mechanism of directed localization of epileptiform activity in BECTS.
Collapse
Affiliation(s)
- Xi-Jian Dai
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518020, China.
- Shenzhen Kangning Hospital, Shenzhen Mental Health Centre, 1080#, Cuizhu Rd, Luohu District, Shenzhen, 518003, China.
| | - Yang Yang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongjun Wang
- Shenzhen Kangning Hospital, Shenzhen Mental Health Centre, 1080#, Cuizhu Rd, Luohu District, Shenzhen, 518003, China.
| |
Collapse
|
36
|
Alterations in white matter integrity and asymmetry in patients with benign childhood epilepsy with centrotemporal spikes and childhood absence epilepsy: An automated fiber quantification tractography study. Epilepsy Behav 2021; 123:108235. [PMID: 34411950 DOI: 10.1016/j.yebeh.2021.108235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/11/2021] [Accepted: 07/19/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE To investigate whether patients with benign childhood epilepsy with centrotemporal spikes (BECTS) and childhood absence epilepsy (CAE) show distinct patterns of white matter (WM) alterations and structural asymmetry compared with healthy controls and the relationship between WM alterations and epilepsy-related clinical variables. METHODS We used automated fiber quantification to create tract profiles of fractional anisotropy (FA) and mean diffusivity (MD) in twenty-six patients with BECTS, twenty-nine patients with CAE, and twenty-four healthy controls. Group differences in FA and MD were quantified at 100 equidistant nodes along the fiber tract and these alterations and epilepsy-related clinical variables were correlated. A lateralization index (LI) representing the structural asymmetry of the fiber tract was computed and compared between both patient groups and controls. RESULTS Compared with healthy controls, the BECTS group showed widespread FA reduction in 43.75% (7/16) and MD elevation in 50% (8/16) of identified fiber tracts, and the CAE group showed regional FA reduction in 31.25% (5/16) and MD elevation in 25% (4/16) of identified fiber tracts. In the BECTS group, FA and MD in the right anterior thalamic radiation positively and negatively correlated with the number of antiepileptic drugs, respectively, and MD in the right arcuate fasciculus (AF) positively correlated with seizure frequency. In the CAE group, the LI values were significantly lower in the inferior fronto-occipital fasciculus and the AF. CONCLUSION The two childhood epilepsy syndromes display different patterns of WM alterations and structural asymmetry, suggesting that neuroanatomical differences may underlie the different profiles of BECTS and CAE.
Collapse
|
37
|
Niu K, Li Y, Zhang T, Sun J, Sun Y, Shu M, Wang P, Zhang K, Chen Q, Wang X. Impact of Antiepileptic Drugs on Cognition and Neuromagnetic Activity in Childhood Epilepsy With Centrotemporal Spikes: A Magnetoencephalography Study. Front Hum Neurosci 2021; 15:720596. [PMID: 34566605 PMCID: PMC8461317 DOI: 10.3389/fnhum.2021.720596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: Childhood epilepsy with centrotemporal spikes (CECTS), the most common childhood epilepsy, still lacks longitudinal imaging studies involving antiepileptic drugs (AEDs). In order to examine the effect of AEDs on cognition and brain activity. We investigated the neuromagnetic activities and cognitive profile in children with CECTS before and after 1 year of treatment. Methods: Fifteen children with CECTS aged 6–12 years underwent high-sampling magnetoencephalography (MEG) recordings before treatment and at 1 year after treatment, and 12 completed the cognitive assessment (The Wechsler Intelligence Scale for Children). Next, magnetic source location and functional connectivity (FC) were investigated in order to characterize interictal neuromagnetic activity in the seven frequency sub-bands, including: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (30–80 Hz), ripple (80–250 Hz), and fast ripple (250–500 Hz). Results: After 1 year of treatment, children with CECTS had increased scores on full-scale intelligence quotient, verbal comprehension index (VCI) and perceptual reasoning index (PRI). Alterations of neural activity occurred in specific frequency bands. Source location, in the 30–80 Hz frequency band, was significantly increased in the posterior cingulate cortex (PCC) after treatment. Moreover, FC analysis demonstrated that after treatment, the connectivity between the PCC and the medial frontal cortex (MFC) was enhanced in the 8–12 Hz frequency band. Additionally, the whole-brain network distribution was more dispersed in the 80–250 Hz frequency band. Conclusion: Intrinsic neural activity has frequency-dependent characteristic. AEDs have impact on regional activity and FC of the default mode network (DMN). Normalization of aberrant DMN in children with CECTS after treatment is likely the reason for improvement of cognitive function.
Collapse
Affiliation(s)
- Kai Niu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Mingzhu Shu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Fortini S, Espeche A, Galicchio S, Cersósimo R, Chacon S, Gallo A, Gamboni B, Adi J, Fasulo L, Semprino M, Cachia P, Caraballo RH. More than one self-limited epilepsy of childhood in the same patient: A multicenter study. Epilepsy Res 2021; 177:106768. [PMID: 34547632 DOI: 10.1016/j.eplepsyres.2021.106768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We describe the evolution of the electroclinical picture of patients with different types of self-limited epilepsy of childhood (SLEC) occurring at the same or at different times with or without atypical evolutions as well as patients with SLEC associated with childhood absence epilepsy (CAE). MATERIAL AND METHODS A multicenter, retrospective, descriptive study was conducted evaluating patients with SLEC who had focal seizures of different types of SLEC including atypical evolutions as well as SLEC associated with absence epilepsy seen at eight Argentinian centers between April 2000 and April 2019. Of 7705 patients with SLEC, aged between 2 and 14 years (mean, 7.5 years), of whom 2013 were female and 5692 male (ratio, 1:2.8), 5068 patients had SLECTS, 2260 patients had self-limited childhood occipital epilepsy Panayiotopoulos type (SLE-P), 356 had self-limited childhood occipital epilepsy Gastaut type (SLE-G), and 21 had self-limited epilepsy with affective seizures (SLEAS). Electroclinical features typical of more than one SLEC syndrome were recognized in 998 (13 %) children. RESULTS We recognized three well-defined groups of patients. The most frequent association was SLE-P and SLECTS, the paradigmatic type, but associations of SLE-P and SLE-G, SLECTS and SLE-G, and SLEAS and SLE-P or SLECTS were also recognized. The second-most-common association was SLEC and an atypical evolution. In this group, the most frequent combination was SLECTS with its atypical evolution, opercular status epilepticus, epileptic encephalopathy with continuous spike-and-waves during slow sleep, or Landau-Kleffner syndrome. SLE-P and SLE-G associated with an atypical evolution were also identified. The third, less-frequent group had SLECTS, SLE-P, or SLE-G associated with CAE. These cases support the concept that the different types of SLEC are part of a self-limited childhood seizure susceptibility syndrome. CONCLUSION Our study demonstrated that 13 % of our patients with SLEC have with different types of SLEC occurring at the same or at different times with or without atypical evolutions - i.e. CSWSS - as well as patients with SLEC associated with CAE, supporting the concept of the self-limited childhood seizure susceptibility syndrome.
Collapse
Affiliation(s)
| | | | | | - Ricardo Cersósimo
- Centro Integral de Neurociencias (CINEU), Lomas de Zamora, Provincia de Buenos Aires, Argentina
| | - Santiago Chacon
- Centro de Neurología Infantil (CENI) de Gualeguaychu, Entre Ríos, Argentina
| | - Adolfo Gallo
- Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | | | - Javier Adi
- Hospital Pediátrico Humberto H Notti de Mendoza, Argentina
| | | | | | - Pedro Cachia
- Hospital de Niños Victor J Vilela de Rosario, Santa Fé, Argentina
| | | |
Collapse
|
39
|
Tascón-Arcila J, Rojas-Jiménez S, Cornejo-Sánchez D, Gómez-Builes P, Ucroz-Benavides A, Holguín BM, Restrepo-Arbeláez D, Gómez-Castillo C, Solarte-Mia R, Cornejo-Ochoa W, Pineda-Trujillo N. Differential Clinical Features in Colombian Patients With Rolandic Epilepsy and Suggestion of Unlikely Association With GRIN2A, RBFOX1, or RBFOX3 Gene Variants. J Child Neurol 2021; 36:875-882. [PMID: 34039076 DOI: 10.1177/08830738211015017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Our purpose was to describe the phenotypic features and test for association of genes GRIN2A, RBFOX1 and RBFOX3 with rolandic epilepsy in patients from Colombia. METHODS Thirty patients were enrolled. A structured interview was applied. In addition, saliva samples were collected from the patients and their parents. One polymorphism in each of GRIN2A, RBFOX1 and RBFOX3 genes was tested. RESULTS The average age at onset was 5.3 years. Almost half the sample presented prolonged seizures (>5 minutes); although the majority of the patients presented their seizures only while asleep, over a quarter presented them only while awake. The most frequent comorbidity was the presence of symptoms compatible with attention-deficit hyperactivity disorder (ADHD). Personal history of febrile seizures and parasomnias were equally frequent (20%). Family history of any type of epilepsy was reported in 80% of the patients, followed by migraine (73.3%) and poor academic performance (63.3%). About half the sample reported sleepwalking in parents or sibs. Most patients had received pharmacologic treatment. We found no association of rolandic epilepsy with the single nucleotide polymorphisms tested. CONCLUSIONS Our rolandic epilepsy cohort presents clinical features clearly different from other cohorts. For instance, age at onset is much earlier in our set of patients, and personal and family history of febrile seizures as well as parasomnias are highly prevalent in our sample. No association of rolandic epilepsy with variants at the 3 genes tested was found. This lack of association may reflect the high genetic heterogeneity of the epilepsies.
Collapse
Affiliation(s)
- José Tascón-Arcila
- Grupo Mapeo Genético, Departamento de Pediatría, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Sara Rojas-Jiménez
- Grupo Mapeo Genético, Departamento de Pediatría, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Diana Cornejo-Sánchez
- Grupo Mapeo Genético, Departamento de Pediatría, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Paola Gómez-Builes
- Grupo Mapeo Genético, Departamento de Pediatría, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Andrea Ucroz-Benavides
- Grupo Mapeo Genético, Departamento de Pediatría, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Blear-Maria Holguín
- Grupo Mapeo Genético, Departamento de Pediatría, Universidad de Antioquia UdeA, Medellín, Colombia
| | | | - Christhian Gómez-Castillo
- Sección de Neuropediatria, IPS Universitaria, 27983Universidad de Antioquia UdeA, Medellín, Colombia
| | - Rodrigo Solarte-Mia
- Laboratorio de Correlación Electroclínica, CECLAB. IPS Universitaria, Universidad de Antioquia UdeA, Medellín, Colombia
| | - William Cornejo-Ochoa
- PEDIACIENCIAS, Departamento de Pediatría, Facultad de Medicina, 27983Universidad de Antioquia UdeA, Medellín, Colombia
| | - Nicolas Pineda-Trujillo
- Grupo Mapeo Genético, Departamento de Pediatría, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
40
|
An O, Nagae LM, Winesett SP. A Self-Limited Childhood Epilepsy as Co-Incidental in Cerebral Palsy. Int Med Case Rep J 2021; 14:509-517. [PMID: 34385844 PMCID: PMC8352636 DOI: 10.2147/imcrj.s315550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022] Open
Abstract
Background Cerebral palsy is the most frequent motor disability in childhood and is associated with a higher incidence of seizure disorders. In many instances, it is recognized that motor difficulties, as well as seizures, are from the same underlying brain lesion. However, self-limited childhood epilepsies, being a common group of epilepsy syndromes, would be expected to occur in patients with cerebral palsy merely on chance association and be unrelated to the structural brain imaging abnormality causing the motor impairment. Differential diagnosis in this case is important determining the long-term prognosis and need for anticonvulsant treatment. Case Presentation Here, we report two patients with cerebral palsy combined with epilepsy, whose age at onset, seizure semiology and electroclinical features were similar to children with self-limited childhood-specific seizure disorders (childhood epilepsy with centrotemporal spikes and Panayiotopoulos syndrome). Conclusion These cases highlight the importance of comprehensive differential diagnosis of seizures in cerebral palsy. Co-existence of age-dependent focal epilepsies with an underlying brain pathology as white matter injury, not affecting the cerebral cortex, might take place in the case of children with impaired motor skills. With health systems increasingly utilizing clinical pathways, it is important to consider the possibility of a self-limited childhood epilepsy and avoid aggressive and unnecessary medication treatment in children with cerebral palsy.
Collapse
Affiliation(s)
- Olga An
- Department of Children's Diseases, Kazakhstan's Medical University "KSPH" - School of Public Health, Almaty, Kazakhstan
| | - Lidia Mayumi Nagae
- Department of Medical Imaging, Neuroradiology, Banner University Medical Center, Tucson, AZ, USA
| | - Steven Parrish Winesett
- Department of Pediatrics, Division of Pediatric Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Dai XJ, Liu H, Yang Y, Wang Y, Wan F. Brain network excitatory/inhibitory imbalance is a biomarker for drug-naive Rolandic epilepsy: A radiomics strategy. Epilepsia 2021; 62:2426-2438. [PMID: 34346086 DOI: 10.1111/epi.17011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Seizure occurs when the balance between excitatory and inhibitory (E/I) inputs to neurons is perturbed, resulting in abnormal electrical activity. This study investigated whether an existing E/I imbalance in neural networks is a useful diagnostic biomarker for Rolandic epilepsy by a resting-state dynamic causal modeling-based support vector machine (rs-DCM-SVM) algorithm. METHODS This multicenter study enrolled a discovery cohort (76 children with Rolandic epilepsy and 76 normal controls [NCs]) and a replication cohort (59 children with Rolandic epilepsy and 60 NCs). Spatial independent component analysis was used to seven canonical neural networks, and a total of 25 regions of interest were selected from these networks. The rs-DCM-SVM classifier was used for individual classification, consensus feature selection, and feature ranking. RESULTS The rs-DCM-SVM classifier showed that the E/I imbalance in brain networks is a useful neuroimaging biomarker for Rolandic epilepsy, with an accuracy of 88.2% and 81.5% and an area under curve of .92 and .83 in the discovery and the replication cohorts, respectively. Consensus brain regions with the highest contributions to the classification were located within the epilepsy-related networks, indicating that this classifier was suitable. Consensus functional connection pairs with the highest contributions to the classification were associated with an excitation network loop and an inhibition network loop. The excitation loop mediated the integration of advanced cognitive networks (subcortex, dorsal attention, default mode, executive control, and salience networks), whereas the inhibition loop was involved in the segregation of sensorimotor and language networks. The two loops showed functional segregation. SIGNIFICANCE Brain E/I imbalance has potential to serve as a biomarker for individual classification in children with Rolandic epilepsy, and might be an important mechanism for causing seizures and cognitive impairment in children with Rolandic epilepsy.
Collapse
Affiliation(s)
- Xi-Jian Dai
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China.,Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau, China.,Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Yang Yang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Yongjun Wang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau, China.,Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau, China
| |
Collapse
|
42
|
Demarquay G, Rheims S. Relationships between migraine and epilepsy: Pathophysiological mechanisms and clinical implications. Rev Neurol (Paris) 2021; 177:791-800. [PMID: 34340811 DOI: 10.1016/j.neurol.2021.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
Migraine and epilepsy are distinct neurological diseases with specific clinical features and underlying pathophysiological mechanisms. However, numerous studies have highlighted the complex and multifaceted relationships between the two conditions. The relationships between headache and epilepsy manifest themselves in different ways. Firstly, the clinical diagnosis of these disorders may be challenging in view of possible overlapping. While post-ictal headache is a frequent condition, ictal epileptic headache is a rare but challenging diagnosis. Both situations raise the question of the pathophysiological mechanism of headache triggered by seizures. Migraine aura and epilepsy can also exhibit overlapping symptoms leading to their misdiagnosis, in particular in the case of visual aura. Secondly, migraine with aura and epilepsy can occur as a co-morbid condition, particularly in familial hemiplegic migraine (FHM). From a pathophysiological perspective, the identification of genetic mutations in FHM has brought significant advances in the understanding of dysfunctions of neuronal networks leading to hyperexcitability. The purpose of this review is to present clinical situations encompassing headache and epilepsy that can be challenging in neurological practice and to discuss the underlying pathophysiological mechanism of such interactions.
Collapse
Affiliation(s)
- G Demarquay
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France; Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292 and Lyon 1 University, Lyon, France.
| | - S Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France; Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292 and Lyon 1 University, Lyon, France
| |
Collapse
|
43
|
Dai XJ, Yang Y, Wang N, Tao W, Fan J, Wang Y. Reliability and availability of granger causality density in localization of Rolandic focus in BECTS. Brain Imaging Behav 2021; 15:1542-1552. [PMID: 32737823 DOI: 10.1007/s11682-020-00352-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A new method, called granger causality density (GCD), could reflect the directed information flow of the epileptiform activity, which is much closely match with excitatory and inhibitory imbalance theory of epilepsy. Here, we investigated if GCD could effectively localize the Rolandic focus in 50 patients with benign childhood epilepsy with central-temporal spikes (BECTS) from 27 normal children. The BECTS were classified into ictal epileptiform discharges (IEDs; 12 females, 15 males;age, 8.15 ± 1.68 years) and non-IEDs (10 females, 13 males; age, 9.09 ± 1.98 years) subgroups depending on the presence of central-temporal spikes. Multiple correlation-modality analyses (Pearson, across-voxel and across-subject correlations) were used to calculate the couplings between the GCD maps and IEDs-related brain activation map. The individual lateralization coefficient of localize IEDs and multiple regression analysis were used to identify the reliability of the GCD method in localizing the Rolandic focus. In this study, multiple correlation-modality analyses showed that the IEDs-related brain activation map and the GCD maps had highly temporal (coefficient ׀r\= 0.56 ~ 0.65) and spatial (\r\=0.53~0.91) (r\=~ couplings. The proposed GCD method and multiple regression analyses showed consistent findings with the clinical EEG recordings in lateralization of Rolandic focus. Furthermore, the GCD method could reflect the epilepsy-related brain activity during non-IEDs substate. Therefore, the proposed GCD method has the potential to be served as an effective and reliable neuroimaging biomarker to localize the Rolandic focus of BECTS. These findings are critical for clinical early diagnosis, and may promote the progression of treatment and management of pediatric epilepsy.
Collapse
Affiliation(s)
- Xi-Jian Dai
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, 518003, China.
| | - Yang Yang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563000, China
| | - Na Wang
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, 518003, China
| | - Weiqun Tao
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, 518003, China
| | - Jingyi Fan
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, 518003, China
| | - Yongjun Wang
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, 518003, China.
| |
Collapse
|
44
|
Abstract
Electroencephalogram (EEG) recording is essential in the evaluation of complex movement and behaviors during sleep, but in particular for differentiating epileptic versus nonepileptic events. In general, epileptiform discharges occur with greater density in the first few nonerapid eye movement cycles, and approximately 12% to 20% of seizures occur exclusively at night. This review examines the epilepsy types and syndromes whose presentation is strongly influenced by the sleep state, with an appraisal about the role that sleep plays in facilitating seizures, while deleaneatign EEG findings and clinical manifestation. The review will summarize the typical semiology of sleep-related hypermotor seizures and contrasted with those occurring during none/rapid eye movement parasomnias and sleep-related movement disorders.
Collapse
Affiliation(s)
- Ting Wu
- Ronald Reagan Medical Center, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Room 1-240, Los Angeles, CA 90095, USA
| | - Alon Y Avidan
- UCLA Sleep Disorders Center, UCLA Department of Neurology, David Geffen School of Medicine at UCLA, 710 Westwood Boulevard, RNRC, C153, Mail Code 176919, Los Angeles, CA, USA.
| | - Jerome Engel
- UCLA Seizure Disorder Center, Brain Research Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Measuring the effects of sleep on epileptogenicity with multifrequency entropy. Clin Neurophysiol 2021; 132:2012-2018. [PMID: 34284235 DOI: 10.1016/j.clinph.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE We demonstrate that multifrequency entropy gives insight into the relationship between epileptogenicity and sleep, and forms the basis for an improved measure of medical assessment of sleep impairment in epilepsy patients. METHODS Multifrequency entropy was computed from electroencephalography measurements taken from 31 children with Benign Epilepsy with Centrotemporal Spikes and 31 non-epileptic controls while awake and during sleep. Values were compared in the epileptic zone and away from the epileptic zone in various sleep stages. RESULTS We find that (I) in lower frequencies, multifrequency entropy decreases during non-rapid eye movement sleep stages when compared with wakefulness in a general population of pediatric patients, (II) patients with Benign Epilepsy with Centrotemporal Spikes had lower multifrequency entropy across stages of sleep and wakefulness, and (III) the epileptic regions of the brain exhibit lower multifrequency entropy patterns than the rest of the brain in epilepsy patients. CONCLUSIONS Our results show that multifrequency entropy decreases during sleep, particularly sleep stage 2, confirming, in a pediatric population, an association between sleep, lower multifrequency entropy, and increased likelihood of seizure. SIGNIFICANCE We observed a correlation between lowered multifrequency entropy and increased epileptogenicity that lays preliminary groundwork for the detection of a digital biomarker for epileptogenicity.
Collapse
|
46
|
Delayed brain development of Rolandic epilepsy profiled by deep learning-based neuroanatomic imaging. Eur Radiol 2021; 31:9628-9637. [PMID: 34018056 DOI: 10.1007/s00330-021-08048-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Although Rolandic epilepsy (RE) has been regarded as a brain developmental disorder, neuroimaging studies have not yet ascertained whether RE has brain developmental delay. This study employed deep learning-based neuroanatomic biomarker to measure the changed feature of "brain age" in RE. METHODS The study constructed a 3D-CNN brain age prediction model through 1155 cases of typically developing children's morphometric brain MRI from open-source datasets and further applied to a local dataset of 167 RE patients and 107 typically developing children. The brain-predicted age difference was measured to quantitatively estimate brain age changes in RE and further investigated the relevancies with cognitive and clinical variables. RESULTS The brain age estimation network model presented a good performance for brain age prediction in typically developing children. The children with RE showed a 0.45-year delay of brain age by contrast with typically developing children. Delayed brain age was associated with neuroanatomic changes in the Rolandic regions and also associated with cognitive dysfunction of attention. CONCLUSION This study provided neuroimaging evidence to support the notion that RE has delayed brain development. KEY POINTS • The children with Rolandic epilepsy showed imaging phenotypes of delayed brain development with increased GM volume and decreased WM volume in the Rolandic regions. • The children with Rolandic epilepsy had a 0.45-year delay of brain-predicted age by comparing with typically developing children, using 3D-CNN-based brain age prediction model. • The delayed brain age was associated with morphometric changes in the Rolandic regions and attentional deficit in Rolandic epilepsy.
Collapse
|
47
|
Mínguez JJ, El Bouyafrouri Y, Godoy JA, Rivas A, Fernández J, Asensio V, Serra R, Perez-Aspa MJ, Lorenzo V. Benign juvenile idiopathic epilepsy in captive Iberian lynx (Lynx pardinus) in the ex situ conservation program (2005-2019). BMC Vet Res 2021; 17:165. [PMID: 33858406 PMCID: PMC8047521 DOI: 10.1186/s12917-021-02868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/31/2021] [Indexed: 12/05/2022] Open
Abstract
Background Benign juvenile idiopathic epilepsy has been described in humans but rarely in animals. The objectives of the study were to describe the clinical signs, clinical data, imaging findings, genetic examinations, treatment, long-term outcome and prognosis in Iberian lynx with juvenile epilepsy. Medical records, video recordings and diagnostic data from 2005 to 2019 were reviewed. Results Twenty lynx cubs with early onset of epileptic seizures (ES) from the conservation program were included. The average age at seizure onset was 75 days. Isolated and cluster ES were recorded. Focal ES, focal ES evolving into generalized ES with a stereotypical pattern and generalized ES were observed. All the cubs were normal between episodes, had a normal neurological examination and unremarkable investigations. Phenobarbital was used as a first line antiepileptic drug (AED). ES halted 10 days (0–34) after starting treatment in eight out of twenty cubs (40%). Treatment was discontinued in this group after a mean of 578 days and no further ES were reported (mean follow-up longer than 5 years). Eleven animals (55%) continued on AED treatment for a mean of 1306 days (70–3466). An adult-onset was observed for one lynx (5%). Polytherapy was necessary in seven lynxes (35%). The inheritance pattern observed was compatible with an autosomal recessive condition. Based on this assumption, mating between two identified carriers has been avoided since 2012, which may have contributed to the subsequent decrease in prevalence, with no further cases detected in 2018 and 2019. Conclusions Lynx pardinus may have an early onset self-limiting ES syndrome characteristic of benign juvenile idiopathic epilepsy. Information obtained from this study strongly suggests a genetic basis for the here presented epilepsy.
Collapse
Affiliation(s)
- Juan J Mínguez
- Hospital Veterinario Guadiamar, Sanlúcar la Mayor, Seville, Spain. .,Pride Veterinary Centre, Derby, UK.
| | - Yasmin El Bouyafrouri
- Centro de cría del lince ibérico El Acebuche-OAPN/Tragsatec. Parque Nacional de Doñana, Huelva, Spain
| | - José A Godoy
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
| | - Antonio Rivas
- Centro de cría del lince ibérico El Acebuche-OAPN/Tragsatec. Parque Nacional de Doñana, Huelva, Spain
| | | | - Victoria Asensio
- Centro de Cría en cautividad de Lince ibérico (CCLI) de Zarza de Granadilla, Cáceres, Spain
| | - Rodrigo Serra
- Centro Nacional de Reprodução de Lince Ibérico, Silves, Portugal
| | - María J Perez-Aspa
- Centro de Cría en cautividad de Lince ibérico (CCLI) la Olivilla. Agencia de Medio Ambiente y Agua de Andalucia, Jaen, Spain
| | | |
Collapse
|
48
|
Espeche A, Galicchio S, Cersósimo R, Chacon S, Gamboni B, Adi J, Fasulo L, Semprino M, Fortini S, Cachia P, Caraballo RH. Self-limited epilepsy of childhood with affective seizures: A well-defined epileptic syndrome? Epilepsy Behav 2021; 117:107885. [PMID: 33714932 DOI: 10.1016/j.yebeh.2021.107885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/09/2021] [Accepted: 02/21/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Here we present cases of focal epilepsy with affective symptoms analyzing seizure characteristics, EEG pattern, treatment, and outcome. METHODS A multicenter, descriptive, retrospective study was conducted evaluating 18 patients with self-limited epilepsy who presented with seizures with affective symptoms seen between April 2000 and April 2018 at eight Argentinian centers. RESULTS Eighteen patients had focal seizures with affective symptoms; all of them had affective symptoms characterized by sudden fright or terror and screaming. Seizures started with manifestations of sudden fright or terror manifested by a facial expression of fear; consciousness was mildly impaired in 15/18 patients. Eleven of the patients also had autonomic manifestations, such as pallor, sweating, and abdominal pain. In addition, four of these 11 patients had ictus emeticus and one also presented with unilateral deviation of the eyes and head. Speech arrest, salivation, glottal noises, and chewing or swallowing movements were observed in 2/18 patients at the onset of the affective seizures. Two others also had mild asymmetric dystonic seizures involving both hands and arms. Three patients had tonic deviation of the mouth involving the lips and tongue as well pharyngeal and laryngeal muscles, resulting in anarthria and drooling. Two patients had brief hemifacial focal clonic seizures. CONCLUSION Affective manifestations associated or not with motor and/or autonomic manifestations and associated with typical EEG features of the idiopathic focal epilepsies of childhood is a particular presentation of self-limited focal epilepsy in childhood.
Collapse
Affiliation(s)
| | | | - Ricardo Cersósimo
- Centro Integral de Neurociencias (CINEU), Lomas de Zamora, Provincia de Buenos Aires, Argentina
| | - Santiago Chacon
- Centro de Neurología Infantil (CENI) de Gualeguaychu, Entre Ríos, Argentina
| | | | - Javier Adi
- Hospital Pediátrico Humberto H Notti de Mendoza, Argentina
| | | | | | | | - Pedro Cachia
- Hospital de Niños Victor J Vilela de Rosario, Santa Fé, Argentina
| | | |
Collapse
|
49
|
Andrade-Machado R, Benjumea Cuartas V, Muhammad IK. Recognition of interictal and ictal discharges on EEG. Focal vs generalized epilepsy. Epilepsy Behav 2021; 117:107830. [PMID: 33639439 DOI: 10.1016/j.yebeh.2021.107830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The differentiation between focal and generalized epilepsies based on clinical and electroencephalographic features is difficult and sometimes confusing. OBJECTIVE To review the EEG findings in patients with focal epilepsy. METHODS An extensive literature review was done. We used the following Pubmed and Medline descriptors alone and in different combinations for database searching: focal, partial, epilepsy, electroencephalographic findings, and EEG. Additional filters included review, original articles, and language limited to Spanish and English. Using the above criteria, a total of 69 articles showed the interictal and ictal EEG findings in focal epilepsy. DEVELOPMENT Focal epileptiform discharges and persistence of focal abnormalities, characterize the interictal EEG findings in focal epilepsies. To distinguish SBS from primary generalized spike waves are required to note: (a) a lead-in time of at least 2 s, (b) the morphology of the focal triggering spikes clearly differ from that of the bisynchronous epileptiform paroxysms, and (c) the morphology of triggering spikes resemble that of other focal spikes from the same region. Focal and Generalized Epilepsy can coexist. Delayed Lateralization on EEG with inconclusive onset and bizarre semiology confusing semiology should not be confused with generalized onset seizures with focal evolution. CONCLUSIONS A close attention to localization and morphology of epileptiform discharges, the correct interpretation of secondary bilateral synchrony, and provocative maneuvers help to correctly identify the EEG findings leading to diagnose focal epilepsies. The presence of generalized epileptiform activity does not rule out the existence of a focal epilepsy.
Collapse
|
50
|
Evaluation of patients with epileptiform activities in the posterior temporal-parietal-occipital regions. Neurol Sci 2021; 42:4607-4613. [PMID: 33661483 DOI: 10.1007/s10072-021-05154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The aim of this study was to determine the type, etiology and the rates of epilepsy and to identify accompanying cognitive and behavioral problems in patients with epileptiform abnormalities in the posterior cerebral localization. METHODS In this study, 3500 patients with at least one EEG record at the EEG Laboratory of Clinical Child Neurology Department of Cerrahpaşa Medical Faculty of Istanbul University were evaluated in 2014-2015. Three hundred forty-six patients were included in the study. RESULTS Of the 346 patients included in the study, 42.4% were female and 57.5% were male. The age range of the cases was 1-21 (mean: 8.7) years. Epileptiform activities were observed in post TPO region isolatedly in 58,95% (n = 204), post-TPO epileptiform focus with focal epileptiform focus in different localizations in 31.21% (n = 108), generalized epileptiform activity with more than one epileptiform focus in 9.8% (n= 34). In the period of EEG examinations 250 (72.25%) patients had a history of epileptic seizures and / or epilepsy, while 96 (27.74%) had non-epileptic clinical conditions such as behavioral disorder and autism. CONCLUSION In the EEG recordings we examined, sharp and spike wave activities were frequently observed in the post TPO region isolatedly. We believe that this study, which investigated the relationship between focal epilptiform activity in post TPO region and different clinical conditions, will serve as an example for other studies.
Collapse
|