1
|
Thomas JA, Tröster AI. Neuropsychology and Movement Disorders. Neurol Clin 2024; 42:821-833. [PMID: 39343477 DOI: 10.1016/j.ncl.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Neuropsychology is important in differential diagnosis, treatment planning, surgical work-up, and support of patients with movement disorders and their families. The cognitive profiles of several movement disorders are reviewed here. The authors also review relevant neuropsychologic literature related to neurosurgic intervention and cognitive-enhancing medication for patients with movement disorders.
Collapse
Affiliation(s)
- Julia A Thomas
- Department of Clinical Neuropsychology, Barrow Neurological Institute, 222 West Thomas Road, Suite 315, Phoenix, AZ 85013, USA
| | - Alexander I Tröster
- Department of Clinical Neuropsychology, Barrow Neurological Institute, 222 West Thomas Road, Suite 315, Phoenix, AZ 85013, USA.
| |
Collapse
|
2
|
Vaughan DP, Fumi R, Theilmann Jensen M, Hodgson M, Georgiades T, Wu L, Lux D, Obrocki R, Lamoureux J, Ansorge O, Allinson KSJ, Warner TT, Jaunmuktane Z, Misbahuddin A, Leigh PN, Ghosh BCP, Bhatia KP, Church A, Kobylecki C, Hu MTM, Rowe JB, Blauwendraat C, Morris HR, Jabbari E. Evaluation of Cerebrospinal Fluid α-Synuclein Seed Amplification Assay in Progressive Supranuclear Palsy and Corticobasal Syndrome. Mov Disord 2024. [PMID: 39301998 DOI: 10.1002/mds.30019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Seed amplification assay (SAA) testing has been developed as a biomarker for the diagnosis of α-synuclein-related neurodegenerative disorders. OBJECTIVE The objective of this study was to assess the rate of α-synuclein SAA positivity in progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) and to analyze clinical and pathological features of SAA-positive and -negative cases. METHODS A total of 96 cerebrospinal fluid samples from clinically diagnosed PSP (n = 59) and CBS (n = 37) cases were analyzed using α-synuclein SAA. RESULTS Six of 59 (10.2%) PSP cases were α-synuclein SAA positive, including one case who was MSA-type positive. An exploratory analysis showed that PSP cases who were Parkinson's disease-type positive were older and had a shorter disease duration compared with SAA-negative cases. In contrast, 11 of 37 (29.7%) CBS cases were α-synuclein SAA positive, including two cases who were MSA-type positive. CONCLUSIONS Our results suggest that α-synuclein seeds can be detected in PSP and CBS using a cerebrospinal fluid α-synuclein SAA, and in PSP this may impact on clinical course. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David P Vaughan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Riona Fumi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Marte Theilmann Jensen
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Megan Hodgson
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Tatiana Georgiades
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Lesley Wu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Danielle Lux
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Ruth Obrocki
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | | | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Kieren S J Allinson
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust and MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Thomas T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, United Kingdom
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Zane Jaunmuktane
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, United Kingdom
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | | | - P Nigel Leigh
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Boyd C P Ghosh
- Wessex Neurological Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alistair Church
- Department of Neurology, Royal Gwent Hospital, Newport, United Kingdom
| | - Christopher Kobylecki
- Department of Neurology, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust and MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Edwin Jabbari
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
3
|
Tahara D, Tahara N, Akagi A, Riku Y, Sone J, Miyahara H, Nagai A, Yoshida M, Iwasaki Y. Clinical characteristics of Japanese patients with corticobasal degeneration. J Neurol Sci 2024; 466:123212. [PMID: 39243604 DOI: 10.1016/j.jns.2024.123212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
INTRODUCTION Corticobasal degeneration (CBD) is a clinically heterogeneous neurodegenerative disorder, for which pathological investigations are essential for a definitive diagnosis. This study explored the clinical characteristics of Japanese patients with pathologically confirmed CBD. METHODS We reviewed the data of Japanese patients with pathologically confirmed CBD who were consecutively autopsied at our institute. Clinical data were obtained from medical records and clinicopathological conferences. RESULTS Of the 34 patients initially reviewed, three were excluded because of a lack of detailed clinical data. Of the remaining 31 patients, 16 were men and 15 were women. The mean ages at onset and death were 63.3 ± 6.7 (51-79) years and 69.1 ± 6.9 (54-86), respectively. The median disease duration was 6.0 (2.5-12) years. The clinical phenotypes were as follows: progressive supranuclear palsy syndrome (PSPS; n = 20, 64.5 %), probable or possible corticobasal syndrome (n = 6, 19.4 %), frontal behavioral-spatial syndrome (n = 4, 12.9 %), nonfluent/agrammatic variant of primary progressive aphasia (n = 1, 3.2 %). Furthermore, 28 (90.3 %) patients exhibited dysphagia with a median latency of 3.5 (1.0-10.0) years, and 22 (71.0 %) patients who underwent tube feeding survived longer than those who did not (P = 0.013). CONCLUSIONS Compared with Western populations, a high prevalence of PSPS may be a clinical characteristic of Japanese patients with CBD. Additionally, dysphagia occurs in many patients with early latency and may shorten survival. Tube feeding contributes to the prolonged survival of patients with CBD.
Collapse
Affiliation(s)
- Daisuke Tahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan; Department of Neurology, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Nao Tahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan; Department of Neurology, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Atsushi Nagai
- Department of Neurology, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan.
| |
Collapse
|
4
|
Giagkou N, Kapsali I, Brinia ME, Constantinides VC. Cerebrospinal Fluid Total and Phosphorylated Tau Protein in Behavioral Variant Frontotemporal Dementia, Progressive Supranuclear Palsy, Corticobasal Syndrome and Non-Fluent Agrammatic Primary Progressive Aphasia: A Systematic Review and Meta-Analysis. Biomedicines 2024; 12:1781. [PMID: 39200244 PMCID: PMC11351341 DOI: 10.3390/biomedicines12081781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
(1) Background: Frontotemporal lobar degeneration (FTLD) is a generic term which refers to multiple pathologies, including FTLD-tau. The most common FTLD-tau diseases are Pick's disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). These diseases share four major syndromes: behavioral variant frontotemporal dementia (bvFD), Richardson syndrome (RS), corticobasal syndrome (CBS) and non-fluent agrammatic primary progressive aphasia (nfa-PPA). The primary aim of this meta-analysis was to examine the diagnostic performance of CSF total (t-tau) and phosphorylated (p-tau) protein in bvFTD, RS, CBS, nfa-PPA and pathologically or genetically defined tauopathy. (2) Methods: A systematic review and meta-analysis was performed on all studies with >10 subjects in a bvFTD/RS/CBS/nfa-PPA group and control group and available data on CSF t-tau or p-tau (mean, SD). Cohen's d was used to quantify the effect size of each study (3) Results: The PSP/tauopathy patients exhibited decreased levels of CSF p-tau compared to the control subjects. The CBS/bvFTD/nfa-PPA cohorts exhibited an increase in t-tau compared to the control groups. (4) Conclusions: Tauopathies may exhibit an inherent decrease in CSF p-tau. The admixture of AD patients in FTD cohorts and high heterogeneity among studies on rare diseases are significant confounding factors in FTLD studies.
Collapse
Affiliation(s)
- Nikolaos Giagkou
- Neurodegenerative Disorders and Epilepsy Ward, First Department of Neurology, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece (I.K.); (M.-E.B.)
| | - Ioanna Kapsali
- Neurodegenerative Disorders and Epilepsy Ward, First Department of Neurology, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece (I.K.); (M.-E.B.)
| | - Maria-Evgenia Brinia
- Neurodegenerative Disorders and Epilepsy Ward, First Department of Neurology, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece (I.K.); (M.-E.B.)
| | - Vasilios C. Constantinides
- Neurodegenerative Disorders and Epilepsy Ward, First Department of Neurology, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece (I.K.); (M.-E.B.)
- Neurochemistry and Biomarkers Unit, First Department of Neurology, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece
| |
Collapse
|
5
|
Bhattacharjee S, Scotton W, Djoukhadar I, Davidson YS, Minshull J, Robinson AC, Roncaroli F, Kobylecki C. Pick's Disease Presenting as Tremulous Parkinsonism with Limited Levodopa Response-A Rare Cause of Corticobasal Syndrome. Mov Disord Clin Pract 2024; 11:1025-1029. [PMID: 38826096 PMCID: PMC11329554 DOI: 10.1002/mdc3.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Corticobasal syndrome is a clinical diagnosis and common pathological causes are corticobasal degeneration, progressive supranuclear palsy and Alzheimer's disease. OBJECTIVES We would like to highlight a rare but important differential of corticobasal syndrome. METHODS A 78-year-old female had a 4-year history of predominantly right-hand rest tremor, worsening of handwriting but no change in cognition. The clinical examination showed right upper limb postural and kinetic tremor, mild wrist rigidity and reduced amplitude of right-sided finger tapping. She was initially diagnosed as idiopathic Parkinson's disease. Five years after onset of symptoms, she demonstrated bilateral myoclonic jerks and right upper limb dystonic posturing. She could not copy movements with the right hand. The magnetic resonance imaging (MRI) revealed disproportionate atrophy in the parietal lobes bilaterally. The clinical diagnosis was changed to probable corticobasal syndrome. She passed away 11 years from onset of symptoms at the age of 85 years. She underwent a post-mortem. RESULTS The anterior and posterior frontal cortex, anterior cingulate, temporal neocortex, hippocampus and amygdaloid complex demonstrated considerable tau-related pathology consisting of a dense background of neuropil threads, and rounded, paranuclear neuronal inclusions consistent with Pick bodies. The immunostaining for three microtubule binding domain repeats (3R) tau performed on sections from the frontal and temporal lobes, basal ganglia and midbrain highlighted several inclusions whilst no 4R tau was observed. She was finally diagnosed with Pick's disease. CONCLUSIONS Pick's disease can rarely present with clinical features of corticobasal syndrome.
Collapse
Affiliation(s)
- Shakya Bhattacharjee
- Department of NeurologyManchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust (Salford Royal Hospital)SalfordUK
| | - William Scotton
- Department of NeurologyQueen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Ibrahim Djoukhadar
- Department of NeuroradiologyManchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust (Salford Royal Hospital)SalfordUK
| | - Yvonne S. Davidson
- Division of Neuroscience, Faculty of Biology, Medicine and HealthSchool of Biological Sciences, The University of Manchester, Salford Royal HospitalSalfordUK
| | - James Minshull
- Division of Neuroscience, Faculty of Biology, Medicine and HealthSchool of Biological Sciences, The University of Manchester, Salford Royal HospitalSalfordUK
| | - Andrew C. Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological SciencesThe University of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreThe University of ManchesterManchesterUK
| | - Federico Roncaroli
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological SciencesThe University of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreThe University of ManchesterManchesterUK
| | - Christopher Kobylecki
- Department of NeurologyManchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust (Salford Royal Hospital)SalfordUK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
6
|
Sakurai K, Tokumaru AM, Yoshida M, Saito Y, Wakabayashi K, Komori T, Hasegawa M, Ikeuchi T, Hayashi Y, Shimohata T, Murayama S, Iwasaki Y, Uchihara T, Sakai M, Yabe I, Tanikawa S, Takigawa H, Adachi T, Hanajima R, Fujimura H, Hayashi K, Sugaya K, Hasegawa K, Sano T, Takao M, Yokota O, Miki T, Kobayashi M, Arai N, Ohkubo T, Yokota T, Mori K, Ito M, Ishida C, Idezuka J, Toyoshima Y, Kanazawa M, Aoki M, Hasegawa T, Watanabe H, Hashizume A, Niwa H, Yasui K, Ito K, Washimi Y, Kubota A, Toda T, Nakashima K, Aiba I. Conventional magnetic resonance imaging key features for distinguishing pathologically confirmed corticobasal degeneration from its mimics: a retrospective analysis of the J-VAC study. Neuroradiology 2024:10.1007/s00234-024-03432-w. [PMID: 39039147 DOI: 10.1007/s00234-024-03432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Due to the indistinguishable clinical features of corticobasal syndrome (CBS), the antemortem differentiation between corticobasal degeneration (CBD) and its mimics remains challenging. However, the utility of conventional magnetic resonance imaging (MRI) for the diagnosis of CBD has not been sufficiently evaluated. This study aimed to investigate the diagnostic performance of conventional MRI findings in differentiating pathologically confirmed CBD from its mimics. METHODS Semiquantitative visual rating scales were employed to assess the degree and distribution of atrophy and asymmetry on conventional T1-weighted and T2-weighted images. Additionally, subcortical white matter hyperintensity (SWMH) on fluid-attenuated inversion recovery images were visually evaluated. RESULTS In addition to 19 patients with CBD, 16 with CBD mimics (progressive supranuclear palsy (PSP): 9, Alzheimer's disease (AD): 4, dementia with Lewy bodies (DLB): 1, frontotemporal lobar degeneration with TAR DNA-binding protein of 43 kDa(FTLD-TDP): 1, and globular glial tauopathy (GGT): 1) were investigated. Compared with the CBD group, the PSP-CBS subgroup showed severe midbrain atrophy without SWMH. The non-PSP-CBS subgroup, comprising patients with AD, DLB, FTLD-TDP, and GGT, showed severe temporal atrophy with widespread asymmetry, especially in the temporal lobes. In addition to over half of the patients with CBD, two with FTLD-TDP and GGT showed SWMH, respectively. CONCLUSION This study elucidates the distinct structural changes between the CBD and its mimics based on visual rating scales. The evaluation of atrophic distribution and SWMH may serve as imaging biomarkers of conventional MRI for detecting background pathologies.
Collapse
Affiliation(s)
- Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Aya M Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, 187-8551, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8562, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, 183-0042, Japan
| | - Masato Hasegawa
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Chuo, Niigata, 951-8585, Japan
| | - Yuichi Hayashi
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Toshiki Uchihara
- Department of General Internal Medicine, Okinawa Chubu Hospital, Uruma, Okinawa, 904-2293, Japan
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Motoko Sakai
- Department of Neurology, NHO Suzuka National Hospital, Suzuka, Mie, 513-8501, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Satoshi Tanikawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Hiroshi Takigawa
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8504, Japan
| | - Tadashi Adachi
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8504, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8504, Japan
| | - Harutoshi Fujimura
- Department of Neurology, NHO Osaka Toneyama Medical Center, Toyonaka, Osaka, 560-8552, Japan
| | - Kentaro Hayashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, 183-0042, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, 183-0042, Japan
| | - Kazuko Hasegawa
- Department of Neurology, NHO Sagamihara National Hospital, Sagamihara, Kanagawa, 252-0392, Japan
| | - Terunori Sano
- Department of Laboratory Medicine, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, 187-8551, Japan
| | - Masaki Takao
- Department of Laboratory Medicine, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, 187-8551, Japan
| | - Osamu Yokota
- Department of Psychiatry, Kinoko Espoir Hospital, Kasaoka, Okayama, 714-0071, Japan
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita, Okayama, 700-8558, Japan
| | - Tomoko Miki
- Department of Psychiatry, Kinoko Espoir Hospital, Kasaoka, Okayama, 714-0071, Japan
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita, Okayama, 700-8558, Japan
| | - Michio Kobayashi
- Department of Neurology, NHO Akita National Hospital, Yurihonjo, Akita, 018-1393, Japan
| | - Nobutaka Arai
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Takuya Ohkubo
- Department of Neurology and Neurological Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8519, Japan
| | - Keiko Mori
- Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Mie, 512-1111, Japan
| | - Masumi Ito
- Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Mie, 512-1111, Japan
| | - Chiho Ishida
- Department of Neurology, NHO Iou National Hospital, Kanazawa, Ishikawa, 920-0192, Japan
| | - Jiro Idezuka
- Department of Neurology, Ojiya Sakura Hospital, Ojiya, Niigata, 947-0041, Japan
| | - Yasuko Toyoshima
- Department of Neurology, Brain Disease Center Agano Hospital, Agano, Niigata, 959-2221, Japan
- Department of Pathology, Brain Research Institute, Niigata University, Chuo, Niigata, 951-8585, Japan
| | - Masato Kanazawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Chuo, Niigata, 951-8585, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Atsushi Hashizume
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Hisayoshi Niwa
- Department of Neurology, Kariya Toyota General Hospital, Kariya, Aichi, 448-8505, Japan
| | - Keizo Yasui
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Aichi, 466-8650, Japan
| | - Keita Ito
- Department of Neurology, Hekinan Municipal Hospital, Hekinan, Aichi, 447-8502, Japan
| | - Yukihiko Washimi
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Akatsuki Kubota
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Kenji Nakashima
- Department of Neurology, NHO Matsue Medical Center, Matsue, Shimane, 690-8556, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO Higashinagoya National Hospital, Nagoya, Aichi, 465-8620, Japan
| |
Collapse
|
7
|
Singh NA, Alnobani A, Graff‐Radford J, Machulda MM, Mielke MM, Schwarz CG, Senjem ML, Jack CR, Lowe VJ, Kanekiyo T, Josephs KA, Whitwell JL. Relationships between PET and blood plasma biomarkers in corticobasal syndrome. Alzheimers Dement 2024; 20:4765-4774. [PMID: 38885334 PMCID: PMC11247700 DOI: 10.1002/alz.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Corticobasal syndrome (CBS) can result from underlying Alzheimer's disease (AD) pathologies. Little is known about the utility of blood plasma metrics to predict positron emission tomography (PET) biomarker-confirmed AD in CBS. METHODS A cohort of eighteen CBS patients (8 amyloid beta [Aβ]+; 10 Aβ-) and 8 cognitively unimpaired (CU) individuals underwent PET imaging and plasma analysis. Plasma concentrations were compared using a Kruskal-Wallis test. Spearman correlations assessed relationships between plasma concentrations and PET uptake. RESULTS CBS Aβ+ group showed a reduced Aβ42/40 ratio, with elevated phosphorylated tau (p-tau)181, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) concentrations, while CBS Aβ- group only showed elevated NfL concentration compared to CU. Both p-tau181 and GFAP were able to differentiate CBS Aβ- from CBS Aβ+ and showed positive associations with Aβ and tau PET uptake. DISCUSSION This study supports use of plasma p-tau181 and GFAP to detect AD in CBS. NfL shows potential as a non-specific disease biomarker of CBS regardless of underlying pathology. HIGHLIGHTS Plasma phosphorylated tau (p-tau)181 and glial fibrillary acidic protein (GFAP) concentrations differentiate corticobasal syndrome (CBS) amyloid beta (Aβ)- from CBS Aβ+. Plasma neurofilament light concentrations are elevated in CBS Aβ- and Aβ+ compared to controls. Plasma p-tau181 and GFAP concentrations were associated with Aβ and tau positron emission tomography (PET) uptake. Aβ42/40 ratio showed a negative correlation with Aβ PET uptake.
Collapse
Affiliation(s)
| | - Alla Alnobani
- Department of Neuroscience, Mayo ClinicJacksonvilleFloridaUSA
| | | | - Mary M. Machulda
- Department of Psychiatry & Psychology, Mayo ClinicRochesterMinnesotaUSA
| | - Michelle M. Mielke
- Department of Epidemiology and PreventionWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | | | | | | | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | |
Collapse
|
8
|
Beltrão TW, Maranhão EBDA, Correia VAG, de Albuquerque PM, Pinheiro MGM, Santos RAL, Nunes LEDB, Brandão SCS, Barbosa BJAP. Phenotypic and Positron Emission Tomography with [18F]fluordeoxyglucose (FDG PET) differences in corticobasal syndrome: comparison of two cases. Dement Neuropsychol 2024; 18:e20230085. [PMID: 38933079 PMCID: PMC11206225 DOI: 10.1590/1980-5764-dn-2023-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 06/28/2024] Open
Abstract
Corticobasal syndrome (CBS) is a rare cause of dementia and comprises varied combinations of subcortical signs (akinetic-rigid parkinsonism, dystonia, or myoclonus) with cortical signs (apraxia, alien hand or cortical sensory deficit), usually asymmetric. We aimed to report and compare the clinical and neuroimaging presentation of two patients diagnosed with CBS. While case 1 had severe non-fluent aphasia associated with mild apraxia and limb rigidity, case 2 had a more posterior cognitive impairment, with a different language pattern associated with marked visuospatial errors and hemineglect. FDG PET played a significant role in diagnosis, suggesting, in the first case, corticobasal degeneration and, in the second, Alzheimer's disease pattern. CBS has been widely studied with the advent of new in vivo methods such as brain FDG PET. Studies that deepen the phenotypic and biomarker heterogeneity of CBS will be of great importance for better classification, prognosis, and treatment of the condition.
Collapse
Affiliation(s)
- Thais Winkeler Beltrão
- Geriatrics Service, Hospital das Clínicas de Pernambuco, Empresa Brasileira de Serviços Hospitalares, Universidade Federal de Pernambuco, Recife PE, Brazil
| | - Eduardo Barbosa de Albuquerque Maranhão
- Academic Area of Neuropsychiatry, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife PE, Brazil
- Afya Faculdade de Ciências Médicas de Jaboatão, Jaboatão dos Guararapes PE, Brazil
| | - Victor Adill Gomes Correia
- Academic Area of Neuropsychiatry, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife PE, Brazil
| | - Pedro Mota de Albuquerque
- Academic Area of Neuropsychiatry, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife PE, Brazil
| | | | | | | | - Simone Cristina Soares Brandão
- Nuclear Medicine Service, Hospital das Clínicas de Pernambuco, Empresa Brasileira de Serviços Hospitalares, Universidade Federal de Pernambuco, Recife PE, Brazil
- Academic Area of Clinical Medicine, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife PE, Brazil
| | | |
Collapse
|
9
|
Panyakaew P, Phuenpathom W, Bhidayasiri R, Hallett M. Bedside clinical assessment of patients with common upper limb tremor and algorithmic approach. ASIAN BIOMED 2024; 18:37-52. [PMID: 38708334 PMCID: PMC11063083 DOI: 10.2478/abm-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The diagnostic approach for patients with tremor is challenging due to the complex and overlapping phenotypes among tremor syndromes. The first step in the evaluation of tremor is to identify the tremulous movement and exclude the tremor mimics. The second step is to classify the tremor syndrome based on the characteristics of tremor from historical clues and focused examination (Axis 1). Comprehensive tremor examinations involve the assessment of tremor in different conditions (rest, action or mixed, position or task-specific), distribution of tremor (upper limb, lower limb, head, jaw), positive signs for functional tremor (FT) if suspected (distractibility, entrainment, co-contraction), and associated neurological signs including parkinsonism, dystonic posture, cerebellar/brainstem signs, neuropathy, and cognitive impairment. A pivotal feature in this step is to determine any distinct feature of a specific isolated or combined tremor syndrome. In this review, we propose an algorithm to assess upper limb tremors. Ancillary testing should be performed if clinical evaluation is unclear. The choice of investigation depends on the types of tremors considered to narrow down the spectrum of etiology (Axis 2). Laboratory blood tests are considered for acute onset and acute worsening of tremors, while structural neuroimaging is indicated in unilateral tremors with acute onset, nonclassical presentations, and a combination of neurological symptoms. Neurophysiological study is an important tool that aids in distinguishing between tremor and myoclonus, etiology of tremor and document specific signs of FT. Treatment is mainly symptomatic based depending on the etiology of the tremor and the patient's disabilities.
Collapse
Affiliation(s)
- Pattamon Panyakaew
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok10330, Thailand
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Warongporn Phuenpathom
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok10330, Thailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok10330, Thailand
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok10330, Thailand
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892-1428, USA
| |
Collapse
|
10
|
Parmera JB, de Godoi Carneiro C, de Almeida IJ, de Oliveira MCB, Barbosa PM, Studart-Neto A, Ono CR, Nitrini R, Buchpiguel CA, Barbosa ER, Brucki SMD, Coutinho AM. Probable 4-Repeat Tauopathy Criteria Predict Brain Amyloid Negativity, Distinct Clinical Features, and FDG-PET/MRI Neurodegeneneration Patterns in Corticobasal Syndrome. Mov Disord Clin Pract 2024; 11:238-247. [PMID: 38155526 DOI: 10.1002/mdc3.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/29/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Corticobasal syndrome (CBS) is associated with diverse underlying pathologies, including the four-repeat (4R)-tauopathies. The Movement Disorders Society (MDS) criteria for progressive supranuclear palsy (PSP) proposed the novel category "probable 4R-tauopathy" to address the phenotypic overlap between PSP and corticobasal degeneration (CBD). OBJECTIVES To investigate the clinical ability of the MDS-PSP criteria for probable 4R-tauopathy in predicting a negative amyloid-PET in CBS. Additionally, this study aims to explore CBS patients classified as 4R-tauopathy concerning their clinical features and neuroimaging degeneration patterns. METHODS Thirty-two patients with probable CBS were prospectively evaluated and split into those who fulfilled or did not fulfill the 4R-tauopathy criteria (CBS-4RT+ vs. CBS-4RT-). All patients underwent positron emission tomographies (PET) with [18 F]fluorodeoxyglucose and [11 C]Pittsburgh Compound-B (PIB) on a hybrid PET-MRI scanner to perform multimodal quantitative comparisons with a control group. RESULTS Eleven patients were clinically classified as CBS-4RT+, and only one had a positive PIB-PET. The CBS-4RT+ classification had 92% specificity, 52% sensitivity, and 69% accuracy in predicting a negative PIB-PET. The CBS-4RT+ group presented with dysarthria and perseveration more often than the CBS-4RT- group. Moreover, the CBS-4RT+ group showed a prominent frontal hypometabolism extending to the supplementary motor area and striatum, and brain atrophy at the anterior cingulate and bilateral striata. CONCLUSIONS The 4R-tauopathy criteria were highly specific in predicting a negative amyloid-PET in CBS. Patients classified as 4R-tauopathy presented distinct clinical aspects, as well as brain metabolism and atrophy patterns previously associated with tauopathies.
Collapse
Affiliation(s)
- Jacy Bezerra Parmera
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Camila de Godoi Carneiro
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Isabel Junqueira de Almeida
- Department of Physical Therapy, Speech, and Occupational Therapy, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | | | - Pedro Melo Barbosa
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Adalberto Studart-Neto
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Carla Rachel Ono
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Egberto Reis Barbosa
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Artur Martins Coutinho
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| |
Collapse
|
11
|
Vaughan DP, Fumi R, Theilmann Jensen M, Georgiades T, Wu L, Lux D, Obrocki R, Lamoureux J, Ansorge O, Allinson K, Warner TT, Jaunmuktane Z, Misbahuddin A, Leigh PN, Ghosh B, Bhatia KP, Church A, Kobylecki C, Hu M, Rowe JB, Blauwendraat C, Morris HR, Jabbari E. Evaluation of cerebrospinal fluid alpha-synuclein seed amplification assay in PSP and CBS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.28.24303478. [PMID: 38529496 PMCID: PMC10962751 DOI: 10.1101/2024.02.28.24303478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Background Seed amplification assay (SAA) testing has become an important biomarker in the diagnosis of alpha-synuclein related neurodegenerative disorders. Objectives To assess the rate of alpha-synuclein SAA positivity in progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), and analyse the clinical and pathological features of SAA positive and negative cases. Methods 106 CSF samples from clinically diagnosed PSP (n=59), CBS (n=37) and indeterminate parkinsonism cases (n=10) were analysed using alpha-synuclein SAA. Results Three cases (1 PSP, 2 CBS) were Multiple System Atrophy (MSA)-type SAA positive. 5/59 (8.5%) PSP cases were Parkinson's disease (PD)-type SAA positive, and these cases were older and had a shorter disease duration compared with SAA negative cases. In contrast, 9/35 (25.7%) CBS cases were PD-type SAA positive. Conclusions Our results suggest that PD-type seeds can be detected in PSP and CBS using a CSF alpha-synuclein SAA, and in PSP this may impact on clinical course.
Collapse
|
12
|
Aiba I, Hayashi Y, Shimohata T, Yoshida M, Saito Y, Wakabayashi K, Komori T, Hasegawa M, Ikeuchi T, Tokumaru AM, Sakurai K, Murayama S, Hasegawa K, Uchihara T, Toyoshima Y, Saito Y, Yabe I, Tanikawa S, Sugaya K, Hayashi K, Sano T, Takao M, Sakai M, Fujimura H, Takigawa H, Adachi T, Hanajima R, Yokota O, Miki T, Iwasaki Y, Kobayashi M, Arai N, Ohkubo T, Yokota T, Mori K, Ito M, Ishida C, Tanaka M, Idezuka J, Kanazawa M, Aoki K, Aoki M, Hasegawa T, Watanabe H, Hashizume A, Niwa H, Yasui K, Ito K, Washimi Y, Mukai E, Kubota A, Toda T, Nakashima K. Clinical course of pathologically confirmed corticobasal degeneration and corticobasal syndrome. Brain Commun 2023; 5:fcad296. [PMID: 38090279 PMCID: PMC10715783 DOI: 10.1093/braincomms/fcad296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/01/2023] [Accepted: 11/02/2023] [Indexed: 12/28/2023] Open
Abstract
The clinical presentation of corticobasal degeneration is diverse, while the background pathology of corticobasal syndrome is also heterogeneous. Therefore, predicting the pathological background of corticobasal syndrome is extremely difficult. Herein, we investigated the clinical findings and course in patients with pathologically, genetically and biochemically verified corticobasal degeneration and corticobasal syndrome with background pathology to determine findings suggestive of background disorder. Thirty-two patients were identified as having corticobasal degeneration. The median intervals from the initial symptoms to the onset of key milestones were as follows: gait disturbance, 0.0 year; behavioural changes, 1.0 year; falls, 2.0 years; cognitive impairment, 2.0 years; speech impairment, 2.5 years; supranuclear gaze palsy, 3.0 years; urinary incontinence, 3.0 years; and dysphagia, 5.0 years. The median survival time was 7.0 years; 50% of corticobasal degeneration was diagnosed as corticobasal degeneration/corticobasal syndrome at the final presentation. Background pathologies of corticobasal syndrome (n = 48) included corticobasal degeneration (33.3%), progressive supranuclear palsy (29.2%) and Alzheimer's disease (12.5%). The common course of corticobasal syndrome was initial gait disturbance and early fall. In addition, corticobasal degeneration-corticobasal syndrome manifested behavioural change (2.5 years) and cognitive impairment (3.0 years), as the patient with progressive supranuclear palsy-corticobasal syndrome developed speech impairment (1.0 years) and supranuclear gaze palsy (6.0 years). The Alzheimer's disease-corticobasal syndrome patients showed cognitive impairment (1.0 years). The frequency of frozen gait at onset was higher in the corticobasal degeneration-corticobasal syndrome group than in the progressive supranuclear palsy-corticobasal syndrome group [P = 0.005, odds ratio (95% confidence interval): 31.67 (1.46-685.34)]. Dysarthria at presentation was higher in progressive supranuclear palsy-corticobasal syndrome than in corticobasal degeneration-corticobasal syndrome [P = 0.047, 6.75 (1.16-39.20)]. Pyramidal sign at presentation and personality change during the entire course were higher in Alzheimer's disease-corticobasal syndrome than in progressive supranuclear palsy-corticobasal syndrome [P = 0.011, 27.44 (1.25-601.61), and P = 0.013, 40.00 (1.98-807.14), respectively]. In corticobasal syndrome, decision tree analysis revealed that 'freezing at onset' or 'no dysarthria at presentation and age at onset under 66 years in the case without freezing at onset' predicted corticobasal degeneration pathology with a sensitivity of 81.3% and specificity of 84.4%. 'Dysarthria at presentation and age at onset over 61 years' suggested progressive supranuclear palsy pathology, and 'pyramidal sign at presentation and personality change during the entire course' implied Alzheimer's disease pathology. In conclusion, frozen gait at onset, dysarthria, personality change and pyramidal signs may be useful clinical signs for predicting background pathologies in corticobasal syndrome.
Collapse
Affiliation(s)
- Ikuko Aiba
- Department of Neurology, NHO Higashinagoya National Hospital,
Nagoya, Aichi 465-8620, Japan
| | - Yuichi Hayashi
- Department of Neurology, Gifu University Graduate School of
Medicine, Gifu 501-1194, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of
Medicine, Gifu 501-1194, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi
Medical University, Nagakute, Aichi 480-1195,
Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo
Metropolitan Institute for Geriatrics and Gerontology,
Itabashi, Tokyo 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center Hospital,
National Center of Neurology and Psychiatry, Kodaira, Tokyo
187-8551, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of
Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo
Metropolitan Neurological Hospital, Fuchu, Tokyo
183-0042, Japan
| | - Masato Hasegawa
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of
Medical Science, Setagaya, Tokyo 156-8506,
Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata
University, Chuo, Niigata 951-8585, Japan
| | - Aya M Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Institute for
Geriatrics and Gerontology, Itabashi, Tokyo
173-0015, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and
Gerontology, Obu, Aichi 474-8511, Japan
| | - Shigeo Murayama
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders,
United Graduate School of Child Development, Osaka University,
Suita, Osaka 565-0871, Japan
- Department of Neurology and Neuropathology, Tokyo Metropolitan Institute
for Geriatrics and Gerontology, Itabashi, Tokyo
173-0015, Japan
| | - Kazuko Hasegawa
- Department of Neurology, NHO Sagamihara National Hospital,
Sagamihara, Kanagawa 252-0392, Japan
| | - Toshiki Uchihara
- Neurology Clinic with Neuromorphomics Laboratory, Nitobe-Memorial Nakano
General Hospital, Nakano, Tokyo 164-8607,
Japan
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of
Medical Science, Setagaya, Tokyo 156-8506,
Japan
| | - Yasuko Toyoshima
- Department of Neurology, Brain Disease Center Agano Hospital,
Agano, Niigata 959-2221, Japan
- Department of Pathology, Brain Research Institute, Niigata
University, Chuo, Niigata 951-8585, Japan
| | - Yufuko Saito
- Department of Neurology, NHO Higashinagoya National Hospital,
Nagoya, Aichi 465-8620, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of
Medicine, Hokkaido University, Sapporo, Hokkaido
060-8638, Japan
| | - Satoshi Tanikawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido
University, Sapporo, Hokkaido 001-0021, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological
Hospital, Fuchu, Tokyo 183-0042, Japan
| | - Kentaro Hayashi
- Department of Neurology, Tokyo Metropolitan Neurological
Hospital, Fuchu, Tokyo 183-0042, Japan
| | - Terunori Sano
- Department of Laboratory Medicine, National Center Hospital, National
Center of Neurology and Psychiatry, Kodaira, Tokyo
187-8551, Japan
| | - Masaki Takao
- Department of Laboratory Medicine, National Center Hospital, National
Center of Neurology and Psychiatry, Kodaira, Tokyo
187-8551, Japan
| | - Motoko Sakai
- Department of Neurology, NHO Suzuka National Hospital,
Suzuka, Mie 513-8501, Japan
| | - Harutoshi Fujimura
- Department of Neurology, NHO Osaka Toneyama Medical Center,
Toyonaka, Osaka 560-8552, Japan
| | - Hiroshi Takigawa
- Division of Neurology, Department of Brain and Neurosciences, Faculty of
Medicine, Tottori University, Yonago, Tottori
683-8503, Japan
| | - Tadashi Adachi
- Division of Neuropathology, Department of Brain and Neurosciences, Faculty
of Medicine, Tottori University, Yonago, Tottori
683-8503, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of
Medicine, Tottori University, Yonago, Tottori
683-8503, Japan
| | - Osamu Yokota
- Department of Psychiatry, Kinoko Espoir Hospital,
Kasaoka, Okayama 714-0071, Japan
- Department of Neuropsychiatry, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Kita,
Okayama 700-8558, Japan
| | - Tomoko Miki
- Department of Psychiatry, Kinoko Espoir Hospital,
Kasaoka, Okayama 714-0071, Japan
- Department of Neuropsychiatry, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Kita,
Okayama 700-8558, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi
Medical University, Nagakute, Aichi 480-1195,
Japan
| | - Michio Kobayashi
- Department of Neurology, NHO Akita National Hospital,
Yurihonjo, Akita 018-1393, Japan
| | - Nobutaka Arai
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical
Science, Setagaya, Tokyo 156-8506, Japan
| | - Takuya Ohkubo
- Department of Neurology and Neurological Sciences, Tokyo Medical and Dental
University, Bunkyo, Tokyo 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Sciences, Tokyo Medical and Dental
University, Bunkyo, Tokyo 113-8519, Japan
| | - Keiko Mori
- Department of Neurology, Oyamada Memorial Spa Hospital,
Yokkaichi, Mie 512-1111, Japan
| | - Masumi Ito
- Department of Neurology, Oyamada Memorial Spa Hospital,
Yokkaichi, Mie 512-1111, Japan
| | - Chiho Ishida
- Department of Neurology, NHO Iou National Hospital,
Kanazawa, Ishikawa 920-0192, Japan
| | - Masaharu Tanaka
- Department of Psychiatry, Mishima Hospital,
Nagaoka, Niigata 940-2302, Japan
| | - Jiro Idezuka
- Department of Neurology, Ojiya Sakura Hospital,
Ojiya, Niigata 947-0041, Japan
| | - Masato Kanazawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research
Institute, Niigata University, Chuo, Niigata
951-8585, Japan
| | - Kenju Aoki
- Department of Neurology, Brain Disease Center Agano Hospital,
Agano, Niigata 959-2221, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of
Medicine, Sendai, Miyagi 980-8574, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of
Medicine, Sendai, Miyagi 980-8574, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of
Medicine, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Hashizume
- Department of Clinical Research Education, Nagoya University Graduate
School of Medicine, Nagoya, Aichi 466-8550,
Japan
| | - Hisayoshi Niwa
- Department of Neurology, Kariya Toyota General Hospital,
Kariya, Aichi 448-8505, Japan
| | - Keizo Yasui
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya
Daini Hospital, Nagoya, Aichi 466-8650, Japan
| | - Keita Ito
- Department of Neurology, Hekinan Municipal Hospital,
Hekinan, Aichi 447-8502, Japan
| | - Yukihiko Washimi
- Department of Geriatrics and Gerontology, National Center for Geriatrics
and Gerontology, Obu, Aichi 474-8511, Japan
| | - Eiichiro Mukai
- Department of Neurology, Aichi-pref Saiseikai Rehabilitation
Hospital, Nagoya, Aichi 451-0052, Japan
| | - Akatsuki Kubota
- Department of Neurology, Graduate School of Medicine, The University of
Tokyo, Bunkyo, Tokyo 113-8655, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of
Tokyo, Bunkyo, Tokyo 113-8655, Japan
| | - Kenji Nakashima
- Department of Neurology, NHO Matsue Medical Center,
Matsue, Shimane 690-8556, Japan
| |
Collapse
|
13
|
Calikusu FZ, Akkus S, Kochan Kizilkilic E, Poyraz BC, Altunç AT, Kiziltan G, Gunduz A. Atypical findings: Atypical parkinsonian syndromes or Atypical parkinsonian syndromes look-alikes. Clin Neurol Neurosurg 2023; 233:107975. [PMID: 37734268 DOI: 10.1016/j.clineuro.2023.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE In parkinsonian syndromes, presentations other than current diagnostic criteria are considered atypical findings. Our goal was to identify and describe the frequency and features of uncommon manifestations of atypical parkinsonian syndromes within our group. METHODS We retrospectively retrieved the medical records of all patients admitted to our clinic with parkinsonism between January 2011 and January 2022. We only included patients with atypical parkinsonian syndromes, in which the diagnosis was based on current clinical criteria. We retrospectively analyzed neurological, psychiatric, radiological, and electrophysiological characteristics. Typical and atypical features were classified according to the current clinical criteria and previous reports. RESULTS We determined 51 patients with atypical parkinsonian syndromes; 46 were included, whereas five were excluded due to insufficient follow-up. The probable diagnoses were multiple system atrophy (MSA, n = 19), dementia with Lewy bodies (DLB, n = 10), frontotemporal dementia (FTD, n = 10), corticobasal syndrome (CBS, n = 3), progressive supranuclear palsy (PSP, n = 4). The prevalence of atypical findings was similar among different types of atypical parkinsonian syndromes (p = 0.847). Atypical findings were eyelid myoclonus, double vision in MSA; ataxia, myoclonus, and a typical hummingbird sign on MRI in DLB; pyramidal findings and family history in FTD; early onset, family history, and onset with psychiatric findings in PSP-like phenotype. Genetic causes were identified in the FTD-like phenotype with pyramidal findings, whereas symptom onset was early with myoclonus in the PSP-like phenotype. CONCLUSION Atypical findings such as abnormal saccades, myoclonus, and ataxia may be a part of degenerative syndromes. However, family history, onset at an earlier age, and specific neurological findings suggest genetic syndromes.
Collapse
Affiliation(s)
- Fatma Zehra Calikusu
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Istanbul, Turkey
| | - Sema Akkus
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Istanbul, Turkey
| | - Esra Kochan Kizilkilic
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Istanbul, Turkey
| | - Burc Cagri Poyraz
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Psychiatry, Istanbul, Turkey
| | - Ali Tarik Altunç
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Psychiatry, Istanbul, Turkey
| | - Gunes Kiziltan
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Istanbul, Turkey
| | - Aysegul Gunduz
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Istanbul, Turkey.
| |
Collapse
|
14
|
Rossi C, Campese N, Colosimo C. Emerging Symptomatic Treatment of Chronic Traumatic Encephalopathy (CTE): a narrative review. Expert Opin Pharmacother 2023; 24:1415-1425. [PMID: 37300418 DOI: 10.1080/14656566.2023.2224501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Chronic traumatic encephalopathy (CTE) is an emergent neurodegenerative tauopathy well characterized pathologically but with limited consensus about clinical criteria. The clinical features include cognitive, behavioral, and motor symptoms such as parkinsonism, gait, balance disorder, and bulbar impairment. Their recognition derives from retrospective studies in pathologically confirmed CTE patients. This is one of the main reasons for the lack of specific pharmacological studies targeting symptoms or pathologic pathways of this disease. AREAS COVERED In this narrative review, we overview the possible symptomatic treatment options for CTE, based on pathological similarities with other neurodegenerative diseases that may share common pathological pathways with CTE. The PubMed database was screened for articles addressing the symptomatic treatment of CTE and Traumatic Encephalopathy Syndrome (TES). Additional references were retrieved by reference cross-check and retained if pertinent to the subject. The clinicaltrials.gov database was screened for ongoing trials on the treatment of CTE. EXPERT OPINION The similarities with the other tauopathies allow us, in the absence of disease-specific evidence, to translate some knowledge from these neurodegenerative disorders to CTE's symptomatic treatment, but any conclusion should be drawn cautiously and a patient-tailored strategy should be always preferred balancing the risks and benefits of each treatment.
Collapse
Affiliation(s)
- Carlo Rossi
- Neurology Unit, F. Lotti Hospital of Pontedera. Azienda Sanitaria Locale Toscana Nord-Ovest, Pisa, Italy
| | - Nicole Campese
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Carlo Colosimo
- Department of Neurology, S. Maria University Hospital, Terni, Italy
| |
Collapse
|
15
|
Ananthavarathan P, Patel B, Peeros S, Obrocki R, Malek N. Neurological update: non-motor symptoms in atypical parkinsonian syndromes. J Neurol 2023; 270:4558-4578. [PMID: 37316556 PMCID: PMC10421812 DOI: 10.1007/s00415-023-11807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Among people with Parkinson's disease (PD), non-motor symptoms (NMS) are a well-recognised cause of significant morbidity and poor quality of life. Yet, it is only more recently that NMS have been recognised to affect the lives of patients with atypical parkinsonian syndromes in a similar fashion. The aim of this article is to highlight and compare the relative prevalence of NMS among patients with atypical parkinsonian syndromes in the published literature, which largely remain underreported and unaddressed in routine clinical practice. All NMS that are recognised to occur in PD are also found to commonly occur in atypical parkinsonian syndromes. In particular, excessive daytime sleepiness is more prevalent among atypical parkinsonian syndromes (94.3%) compared to PD (33.9%) or normal controls (10.5%) (p < 0.001). Urinary dysfunction (not limited to urinary incontinence) is not only found to occur in MSA (79.7%) and PD (79.9%), but has also been reported in nearly half of the patients with PSP (49.3%), DLB (42%) and CBD (53.8%) (p < 0.001). Apathy is significantly more common among the atypical parkinsonian syndromes [PSP (56%), MSA (48%), DLB (44%), CBD (43%)] compared to PD (35%) (p = 0.029). Early recognition and addressing of NMS among atypical parkinsonian syndromes may help improve the holistic patient care provided and may encompass a range of conservative and pharmacotherapeutic treatments to address these symptoms.
Collapse
Affiliation(s)
- Piriyankan Ananthavarathan
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
- Department of Neuroinflammation, Institute of Neurology, University College London, 1st Floor, Russell Square House, 10-12 Russell Square, London, WC1B 5EH, UK.
| | - B Patel
- Department of Neurology, Queen's Hospital, Romford, Essex, UK
| | - S Peeros
- Department of Neurology, Queen's Hospital, Romford, Essex, UK
| | - R Obrocki
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Department of Neurology, Queen's Hospital, Romford, Essex, UK
| | - N Malek
- Department of Neurology, Queen's Hospital, Romford, Essex, UK
| |
Collapse
|
16
|
Uchida W, Kamagata K, Andica C, Takabayashi K, Saito Y, Owaki M, Fujita S, Hagiwara A, Wada A, Akashi T, Sano K, Hori M, Aoki S. Fiber-specific micro- and macroscopic white matter alterations in progressive supranuclear palsy and corticobasal syndrome. NPJ Parkinsons Dis 2023; 9:122. [PMID: 37591877 PMCID: PMC10435458 DOI: 10.1038/s41531-023-00565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are characterized by progressive white matter (WM) alterations associated with the prion-like spreading of four-repeat tau, which has been pathologically confirmed. It has been challenging to monitor the WM degeneration patterns underlying the clinical deficits in vivo. Here, a fiber-specific fiber density and fiber cross-section, and their combined measure estimated using fixel-based analysis (FBA), were cross-sectionally and longitudinally assessed in PSP (n = 20), CBS (n = 17), and healthy controls (n = 20). FBA indicated disease-specific progression patterns of fiber density loss and subsequent bundle atrophy consistent with the tau propagation patterns previously suggested in a histopathological study. This consistency suggests the new insight that FBA can monitor the progressive tau-related WM changes in vivo. Furthermore, fixel-wise metrics indicated strong correlations with motor and cognitive dysfunction and the classifiability of highly overlapping diseases. Our findings might also provide a tool to monitor clinical decline and classify both diseases.
Collapse
Affiliation(s)
- Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, Urayasu, Chiba, 279-0013, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Mana Owaki
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Katsuhiro Sano
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Ota-ku, Tokyo, 143-8541, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, Urayasu, Chiba, 279-0013, Japan
| |
Collapse
|
17
|
Shir D, Pham NTT, Botha H, Koga S, Kouri N, Ali F, Knopman DS, Petersen RC, Boeve BF, Kremers WK, Nguyen AT, Murray ME, Reichard RR, Dickson DW, Graff-Radford N, Josephs KA, Whitwell J, Graff-Radford J. Clinicoradiologic and Neuropathologic Evaluation of Corticobasal Syndrome. Neurology 2023; 101:e289-e299. [PMID: 37268436 PMCID: PMC10382268 DOI: 10.1212/wnl.0000000000207397] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Corticobasal syndrome (CBS) is a clinical phenotype characterized by asymmetric parkinsonism, rigidity, myoclonus, and apraxia. Originally believed secondary to corticobasal degeneration (CBD), mounting clinicopathologic studies have revealed heterogenous neuropathologies. The objectives of this study were to determine the pathologic heterogeneity of CBS, the clinicoradiologic findings associated with different underlying pathologies causing CBS, and the positive predictive value (PPV) of current diagnostic criteria for CBD among patients with a CBS. METHODS Clinical data, brain MRI, and neuropathologic data of patients followed at Mayo Clinic and diagnosed with CBS antemortem were reviewed according to neuropathology category at autopsy. RESULTS The cohort consisted of 113 patients with CBS, 61 (54%) female patients. Mean ± SD disease duration was 7 ± 3.7 years; mean ± SD age at death was 70.5 ± 9.1 years. The primary neuropathologic diagnoses were 43 (38%) CBD, 27 (24%) progressive supranuclear palsy (PSP), 17 (15%) Alzheimer disease (AD), 10 (9%) frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein 43 (TDP) inclusions, 7 (6%) diffuse Lewy body disease (DLBD)/AD, and 9 (8%) with other diagnoses. Patients with CBS-AD or CBS-DLBD/AD were youngest at death (median [interquartile range]: 64 [13], 64 [11] years) while CBS-PSP were oldest (77 [12.5] years, p = 0.024). Patients with CBS-DLBD/AD had the longest disease duration (9 [6] years), while CBS-other had the shortest (3 [4.25] years, p = 0.04). Posterior cortical signs and myoclonus were more characteristic of patients with CBS-AD and patients with CBS-DLBD/AD. Patients with CBS-DLBD/AD displayed more features of Lewy body dementia. Voxel-based morphometry revealed widespread cortical gray matter loss characteristic of CBS-AD, while CBS-CBD and CBS-PSP predominantly involved premotor regions with greater amount of white matter loss. Patients with CBS-DLBD/AD showed atrophy in a focal parieto-occipital region, and patients with CBS-FTLD-TDP had predominant prefrontal cortical loss. Patients with CBS-PSP had the lowest midbrain/pons ratio (p = 0.012). Of 67 cases meeting clinical criteria for possible CBD at presentation, 27 were pathology-proven CBD, yielding a PPV of 40%. DISCUSSION A variety of neurodegenerative disorders can be identified in patients with CBS, but clinical and regional imaging differences aid in predicting underlying neuropathology. PPV analysis of the current CBD diagnostic criteria revealed suboptimal performance. Biomarkers adequately sensitive and specific for CBD are needed.
Collapse
Affiliation(s)
- Dror Shir
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Nha Trang Thu Pham
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Hugo Botha
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Shunsuke Koga
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Naomi Kouri
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Farwa Ali
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - David S Knopman
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Ronald C Petersen
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Brad F Boeve
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Walter K Kremers
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Aivi T Nguyen
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Melissa E Murray
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - R Ross Reichard
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Dennis W Dickson
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Neill Graff-Radford
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL.
| | - Keith Anthony Josephs
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Jennifer Whitwell
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Jonathan Graff-Radford
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
18
|
Constantinides VC, Tentolouris-Piperas V, Paraskevas GP, Pyrgelis ES, Velonakis G, Karavasilis E, Toulas P, Boufidou F, Stefanis L, Kapaki E. Hippocampal subfield volumetry in corticobasal syndrome of diverse underlying pathologies. J Neurol 2023; 270:2059-2068. [PMID: 36565349 DOI: 10.1007/s00415-022-11538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Multiple pathologies may underlie corticobasal syndrome (CBS), including Alzheimer's disease (AD). Typical amnestic AD is characterized by early selective hippocampal atrophy. The profile of hippocampal atrophy in AD patients presenting as CBS (CBS-AD), compared to CBS patients of non-AD pathologies (CBS-nAD) and amnestic AD patients, has not been studied. OBJECTIVES To compare hippocampal subfield atrophy patterns between CBS-AD, CBS-nAD, typical amnestic AD patients, and control subjects. METHODS Automated hippocampal subfield volumetry was performed via the hippocampal subfield segmentation pipeline of Freesurfer 6.0 on 3D T1-weighted images. CBS patients were classified as CBS-AD or CBS-nAD based on CSF AD biomarkers by applying the AT(N) classification system. Mean volumes of nine hippocampal subfields, head-body-tail segments, total hippocampus, and entorhinal and parahippocampal gyrus cortical thickness were measured. RESULTS Eighty-three subjects were included (CBS-AD: n = 14; CBS-nAD: n = 17; amnestic AD: n = 29; controls: n = 23). CBS-AD patients had greater whole hippocampal and hippocampal subfield atrophy compared to CBS-nAD. CBS-AD and amnestic AD patients did not differ in subfield volumes. CBS-nAD did not exhibit hippocampal atrophy compared to controls, with the exception of fimbria. (Cohen's d = 1.27; p = 0.038). Presubiculum (Cohen's d = 1.00; p = 0.002) and hippocampal body (Cohen's d = 0.95; p = 0.001) volumes exhibited the greatest differences between CBS-AD and CBS-nAD. Hippocampal subfield volume provided combined sensitivity and specificity < 80% for the discrimination of CBS-AD from CBS-nAD. CONCLUSION CBS-AD and amnestic AD patients exhibit comparable, and significantly greater hippocampal atrophy compared to CBS-nAD patients. Hippocampal subfield volumetry in CBS is indicative of an AD underlying pathology.
Collapse
Affiliation(s)
- Vasilios C Constantinides
- First Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave., 11528, Athens, Greece.
| | - Vasileios Tentolouris-Piperas
- First Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave., 11528, Athens, Greece
| | - George P Paraskevas
- First Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave., 11528, Athens, Greece
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Attikon Hospital, Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- First Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave., 11528, Athens, Greece
| | - Georgios Velonakis
- Second Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiotis Toulas
- Second Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Fotini Boufidou
- First Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave., 11528, Athens, Greece
| | - Leonidas Stefanis
- First Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave., 11528, Athens, Greece
| | - Elisabeth Kapaki
- First Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave., 11528, Athens, Greece
| |
Collapse
|
19
|
Swallow DMA, Counsell CE. The evolution of diagnosis from symptom onset to death in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) compared to Parkinson’s disease (PD). J Neurol 2023:10.1007/s00415-023-11629-x. [DOI: 10.1007/s00415-023-11629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023]
Abstract
Abstract
Background
Misdiagnosis and delayed diagnosis in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are common. Few studies have systematically evaluated the diagnostic process from symptom onset to death in representative cohorts.
Methods
All PSP/CBD cases (n = 28/2) and age-sex matched Parkinson’s disease (PD) cases (n = 30) were identified from a UK prospective incident Parkinsonism cohort. Medical and research records were reviewed to compare median times from first index symptom to key diagnostic milestones and the nature/timing of secondary care referral and review.
Results
Index symptoms were similar apart from more tremor in PD (p < 0.001) and more impaired balance (p = 0.008) and falls (p = 0.004) in PSP/CBD. PD was diagnosed a median 0.96 years after index symptom. In PSP/CBD the median times from index symptom to identifying parkinsonism and then including PSP/CBD in the differential diagnosis and the final diagnosis were 1.88, 3.41 and 4.03 years, respectively (all p < 0.001). Survival from symptom onset in PSP/CBD and PD was not significantly different (5.98 vs 6.85 years, p = 0.72). More diagnoses (p < 0.001) were considered in PSP/CBD. Prior to diagnosis, PSP/CBD patients had more recurrent emergency attendances (33.3% vs 10.0%, p = 0.01) and were referred to more specialities than PD (median 5 vs 2). Time to any outpatient referral (0.70 vs 0.03 years, p = 0.025) and to specialist movement disorder review (1.96 vs 0.57 years, p = 0.002) was longer in PSP/CBD.
Conclusions
The duration and complexity of the diagnostic journey were greater in PSP/CBD than age-sex matched PD but can be improved. In this older cohort, there was little difference in survival from symptom onset in PSP/CBD and age-sex matched PD.
Collapse
|
20
|
Donadio V, Sturchio A, Rizzo G, Abu Rumeileh S, Liguori R, Espay AJ. Pathology vs pathogenesis: Rationale and pitfalls in the clinicopathology model of neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:35-55. [PMID: 36796947 DOI: 10.1016/b978-0-323-85538-9.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In neurodegenerative disorders, the term pathology is often implicitly referred to as pathogenesis. Pathology has been conceived as a window into the pathogenesis of neurodegenerative disorders. This clinicopathologic framework posits that what can be identified and quantified in postmortem brain tissue can explain both premortem clinical manifestations and the cause of death, a forensic approach to understanding neurodegeneration. As the century-old clinicopathology framework has yielded little correlation between pathology and clinical features or neuronal loss, the relationship between proteins and degeneration is ripe for revisitation. There are indeed two synchronous consequences of protein aggregation in neurodegeneration: the loss of the soluble/normal proteins on one; the accrual of the insoluble/abnormal fraction of these proteins on the other. The omission of the first part in the protein aggregation process is an artifact of the early autopsy studies: soluble, normal proteins have disappeared, with only the remaining insoluble fraction amenable to quantification. We here review the collective evidence from human data suggesting that protein aggregates, known collectively as pathology, are the consequence of many biological, toxic, and infectious exposures, but may not explain alone the cause or pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
| | - Andrea Sturchio
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden; James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Samir Abu Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
21
|
Constantinides VC, Paraskevas GP, Boufidou F, Bourbouli M, Pyrgelis ES, Stefanis L, Kapaki E. CSF Aβ42 and Aβ42/Aβ40 Ratio in Alzheimer's Disease and Frontotemporal Dementias. Diagnostics (Basel) 2023; 13:diagnostics13040783. [PMID: 36832271 PMCID: PMC9955886 DOI: 10.3390/diagnostics13040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Alzheimer's disease dementia (ADD) may manifest with atypical phenotypes, resembling behavioral variant frontotemporal dementia (bvFTD) and corticobasal syndrome (CBS), phenotypes which typically have an underlying frontotemporal lobar degeneration with tau proteinopathy (FTLD-tau), such as Pick's disease, corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), or FTLD with TDP-43 proteinopathy (FTLD-TDP). CSF biomarkers total and phosphorylated tau (τT and τP-181), and amyloid beta with 42 and 40 amino acids (Aβ42 and Aβ40) are biomarkers of AD pathology. The primary aim of this study was to compare the diagnostic accuracy of Aβ42 to Aβ42/Aβ40 ratio in: (a) differentiating ADD vs. frontotemporal dementias; (b) patients with AD pathology vs. non-AD pathologies; (c) compare biomarker ratios and composite markers to single CSF biomarkers in the differentiation of AD from FTD; Methods: In total, 263 subjects were included (ADD: n = 98; bvFTD: n = 49; PSP: n = 50; CBD: n = 45; controls: n = 21). CSF biomarkers were measured by commercially available ELISAs (EUROIMMUN). Multiple biomarker ratios (Aβ42/Aβ40; τT/τP-181; τT/Aβ42; τP-181/Aβ42) and composite markers (t-tau: τT/(Aβ42/Aβ40); p-tau: τP-181/(Aβ42/Aβ40) were calculated. ROC curve analysis was performed to compare AUCs of Aβ42 and Aβ42/Aβ40 ratio and relevant composite markers between ADD and FTD, as defined clinically. BIOMARKAPD/ABSI criteria (abnormal τT, τP-181 Aβ42, and Aβ42/Aβ40 ratio) were used to re-classify all patients into AD pathology vs. non-AD pathologies, and ROC curve analysis was repeated to compare Aβ42 and Aβ42/Aβ40; Results: Aβ42 did not differ from Aβ42/Aβ40 ratio in the differentiation of ADD from FTD (AUCs 0.752 and 0.788 respectively; p = 0.212). The τT/Aβ42 ratio provided maximal discrimination between ADD and FTD (AUC:0.893; sensitivity 88.8%, specificity 80%). BIOMARKAPD/ABSI criteria classified 60 patients as having AD pathology and 211 as non-AD. A total of 22 had discrepant results and were excluded. Aβ42/Aβ40 ratio was superior to Aβ42 in the differentiation of AD pathology from non-AD pathology (AUCs: 0.939 and 0.831, respectively; p < 0.001). In general, biomarker ratios and composite markers were superior to single CSF biomarkers in both analyses. CONCLUSIONS Aβ42/Aβ40 ratio is superior to Aβ42 in identifying AD pathology, irrespective of the clinical phenotype. CSF biomarker ratios and composite markers provide higher diagnostic accuracy compared to single CSF biomarkers.
Collapse
Affiliation(s)
- Vasilios C. Constantinides
- First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
- Neurochemistry and Biological Markers Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
- Correspondence: ; Tel.: +30-21-0728-9285
| | - George P. Paraskevas
- Neurochemistry and Biological Markers Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
- Second Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, “Attikon” University General Hospital, Rimini 1, 12462 Athens, Greece
| | - Fotini Boufidou
- Neurochemistry and Biological Markers Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| | - Mara Bourbouli
- Neurochemistry and Biological Markers Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| | - Leonidas Stefanis
- First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| | - Elisabeth Kapaki
- First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
- Neurochemistry and Biological Markers Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| |
Collapse
|
22
|
Nicastro N, Nencha U, Burkhard PR, Garibotto V. Dopaminergic imaging in degenerative parkinsonisms, an established clinical diagnostic tool. J Neurochem 2023; 164:346-363. [PMID: 34935143 DOI: 10.1111/jnc.15561] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) and other neurodegenerative parkinsonisms are characterised by loss of striatal dopaminergic neurons. Dopamine functional deficits can be measured in vivo using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) ligands assessing either presynaptic (e.g. dopamine synthesis and storage, transporter density) or postsynaptic terminals (i.e. D2 receptors availability). Nuclear medicine imaging thus helps the clinician to separate degenerative forms of parkinsonism with other neurological conditions, e.g. essential tremor or drug-induced parkinsonism. With the present study, we aimed at summarizing the current evidence about dopaminergic molecular imaging in the diagnostic evaluation of PD, atypical parkinsonian syndromes and dementia with Lewy bodies (DLB), as well as its potential to distinguish these conditions and to estimate disease progression. In fact, PET/SPECT methods are clinically validated and have been increasingly integrated into diagnostic guidelines (e.g. for PD and DLB). In addition, there is novel evidence on the classification properties of extrastriatal signal. Finally, dopamine imaging has an outstanding potential to detect neurodegeneration at the premotor stage, including REM-sleep behavior disorder and olfactory loss. Therefore, inclusion of subjects at an early stage for clinical trials can largely benefit from a validated in vivo biomarker such as presynaptic dopamine pathways PET/SPECT assessment.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Umberto Nencha
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre R Burkhard
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
23
|
Tau PET imaging in progressive supranuclear palsy: a systematic review and meta-analysis. J Neurol 2023; 270:2451-2467. [PMID: 36633672 DOI: 10.1007/s00415-022-11556-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To evaluate the difference of tau burden between patients with progressive supranuclear palsy (PSP) and healthy controls (HCs) or other neurodegenerative diseases using tau-positron emission tomography (PET) imaging. METHODS A systematic search on PubMed, Embase, and Web of Science databases was performed for tau-PET studies in PSP patients, up to April 1, 2022. Standardized mean differences (SMDs) of tau tracer uptake were calculated using random-effects models. Subgroup analysis based on the type of tau tracers, meta-regression, and sensitivity analysis were conducted. RESULTS Twenty-seven studies comprising 553 PSP, 626 HCs, and 406 other neurodegenerative diseases were included. Compared with HCs, PSP patients showed elevated tau binding in basal ganglia, midbrain, dentate nucleus, cerebellar white matter, and frontal lobe with decreasing SMD (SMD: 0.390-1.698). Compared with Parkinson's disease patients, increased tau binding was identified in the midbrain, basal ganglia, dentate nucleus, and frontal and parietal lobe in PSP patients with decreasing SMD (SMD: 0.503-1.853). PSP patients showed higher tau binding in the subthalamic nucleus (SMD = 1.351) and globus pallidus (SMD = 1.000), and lower binding in the cortex and parahippocampal gyrus than Alzheimer's disease patients (SMD: - 2.976 to - 1.018). PSP patients showed higher midbrain tau binding than multiple system atrophy patients (SMD = 1.269). CONCLUSION Tau PET imaging indicates different topography of tau deposition between PSP patients and HCs or other neurodegenerative disorders. The affinity and selectivity of tracers for 4R-tau and the off-target binding of tracers should be considered when interpreting the results.
Collapse
|
24
|
Morris HR. Blood based biomarkers for movement disorders. Acta Neurol Scand 2022; 146:353-361. [PMID: 36156206 PMCID: PMC9828103 DOI: 10.1111/ane.13700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 01/12/2023]
Abstract
Movement disorders have been carefully clinically defined, based on clinico-pathological series; however there is often diagnostic and prognostic uncertainty, especially in early stage disease. Blood-based biomarkers for Alzheimer's disease (AD), particularly p-tau181 and p-tau217, may be useful in the movement disorder clinic, especially in identifying corticobasal syndrome due to AD pathology and in identifying Parkinson's disease (PD) patients at high risk for the future development of dementia. Serum or plasma neurofilament light (NfL) may be useful in separating Parkinson's plus syndromes (progressive supranuclear palsy-PSP, multiple system atrophy - MSA, and corticobasal syndrome-CBS) from PD. NfL is also a prognostic biomarker, in that the level of baseline or cross-sectional plasma/serum NfL is associated with a worse prognosis in PD and PSP. The development of protein aggregation assays in cerebrospinal fluid and multiplex assays which can measure 100 s-1000s of proteins in blood will provide new tools and insights for movement disorders for clinicians and researchers. The challenge is in efficiently integrating these tools into clinical practice and multi-modal approaches, where biomarkers are combined with clinical, genetic, and imaging data may guide the future use of these technologies.
Collapse
Affiliation(s)
- Huw R. Morris
- Department of Clinical and Movement Neurosciences, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- UCL Movement Disorders CentreUniversity College LondonLondonUK
| |
Collapse
|
25
|
Yoshida M, Akagi A, Miyahara H, Riku Y, Ando T, Ikeda T, Yabata H, Moriyoshi H, Koizumi R, Iwasaki Y. Macroscopic diagnostic clue for parkinsonism. Neuropathology 2022; 42:394-419. [PMID: 35996308 DOI: 10.1111/neup.12853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/25/2022]
Abstract
The neuropathological background of parkinsonism includes various neurodegenerative disorders, including Lewy body disease (LBD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). The pathological diagnostic procedure begins by assessing the macroscopic findings to evaluate the degenerative lesions in brains with the naked eye. Usually, degenerative lesions show variable atrophy and brownish discoloration in accordance with disease-specific profiles. These macroscopic appearances support neuropathologists in identifying the relevant regions for microscopic examination. The neuropathological diagnosis of parkinsonism is based on regional distribution and fundamental proteinopathies in neurons and glia cells. LBD and MSA are synucleinopathies, and PSP and CBD are tauopathies. Among them, glial-predominant proteinopathy (MSA, PSP, and CBD) may play a significant role in volume reduction. Therefore, macroscopic inspection provides the appropriate direction for assessment. The disease duration, the severity of lesions, and mixed pathologies make the validation of macroscopic observations more complicated. In this review, we outline the macroscopic diagnostic clues in LBD, MSA, PSP, and CBD that could help with pathological refinement.
Collapse
Affiliation(s)
- Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Ando
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshimasa Ikeda
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Yabata
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Shiga University of Medical Science, Ohtsu
| | - Hideyuki Moriyoshi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuichi Koizumi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
26
|
Gallucci M, Grassivaro F, Da Ronch C, Fiore V, Bonifati DM, Bendini M, Zanusso G, Bonanni L. Patient with Corticobasal Syndrome Showing Disease-Associated Biomarkers of Dementia with Lewy Bodies: A Treviso Dementia (TREDEM) Registry Case Report. J Alzheimers Dis Rep 2022; 6:431-442. [PMID: 36186723 PMCID: PMC9484149 DOI: 10.3233/adr-220026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background An 82-year-old right-handed man, a retired teacher, reported the occurrence, three years earlier, of difficulties in moving his left arm and foot, tremor in his left hand, and gestures of the left upper limb that appeared to be independent of the patient's will. Objective We describe an unusual case of corticobasal syndrome (CBS) showing disease-associated biomarkers of dementia with Lewy bodies (DLB). Methods Clinical, neuropsychological, imaging, and biomarker evaluations were conducted, including tau and amyloid-β levels in the cerebrospinal fluid (CSF) and a RT-QuIC assay for α-synuclein both in the CSF and olfactory mucosa (OM), as well as a QEEG assessment. Results The patient presented resting tremor, mild extrapyramidal hypertonus, mild bradykinesia on the left side, and severe apraxia on the left upper limb. Brain MRI showed a diffuse right hemisphere atrophy which was prominent in the posterior parietal and temporal cortices, and moderate in the frontal cortex and the precuneus area. 18F-FDG PET imaging showed reduced glucose metabolism in the right lateral parietal, temporal, and frontal cortices with involvement of the right precuneus. The putamen did not appear to be pathological at DaTQUANT. Neuropsychological tests showed memory and visual-perceptual deficits. CSF tau and amyloid measurements did not show clear pathological values. RT-QuIC for α-synuclein in CSF and OM samples were positive. The QEEG analysis showed a pre-alpha dominant frequency in posterior derivations, typical of early stages of DLB. Conclusion Although in the present patient the clinical diagnosis was of probable CBS, unexpectedly positive biomarkers for DLB suggested the co-presence of multiple pathologies.
Collapse
Affiliation(s)
- Maurizio Gallucci
- Cognitive Impairment Center, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
- Associazione Alzheimer Treviso Onlus, Treviso, Italy
| | - Francesca Grassivaro
- Cognitive Impairment Center, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Chiara Da Ronch
- Cognitive Impairment Center, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Vittorio Fiore
- Nuclear Medicine Unit, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | | | - Matteo Bendini
- Neuroradiology Unit, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Gianluigi Zanusso
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
27
|
Magnetic Resonance Planimetry in the Differential Diagnosis between Parkinson’s Disease and Progressive Supranuclear Palsy. Brain Sci 2022; 12:brainsci12070949. [PMID: 35884755 PMCID: PMC9313181 DOI: 10.3390/brainsci12070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
The clinical differential diagnosis between Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) is often challenging. The description of milder PSP phenotypes strongly resembling PD, such as PSP-Parkinsonism, further increased the diagnostic challenge and the need for reliable neuroimaging biomarkers to enhance the diagnostic certainty. This review aims to summarize the contribution of a relatively simple and widely available imaging technique such as MR planimetry in the differential diagnosis between PD and PSP, focusing on the recent advancements in this field. The development of accurate MR planimetric biomarkers, together with the implementation of automated algorithms, led to robust and objective measures for the differential diagnosis of PSP and PD at the individual level. Evidence from longitudinal studies also suggests a role of MR planimetry in predicting the development of the PSP clinical signs, allowing to identify PSP patients before they meet diagnostic criteria when their clinical phenotype can be indistinguishable from PD. Finally, promising evidence exists on the possible association between MR planimetric measures and the underlying pathology, with important implications for trials with new disease-modifying target therapies.
Collapse
|
28
|
Olfati N, Shoeibi A, Litvan I. Clinical Spectrum of Tauopathies. Front Neurol 2022; 13:944806. [PMID: 35911892 PMCID: PMC9329580 DOI: 10.3389/fneur.2022.944806] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tauopathies are both clinical and pathological heterogeneous disorders characterized by neuronal and/or glial accumulation of misfolded tau protein. It is now well understood that every pathologic tauopathy may present with various clinical phenotypes based on the primary site of involvement and the spread and distribution of the pathology in the nervous system making clinicopathological correlation more and more challenging. The clinical spectrum of tauopathies includes syndromes with a strong association with an underlying primary tauopathy, including Richardson syndrome (RS), corticobasal syndrome (CBS), non-fluent agrammatic primary progressive aphasia (nfaPPA)/apraxia of speech, pure akinesia with gait freezing (PAGF), and behavioral variant frontotemporal dementia (bvFTD), or weak association with an underlying primary tauopathy, including Parkinsonian syndrome, late-onset cerebellar ataxia, primary lateral sclerosis, semantic variant PPA (svPPA), and amnestic syndrome. Here, we discuss clinical syndromes associated with various primary tauopathies and their distinguishing clinical features and new biomarkers becoming available to improve in vivo diagnosis. Although the typical phenotypic clinical presentations lead us to suspect specific underlying pathologies, it is still challenging to differentiate pathology accurately based on clinical findings due to large phenotypic overlaps. Larger pathology-confirmed studies to validate the use of different biomarkers and prospective longitudinal cohorts evaluating detailed clinical, biofluid, and imaging protocols in subjects presenting with heterogenous phenotypes reflecting a variety of suspected underlying pathologies are fundamental for a better understanding of the clinicopathological correlations.
Collapse
Affiliation(s)
- Nahid Olfati
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- UC San Diego Department of Neurosciences, Parkinson and Other Movement Disorder Center, San Diego, CA, United States
| | - Ali Shoeibi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Irene Litvan
- UC San Diego Department of Neurosciences, Parkinson and Other Movement Disorder Center, San Diego, CA, United States
| |
Collapse
|
29
|
Degenerative dementias: a question of syndrome or disease? NEUROLOGÍA (ENGLISH EDITION) 2022; 37:480-491. [DOI: 10.1016/j.nrleng.2019.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/07/2019] [Indexed: 11/20/2022] Open
|
30
|
Robles Bayón A. Degenerative dementias: A question of syndrome or disease? Neurologia 2022; 37:480-491. [PMID: 31331676 DOI: 10.1016/j.nrl.2019.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/07/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neurologists refer to numerous "syndromes,‿ consisting of specific combinations of clinical manifestations, following a specific progression pattern, and with the support of blood analysis (without genomic-proteomic parameters) and neuroimaging findings (MRI, CT, perfusion SPECT, or 18F-FDG-PET scans). Neurodegenerative "diseases,‿ on the other hand, are defined by specific combinations of clinical signs and histopathological findings; these must be confirmed by a clinical examination and a histology study or evidence of markers of a specific disorder for the diagnosis to be made. However, we currently know that most genetic and histopathological alterations can result in diverse syndromes. The genetic or histopathological aetiology of each syndrome is also heterogeneous, and we may encounter situations with pathophysiological alterations characterising more than one neurodegenerative disease. Sometimes, specific biomarkers are detected in the preclinical stage. DEVELOPMENT We performed a literature review to identify patients whose histopathological or genetic disorder was discordant with that expected for the clinical syndrome observed, as well as patients presenting multiple neurodegenerative diseases, confirming the heterogeneity and overlap between syndromes and diseases. We also observed that the treatments currently prescribed to patients with neurodegenerative diseases are symptomatic. CONCLUSIONS Our findings show that the search for disease biomarkers should be restricted to research centres, given the lack of disease-modifying drugs or treatments improving survival. Moreover, syndromes and specific molecular or histopathological alterations should be managed independently of one another, and new "diseases‿ should be defined and adapted to current knowledge and practice.
Collapse
Affiliation(s)
- A Robles Bayón
- Unidad de Neurología Cognitiva, Hospital HM Rosaleda, Santiago de Compostela, La Coruña, España.
| |
Collapse
|
31
|
Koga S, Josephs KA, Aiba I, Yoshida M, Dickson DW. Neuropathology and emerging biomarkers in corticobasal syndrome. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328586. [PMID: 35697501 PMCID: PMC9380481 DOI: 10.1136/jnnp-2021-328586] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022]
Abstract
Corticobasal syndrome (CBS) is a clinical syndrome characterised by progressive asymmetric limb rigidity and apraxia with dystonia, myoclonus, cortical sensory loss and alien limb phenomenon. Corticobasal degeneration (CBD) is one of the most common underlying pathologies of CBS, but other disorders, such as progressive supranuclear palsy (PSP), Alzheimer's disease (AD) and frontotemporal lobar degeneration with TDP-43 inclusions, are also associated with this syndrome.In this review, we describe common and rare neuropathological findings in CBS, including tauopathies, synucleinopathies, TDP-43 proteinopathies, fused in sarcoma proteinopathy, prion disease (Creutzfeldt-Jakob disease) and cerebrovascular disease, based on a narrative review of the literature and clinicopathological studies from two brain banks. Genetic mutations associated with CBS, including GRN and MAPT, are also reviewed. Clinicopathological studies on neurodegenerative disorders associated with CBS have shown that regardless of the underlying pathology, frontoparietal, as well as motor and premotor pathology is associated with CBS. Clinical features that can predict the underlying pathology of CBS remain unclear. Using AD-related biomarkers (ie, amyloid and tau positron emission tomography (PET) and fluid biomarkers), CBS caused by AD often can be differentiated from other causes of CBS. Tau PET may help distinguish AD from other tauopathies and non-tauopathies, but it remains challenging to differentiate non-AD tauopathies, especially PSP and CBD. Although the current clinical diagnostic criteria for CBS have suboptimal sensitivity and specificity, emerging biomarkers hold promise for future improvements in the diagnosis of underlying pathology in patients with CBS.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ikuko Aiba
- Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Aichi, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
32
|
Chung EJ, Cho HJ, Jang W, Hur DY, Kim YS, Lee KH, Kim SJ. A Case of Pathologically Confirmed Corticobasal Degeneration Initially Presenting as Progressive Supranuclear Palsy Syndrome. J Korean Med Sci 2022; 37:e183. [PMID: 35668689 PMCID: PMC9171350 DOI: 10.3346/jkms.2022.37.e183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) overlap clinically with parkinsonism or extrapyramidal signs and pathologically with tauopathy. Asymmetric parkinsonism and cortical dysfunctions are classical features of CBD. However, symmetric parkinsonism, frequent falls, and supranuclear gaze palsy are key features of PSP. Despite biochemically classified as 4R tauopathies, tufted astrocytes of PSP and astrocytic plaque of CBD show pathologically important differences. Herein, we report a 68-year-old man with pathologically confirmed CBD. He was clinically suspected to have PSP because of progressive gait disturbances, frequent falls, and vertical saccade limitation. Neurological examination performed at age 71 revealed symmetrical bradykinesia, axial rigidity, and postural instability with worsening of early existing symptoms. Magnetic resonance imaging of the brain taken at age 70 detected midbrain and left frontotemporal atrophy and right middle cerebral artery infarction. Left frontotemporoparietal hypometabolism and asymmetrically decreased fluoro-propyl-carbomethoxy-iodophenyl-tropane uptake in the basal ganglia were observed. The autopsy was performed at the time of his death (at age 72), which revealed severe pallor of the substantia nigra and mildly hypopigmented locus ceruleus. AT8 immunohistochemistry and Gallyas staining revealed tau-positive neuronal and glial inclusions, astrocytic plaques, ballooned neurons, and numerous threads in both gray and white matter. No abnormal inclusions were revealed by beta-amyloid, α-synuclein and TDP-43 immunohistochemistry. In our case, cerebral infarction, periventricular and deep white matter ischemic changes, and midbrain atrophy were likely to produce PSP-CBD overlapping symptoms. However, our patient was finally confirmed to have CBD based on pathological findings such as astrocytic plaques.
Collapse
Affiliation(s)
- Eun Joo Chung
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
- Inje University Busan Paik Hospital Brain Bank, Busan, Korea
- Dementia and Neurodegenerative Disease Research Center, Inje University, Busan, Korea
| | - Hwa Jin Cho
- Inje University Busan Paik Hospital Brain Bank, Busan, Korea
- Department of Pathology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Wooyoung Jang
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Dae Young Hur
- Inje University Busan Paik Hospital Brain Bank, Busan, Korea
- Department of Anatomy, Inje University College of Medicine, Busan, Korea
| | - Yeong Seok Kim
- Inje University Busan Paik Hospital Brain Bank, Busan, Korea
- Department of Anatomy, Inje University College of Medicine, Busan, Korea
| | - Kyung-Hwa Lee
- Department of Pathology, BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
- Chonnam National University Hospital Brain Bank, Gwangju, Korea.
| | - Sang Jin Kim
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
- Inje University Busan Paik Hospital Brain Bank, Busan, Korea
- Dementia and Neurodegenerative Disease Research Center, Inje University, Busan, Korea.
| |
Collapse
|
33
|
Constantinides VC, Souvatzoglou M, Paraskevas GP, Chalioti M, Boufidou F, Stefanis L, Kapaki E. Dopamine transporter SPECT imaging in corticobasal syndrome: A peak into the underlying pathology? Acta Neurol Scand 2022; 145:762-769. [PMID: 35307816 DOI: 10.1111/ane.13614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Multiple pathologies may underlie corticobasal syndrome (CBS), including Alzheimer's disease (AD). Dopamine transporter density imaging with Ioflupane 123 I SPECT (DaTscan) may be normal in CBS. No studies to date have examined the relationship between DaTscan status and underlying pathology in CBS. OBJECTIVES The main objective of the study was to test whether a normal DaTscan in CBS patients is indicative of an underlying AD pathology, as determined by cerebrospinal fluid (CSF) biomarkers. METHODS Eighteen CBS patients were included. They were divided into patients with an AD and a non-AD disease pathology, based on their cerebrospinal fluid biochemical profile. A typical AD CSF profile was defined as an increase in total and phosphorylated at threonine 181 tau protein in addition to a decrease in amyloid-beta with 42 amino acids. DaTscan data were compared in these two groups. RESULTS Eight of the 18 CBS patients (44%) had a normal DaTscan. Seven of the 18 CBS patients (39%) had an AD cerebrospinal fluid biochemical profile. Two of seven CBS patients with AD biomarker profile had abnormal DaTscans. Three of 11 CBS patients with a non-AD biomarker profile had normal DaTscans. A normal DaTscan was indicative of AD pathology with suboptimal (~70%) sensitivity and specificity. Semi-quantitative DaTscan analysis did not differentiate between AD from non-AD CSF biomarker profile in CBS. CONCLUSION A normal DaTscan is indicative of AD in CBS, but the sensitivity and specificity of DaTscan as an in vivo marker of AD pathology is suboptimal.
Collapse
Affiliation(s)
- Vasilios C. Constantinides
- 1st Department of Neurology National and Kapodistrian University of Athens School of Medicine Eginition Hospital Athens Greece
| | - Michail Souvatzoglou
- Nuclear Medicine Division 1st Radiology Department National and Kapodistrian University of Athens Aretaieion Hospital Athens Greece
| | - George P. Paraskevas
- 1st Department of Neurology National and Kapodistrian University of Athens School of Medicine Eginition Hospital Athens Greece
- 2nd Department of Neurology National and Kapodistrian University of Athens School of Medicine Attikon Hospital Athens Greece
| | - Maria Chalioti
- Nuclear Medicine Division 1st Radiology Department National and Kapodistrian University of Athens Aretaieion Hospital Athens Greece
| | - Fotini Boufidou
- 1st Department of Neurology National and Kapodistrian University of Athens School of Medicine Eginition Hospital Athens Greece
| | - Leonidas Stefanis
- 1st Department of Neurology National and Kapodistrian University of Athens School of Medicine Eginition Hospital Athens Greece
| | - Elisabeth Kapaki
- 1st Department of Neurology National and Kapodistrian University of Athens School of Medicine Eginition Hospital Athens Greece
| |
Collapse
|
34
|
Shin HW, Hong SW, Youn YC. Clinical Aspects of the Differential Diagnosis of Parkinson's Disease and Parkinsonism. J Clin Neurol 2022; 18:259-270. [PMID: 35589315 PMCID: PMC9163948 DOI: 10.3988/jcn.2022.18.3.259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinsonism is a clinical syndrome presenting with bradykinesia, tremor, rigidity, and postural instability. Nonmotor symptoms have recently been included in the parkinsonian syndrome, which was traditionally associated with motor symptoms only. Various pathologically distinct and unrelated diseases have the same clinical manifestations as parkinsonism or parkinsonian syndrome. The etiologies of parkinsonism are classified as neurodegenerative diseases related to the accumulation of toxic protein molecules or diseases that are not neurodegenerative. The former class includes Parkinson's disease (PD), multiple-system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Over the past decade, clinical diagnostic criteria have been validated and updated to improve the accuracy of diagnosing these diseases. The latter class of disorders unrelated to neurodegenerative diseases are classified as secondary parkinsonism, and include drug-induced parkinsonism (DIP), vascular parkinsonism, and idiopathic normal-pressure hydrocephalus (iNPH). DIP and iNPH are regarded as reversible and treatable forms of parkinsonism. However, studies have suggested that the absence of protein accumulation in the nervous system as well as managing the underlying causes do not guarantee recovery. Here we review the differential diagnosis of PD and parkinsonism, mainly focusing on the clinical aspects. In addition, we describe recent updates to the clinical criteria of various disorders sharing clinical symptoms with parkinsonism.
Collapse
Affiliation(s)
- Hae-Won Shin
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sang-Wook Hong
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea.
| |
Collapse
|
35
|
Burke SE, Phillips JS, Olm CA, Peterson CS, Cook PA, Gee JC, Lee EB, Trojanowski JQ, Massimo L, Irwin DJ, Grossman M. Phases of volume loss in patients with known frontotemporal lobar degeneration spectrum pathology. Neurobiol Aging 2022; 113:95-107. [PMID: 35325815 PMCID: PMC9241163 DOI: 10.1016/j.neurobiolaging.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) includes clinically similar FTLD-tau or FTLD-TDP proteinopathies which lack in vivo markers for accurate antemortem diagnosis. To identify early distinguishing sites of cortical atrophy between groups, we retrospectively analyzed in vivo volumetric MRI from 42 FTLD-Tau and 21 FTLD-TDP patients and validated these findings with postmortem measures of pathological burden. Our frequency-based staging model revealed distinct loci of maximal early cortical atrophy in each group, including dorsolateral and medial frontal regions in FTLD-Tau and ventral frontal and anterior temporal regions in FTLD-TDP. Sørenson-Dice calculations between proteinopathy groups showed little overlap of phases. Conversely, within-group subtypes showed good overlap between 3R- and 4R-tauopathies, and between TDP-43 Types A and C for early regions with subtle divergence between subtypes in subsequent phases of atrophy. Postmortem validation found an association of imaging phases with pathologic burden within FTLD-tau (F(4, 238) = 17.44, p < 0.001) and FTLD-TDP (F(4,245) = 42.32, p < 0.001). These results suggest that relatively early, distinct markers of atrophy may distinguish FTLD proteinopathies during life.
Collapse
Affiliation(s)
- Sarah E Burke
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA..
| | - Jeffrey S Phillips
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - Christopher A Olm
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA.; Department of Radiology, Penn Image Computing & Science Lab (PICSL), Philadelphia, PA, USA
| | - Claire S Peterson
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA.; Digital Pathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip A Cook
- Department of Radiology, Penn Image Computing & Science Lab (PICSL), Philadelphia, PA, USA
| | - James C Gee
- Department of Radiology, Penn Image Computing & Science Lab (PICSL), Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Center of Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center of Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Lauren Massimo
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA.; Digital Pathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| |
Collapse
|
36
|
Parmera JB, de Oliveira MCB, Rodrigues RD, Coutinho AM. Progressive supranuclear palsy and corticobasal degeneration: novel clinical concepts and advances in biomarkers. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:126-136. [PMID: 35976324 PMCID: PMC9491415 DOI: 10.1590/0004-282x-anp-2022-s134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are sporadic adult-onset primary tauopathies clinically classified among the atypical parkinsonian syndromes. They are intrinsically related with regard to their clinical features, pathology, biochemistry, and genetic risk factors. OBJECTIVES This review highlights the current knowledge on PSP and CBD, focusing on evolving clinical concepts, new diagnostic criteria, and advances in biomarkers. METHODS We performed a non-systematic literature review through the PubMed database. The search was restricted to articles written in English, published from 1964 to date. RESULTS Clinicopathologic and in vivo biomarkers studies have broadened PSP and CBD clinical phenotypes. They are now recognized as a range of motor and behavioral syndromes associated with underlying 4R-tauopathy neuropathology. The Movement Disorders Society PSP diagnostic criteria included clinical variants apart from the classical description, increasing diagnostic sensitivity. Meanwhile, imaging biomarkers have explored the complexity of symptoms and pathological processes related to corticobasal syndrome and CBD. CONCLUSIONS In recent years, several prospective or clinicopathologic studies have assessed clinical, radiological, and fluid biomarkers that have helped us gain a better understanding of the complexity of the 4R-tauopathies, mainly PSP and CBD.
Collapse
Affiliation(s)
- Jacy Bezerra Parmera
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
| | | | - Roberta Diehl Rodrigues
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, Laboratório de Medicina Nuclear (LIM 44), São Paulo, SP, Brazil
| | - Artur Martins Coutinho
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Radiologia, Centro de Medicina Nuclear, Laboratório de Medicina Nuclear (LIM 43), São Paulo, SP, Brazil
| |
Collapse
|
37
|
Kassavetis P, Kaski D, Anderson T, Hallett M. Eye Movement Disorders in Movement Disorders. Mov Disord Clin Pract 2022; 9:284-295. [PMID: 35402641 PMCID: PMC8974874 DOI: 10.1002/mdc3.13413] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 11/05/2022] Open
Abstract
Oculomotor assessment is an essential element of the neurological clinical examination and is particularly important when evaluating patients with movements disorders. Most of the brain is involved in oculomotor control, and thus many neurological conditions present with oculomotor abnormalities. Each of the different classes of eye movements and their features can provide important information that can facilitate differential diagnosis. This educational review presents a clinical approach to eye movement abnormalities that are commonly seen in parkinsonism, ataxia, dystonia, myoclonus, tremor, and chorea. In parkinsonism, subtle signs such as prominent square wave jerks, impaired vertical optokinetic nystagmus, and/or the "round the houses" sign suggest early progressive supranuclear gaze palsy before vertical gaze is restricted. In ataxia, nystagmus is common, but other findings such as oculomotor apraxia, supranuclear gaze palsy, impaired fixation, or saccadic pursuit can contribute to diagnoses such as ataxia with oculomotor apraxia, Niemann-Pick type C, or ataxia telangiectasia. Opsoclonus myoclonus and oculopalatal myoclonus present with characteristic phenomenology and are usually easy to identify. The oculomotor exam is usually unremarkable in isolated dystonia, but oculogyric crisis is a medical emergency and should be recognized and treated in a timely manner. Gaze impersistence in a patient with chorea suggests Huntington's disease, but in a patient with dystonia or tremor, Wilson's disease is more likely. Finally, functional eye movements can reinforce the clinical impression of a functional movement disorder.
Collapse
Affiliation(s)
- Panagiotis Kassavetis
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
| | - Diego Kaski
- Centre for Vestibular and Behavioural Neurosciences, Department of Clinical and Movement NeurosciencesUniversity College London, Institute of NeurologyLondonUK
| | - Tim Anderson
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
38
|
Kaiserová M, Menšíková K, Tučková L, Hluštík P, Kaňovský P. Case Report: Concomitant Alzheimer's and Lewy-Related Pathology Extending the Spectrum of Underlying Pathologies of Corticobasal Syndrome. Front Neurosci 2021; 15:742042. [PMID: 34803587 PMCID: PMC8595290 DOI: 10.3389/fnins.2021.742042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
Corticobasal syndrome (CBS) is clinically characterized by progressive asymmetric rigidity and apraxia together with symptoms suggestive of cortical involvement and basal ganglia dysfunction. The spectrum of neurodegenerative diseases that can manifest with CBS is wide. The associations of CBS with corticobasal degeneration, progressive supranuclear palsy, Alzheimer's disease, frontotemporal lobar degenerations, Creutzfeldt–Jakob disease, or diffuse Lewy body pathology have been reported. We describe the case of a 71-year-old woman with CBS. The histopathological examination of brain tissue revealed concomitant pathology corresponding to the limbic stage of Lewy-related pathology and the intermediate stage of Alzheimer's-type pathology. To date, there have been only a few cases with a similar combination of pathology manifesting with the CBS phenotype that have been described in the literature. The extent and distribution of pathological changes in these cases were somewhat different from ours, and significance for clinical manifestation was attributed to only one of these pathologies. In our case, we assume that both types of pathology contributed to the development of the disease, considering the presumed specific spread of both types of pathological processes according to Braak's staging. Our case expands the spectrum of neurodegenerative pathological processes that may manifest with the typical CBS phenotype. Also, it points out the importance of identifying specific biomarkers that would enable more accurate in vivo differential diagnosis and more accurate determination of the underlying pathological processes of these diseases.
Collapse
Affiliation(s)
- Michaela Kaiserová
- Department of Neurology, University Hospital, Palacky University, Olomouc, Czechia.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Katerina Menšíková
- Department of Neurology, University Hospital, Palacky University, Olomouc, Czechia.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Lucie Tučková
- Department of Clinical and Molecular Pathology, University Hospital, Palacky University, Olomouc, Czechia
| | - Petr Hluštík
- Department of Neurology, University Hospital, Palacky University, Olomouc, Czechia.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Petr Kaňovský
- Department of Neurology, University Hospital, Palacky University, Olomouc, Czechia.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| |
Collapse
|
39
|
Song M, Beyer L, Kaiser L, Barthel H, van Eimeren T, Marek K, Nitschmann A, Scheifele M, Palleis C, Respondek G, Kern M, Biechele G, Hammes J, Bischof G, Barbe M, Onur Ö, Jessen F, Saur D, Schroeter ML, Rumpf JJ, Rullmann M, Schildan A, Patt M, Neumaier B, Barret O, Madonia J, Russell DS, Stephens AW, Mueller A, Roeber S, Herms J, Bötzel K, Danek A, Levin J, Classen J, Höglinger GU, Bartenstein P, Villemagne V, Drzezga A, Seibyl J, Sabri O, Boening G, Ziegler S, Brendel M. Binding characteristics of [ 18F]PI-2620 distinguish the clinically predicted tau isoform in different tauopathies by PET. J Cereb Blood Flow Metab 2021; 41:2957-2972. [PMID: 34044665 PMCID: PMC8545042 DOI: 10.1177/0271678x211018904] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The novel tau-PET tracer [18F]PI-2620 detects the 3/4-repeat-(R)-tauopathy Alzheimer's disease (AD) and the 4R-tauopathies corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP). We determined whether [18F]PI-2620 binding characteristics deriving from non-invasive reference tissue modelling differentiate 3/4R- and 4R-tauopathies. Ten patients with a 3/4R tauopathy (AD continuum) and 29 patients with a 4R tauopathy (CBS, PSP) were evaluated. [18F]PI-2620 PET scans were acquired 0-60 min p.i. and the distribution volume ratio (DVR) was calculated. [18F]PI-2620-positive clusters (DVR ≥ 2.5 SD vs. 11 healthy controls) were evaluated by non-invasive kinetic modelling. R1 (delivery), k2 & k2a (efflux), DVR, 30-60 min standardized-uptake-value-ratios (SUVR30-60) and the linear slope of post-perfusion phase SUVR (9-60 min p.i.) were compared between 3/4R- and 4R-tauopathies. Cortical clusters of 4R-tau cases indicated higher delivery (R1SRTM: 0.92 ± 0.21 vs. 0.83 ± 0.10, p = 0.0007), higher efflux (k2SRTM: 0.17/min ±0.21/min vs. 0.06/min ± 0.07/min, p < 0.0001), lower DVR (1.1 ± 0.1 vs. 1.4 ± 0.2, p < 0.0001), lower SUVR30-60 (1.3 ± 0.2 vs. 1.8 ± 0.3, p < 0.0001) and flatter slopes of the post-perfusion phase (slope9-60: 0.006/min ± 0.007/min vs. 0.016/min ± 0.008/min, p < 0.0001) when compared to 3/4R-tau cases. [18F]PI-2620 binding characteristics in cortical regions differentiate 3/4R- and 4R-tauopathies. Higher tracer clearance indicates less stable binding in 4R tauopathies when compared to 3/4R-tauopathies.
Collapse
Affiliation(s)
- Mengmeng Song
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Thilo van Eimeren
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany.,Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ken Marek
- InviCRO, LLC, Boston, MA, USA.,Molecular Neuroimaging, A Division of inviCRO, New Haven, CT, USA
| | - Alexander Nitschmann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Carla Palleis
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Gesine Respondek
- Department of Neurology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Maike Kern
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jochen Hammes
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Gèrard Bischof
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Michael Barbe
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Özgür Onur
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, University Hospital Cologne, Cologne, Germany.,Center for Memory Disorders, University Hospital Cologne, Cologne, Germany
| | - Dorothee Saur
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Matthias L Schroeter
- Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany.,LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Max- Planck-Institute of Human Cognitive and Brain Sciences, Leipzig, Germany.,FTLD Consortium Germany, Ulm, Germany
| | | | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Andreas Schildan
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Bernd Neumaier
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany.,Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Olivier Barret
- InviCRO, LLC, Boston, MA, USA.,Molecular Neuroimaging, A Division of inviCRO, New Haven, CT, USA.,Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Jennifer Madonia
- InviCRO, LLC, Boston, MA, USA.,Molecular Neuroimaging, A Division of inviCRO, New Haven, CT, USA
| | - David S Russell
- InviCRO, LLC, Boston, MA, USA.,Molecular Neuroimaging, A Division of inviCRO, New Haven, CT, USA
| | | | | | - Sigrun Roeber
- Center for Neuropathology and Prion Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Center for Neuropathology and Prion Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Kai Bötzel
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Adrian Danek
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Günter U Höglinger
- Department of Neurology, Medizinische Hochschule Hannover, Hannover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Technical University Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Victor Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - John Seibyl
- InviCRO, LLC, Boston, MA, USA.,Molecular Neuroimaging, A Division of inviCRO, New Haven, CT, USA
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Guido Boening
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
40
|
Stamelou M, Respondek G, Giagkou N, Whitwell JL, Kovacs GG, Höglinger GU. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol 2021; 17:601-620. [PMID: 34426686 DOI: 10.1038/s41582-021-00541-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Tauopathies are classified according to whether tau deposits predominantly contain tau isoforms with three or four repeats of the microtubule-binding domain. Those in which four-repeat (4R) tau predominates are known as 4R-tauopathies, and include progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, globular glial tauopathies and conditions associated with specific MAPT mutations. In these diseases, 4R-tau deposits are found in various cell types and anatomical regions of the brain and the conditions share pathological, pathophysiological and clinical characteristics. Despite being considered 'prototype' tauopathies and, therefore, ideal for studying neuroprotective agents, 4R-tauopathies are still severe and untreatable diseases for which no validated biomarkers exist. However, advances in research have addressed the issues of phenotypic overlap, early clinical diagnosis, pathophysiology and identification of biomarkers, setting a road map towards development of treatments. New clinical criteria have been developed and large cohorts with early disease are being followed up in prospective studies. New clinical trial readouts are emerging and biomarker research is focused on molecular pathways that have been identified. Lessons learned from failed trials of neuroprotective drugs are being used to design new trials. In this Review, we present an overview of the latest research in 4R-tauopathies, with a focus on progressive supranuclear palsy, and discuss how current evidence dictates ongoing and future research goals.
Collapse
Affiliation(s)
- Maria Stamelou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece. .,European University of Cyprus, Nicosia, Cyprus. .,Philipps University, Marburg, Germany.
| | - Gesine Respondek
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Nikolaos Giagkou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece
| | | | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Günter U Höglinger
- Department of Neurology, Hanover Medical School, Hanover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
41
|
Di Pietro M, Russo M, Dono F, Carrarini C, Thomas A, Di Stefano V, Telese R, Bonanni L, Sensi SL, Onofrj M, Franciotti R. A Critical Review of Alien Limb-Related Phenomena and Implications for Functional Magnetic Resonance Imaging Studies. Front Neurol 2021; 12:661130. [PMID: 34566830 PMCID: PMC8458742 DOI: 10.3389/fneur.2021.661130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/06/2021] [Indexed: 11/27/2022] Open
Abstract
Consensus criteria on corticobasal degeneration (CBD) include alien limb (AL) phenomena. However, the gist of the behavioral features of AL is still “a matter of debate.” CBD-related AL has so far included the description of involuntary movements, frontal release phenomena (frontal AL), or asomatognosia (posterior or “real” AL). In this context, the most frequent symptoms are language and praxis deficits and cortical sensory misperception. However, asomatognosia requires, by definition, intact perception and cognition. Thus, to make a proper diagnosis of AL in the context of CBD, cognitive and language dysfunctions must be carefully verified and objectively assessed. We reviewed the current literature on AL in CBD and now propose that the generic use of the term AL should be avoided. This catchall AL term should instead be deconstructed. We propose that the term AL is appropriate to describe clinical features associated with specific brain lesions. More discrete sets of regionally bound clinical signs that depend on dysfunctions of specific brain areas need to be assessed and presented when posing the diagnosis. Thus, in our opinion, the AL term should be employed in association with precise descriptions of the accompanying involuntary movements, sensory misperceptions, agnosia-asomatognosia contents, and the presence of utilization behavior. The review also offers an overview of functional magnetic resonance imaging-based studies evaluating AL-related phenomena. In addition, we provide a complementary set of video clips depicting CBD-related involuntary movements that should not mistakenly be interpreted as signs of AL.
Collapse
Affiliation(s)
- Martina Di Pietro
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Vincenzo Di Stefano
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Roberta Telese
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,IRCCS C. Mondino Foundation, Pavia, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy.,YDA Foundation, Institute of Immune Therapy and Advanced Biological Treatment, Pescara, Italy
| | - Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
42
|
Parmera JB, de Almeida IJ, de Oliveira MCB, Silagi ML, de Godoi Carneiro C, Studart-Neto A, Ono CR, Reis Barbosa E, Nitrini R, Buchpiguel CA, Brucki SMD, Coutinho AM. Metabolic and Structural Signatures of Speech and Language Impairment in Corticobasal Syndrome: A Multimodal PET/MRI Study. Front Neurol 2021; 12:702052. [PMID: 34526958 PMCID: PMC8435851 DOI: 10.3389/fneur.2021.702052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Corticobasal syndrome (CBS) is a progressive neurological disorder related to multiple underlying pathologies, including four-repeat tauopathies, such as corticobasal degeneration and progressive supranuclear palsy, and Alzheimer's disease (AD). Speech and language are commonly impaired, encompassing a broad spectrum of deficits. We aimed to investigate CBS speech and language impairment patterns in light of a multimodal imaging approach. Materials and Methods: Thirty-one patients with probable CBS were prospectively evaluated concerning their speech–language, cognitive, and motor profiles. They underwent positron emission tomography with [18F]fluorodeoxyglucose (FDG-PET) and [11C]Pittsburgh Compound-B (PIB-PET) on a hybrid PET-MRI machine to assess their amyloid status. PIB-PET images were classified based on visual and semi-quantitative analyses. Quantitative group analyses were performed on FDG-PET data, and atrophy patterns on MRI were investigated using voxel-based morphometry (VBM). Thirty healthy participants were recruited as imaging controls. Results: Aphasia was the second most prominent cognitive impairment, presented in 67.7% of the cases, following apraxia (96.8%). We identified a wide linguistic profile, ranging from nonfluent variant-primary progressive aphasia to lexical–semantic deficits, mostly with impaired verbal fluency. PIB-PET was classified as negative (CBS-A– group) in 18/31 (58%) and positive (CBS-A+ group) in 13/31 (42%) patients. The frequency of dysarthria was significantly higher in the CBS-A– group than in the CBS-A+ group (55.6 vs. 7.7%, p = 0.008). CBS patients with dysarthria had a left-sided hypometabolism at frontal regions, with a major cluster at the left inferior frontal gyrus and premotor cortex. They showed brain atrophy mainly at the opercular frontal gyrus and putamen. There was a positive correlation between [18F]FDG uptake and semantic verbal fluency at the left inferior (p = 0.006, R2 = 0.2326), middle (0.0054, R2 = 0.2376), and superior temporal gyri (p = 0.0066, R2 = 0.2276). Relative to the phonemic verbal fluency, we found a positive correlation at the left frontal opercular gyrus (p = 0.0003, R2 = 0.3685), the inferior (p = 0.0004, R2 = 0.3537), and the middle temporal gyri (p = 0.0001, R2 = 0.3993). Discussion: In the spectrum of language impairment profile, dysarthria might be helpful to distinguish CBS patients not related to AD. Metabolic and structural signatures depicted from this feature provide further insights into the motor speech production network and are also helpful to differentiate CBS variants.
Collapse
Affiliation(s)
- Jacy Bezerra Parmera
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Isabel Junqueira de Almeida
- Department of Physical Therapy, Speech, and Occupational Therapy, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Castello Barbosa de Oliveira
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Neurology Unit, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Marcela Lima Silagi
- Department of Speech, Language and Hearing Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Camila de Godoi Carneiro
- Laboratory of Nuclear Medicine, Nuclear Medicine Center and Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Adalberto Studart-Neto
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carla Rachel Ono
- Laboratory of Nuclear Medicine, Nuclear Medicine Center and Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Egberto Reis Barbosa
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine, Nuclear Medicine Center and Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Artur Martins Coutinho
- Laboratory of Nuclear Medicine, Nuclear Medicine Center and Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Bluett B, Pantelyat AY, Litvan I, Ali F, Apetauerova D, Bega D, Bloom L, Bower J, Boxer AL, Dale ML, Dhall R, Duquette A, Fernandez HH, Fleisher JE, Grossman M, Howell M, Kerwin DR, Leegwater-Kim J, Lepage C, Ljubenkov PA, Mancini M, McFarland NR, Moretti P, Myrick E, Patel P, Plummer LS, Rodriguez-Porcel F, Rojas J, Sidiropoulos C, Sklerov M, Sokol LL, Tuite PJ, VandeVrede L, Wilhelm J, Wills AMA, Xie T, Golbe LI. Best Practices in the Clinical Management of Progressive Supranuclear Palsy and Corticobasal Syndrome: A Consensus Statement of the CurePSP Centers of Care. Front Neurol 2021; 12:694872. [PMID: 34276544 PMCID: PMC8284317 DOI: 10.3389/fneur.2021.694872] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS; the most common phenotype of corticobasal degeneration) are tauopathies with a relentless course, usually starting in the mid-60s and leading to death after an average of 7 years. There is as yet no specific or disease-modifying treatment. Clinical deficits in PSP are numerous, involve the entire neuraxis, and present as several discrete phenotypes. They center on rigidity, bradykinesia, postural instability, gait freezing, supranuclear ocular motor impairment, dysarthria, dysphagia, incontinence, sleep disorders, frontal cognitive dysfunction, and a variety of behavioral changes. CBS presents with prominent and usually asymmetric dystonia, apraxia, myoclonus, pyramidal signs, and cortical sensory loss. The symptoms and deficits of PSP and CBS are amenable to a variety of treatment strategies but most physicians, including many neurologists, are reluctant to care for patients with these conditions because of unfamiliarity with their multiplicity of interacting symptoms and deficits. CurePSP, the organization devoted to support, research, and education for PSP and CBS, created its CurePSP Centers of Care network in North America in 2017 to improve patient access to clinical expertise and develop collaborations. The directors of the 25 centers have created this consensus document outlining best practices in the management of PSP and CBS. They formed a writing committee for each of 12 sub-topics. A 4-member Steering Committee collated and edited the contributions. The result was returned to the entire cohort of authors for further comments, which were considered for incorporation by the Steering Committee. The authors hope that this publication will serve as a convenient guide for all clinicians caring for patients with PSP and CBS and that it will improve care for patients with these devastating but manageable disorders.
Collapse
Affiliation(s)
- Brent Bluett
- Neurology, Pacific Central Coast Health Center, Dignity Health, San Luis Obispo, CA, United States
- Neurology, Stanford University, Stanford, CA, United States
| | - Alexander Y. Pantelyat
- Neurology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Irene Litvan
- Neurology, University of California, San Diego, San Diego, CA, United States
| | - Farwa Ali
- Neurology, Mayo Clinic, Rochester, MN, United States
| | - Diana Apetauerova
- Neurology, Lahey Hospital and Medical Center, Burlington, MA, United States
| | - Danny Bega
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lisa Bloom
- Neurology, Surgery, University of Chicago, Chicago, IL, United States
| | - James Bower
- Neurology, Mayo Clinic, Rochester, MN, United States
| | - Adam L. Boxer
- Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Marian L. Dale
- Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Rohit Dhall
- Neurology, University of Arkansas for Medical Sciences, Little Rock, AK, United States
| | - Antoine Duquette
- Service de Neurologie, Département de Médecine, Unité de Troubles du Mouvement André-Barbeau, Centre Hospitalier de l'Université de Service de Neurologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Hubert H. Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jori E. Fleisher
- Neurological Sciences, Rush Medical College, Rush University, Chicago, IL, United States
| | - Murray Grossman
- Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael Howell
- Neurology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Diana R. Kerwin
- Geriatrics, Presbyterian Hospital of Dallas, Dallas, TX, United States
| | | | - Christiane Lepage
- Service de Neurologie, Département de Médecine, Unité de Troubles du Mouvement André-Barbeau, Centre Hospitalier de l'Université de Service de Neurologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | | | - Martina Mancini
- Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Nikolaus R. McFarland
- Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Paolo Moretti
- Neurology, The University of Utah, Salt Lake City, UT, United States
| | - Erica Myrick
- Neurological Sciences, Rush Medical College, Rush University, Chicago, IL, United States
| | - Pritika Patel
- Neurology, Lahey Hospital and Medical Center, Burlington, MA, United States
| | - Laura S. Plummer
- Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Julio Rojas
- Neurology, University of California, San Francisco, San Francisco, CA, United States
| | | | - Miriam Sklerov
- Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leonard L. Sokol
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Paul J. Tuite
- Neurology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Lawren VandeVrede
- Neurology, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer Wilhelm
- Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Anne-Marie A. Wills
- Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Tao Xie
- Neurology, Surgery, University of Chicago, Chicago, IL, United States
| | - Lawrence I. Golbe
- Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
44
|
Ichinose K, Watanabe M, Mizutani S, Tanizawa T, Uchihara T, Fujigasaki H. An autopsy case of corticobasal syndrome with pure diffuse Lewy Body Disease. Neurocase 2021; 27:231-237. [PMID: 34128767 DOI: 10.1080/13554794.2021.1921220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Corticobasal syndrome (CBS) is associated with diverse pathological substrates such as tau, prion protein, transactive response and, rarely, alpha synuclein. We report the case of a54-year-old man, who presented with asymmetric levodopa-poor-responsive parkinsonism, frontal lobe signs and behavioral changes. He was diagnosed with CBS, and postmortem analyses revealed Lewy body disease Braak stage VI without comorbid pathologies. Retrospectively, the clinical course of our patient and previous reports indicate that CBS plus mood changes and autonomic dysfunction, including reduced uptake of metaiodobenzylguanidine, are predictive factors of Lewy body pathology, even if the clinical picture is atypical.
Collapse
Affiliation(s)
- Keiko Ichinose
- Department of Neurology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Mutsufusa Watanabe
- Department of Neurology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Saneyuki Mizutani
- Department of Neurology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Toru Tanizawa
- Department of Clinical Examination, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Toshiki Uchihara
- Department of Neurology and Neurological Science Tokyo Medical and Dental University, Tokyo, Japan.,Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Hiroto Fujigasaki
- Department of Neurology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| |
Collapse
|
45
|
Benvenutto A, Guedj E, Felician O, Eusebio A, Azulay JP, Ceccaldi M, Koric L. Clinical Phenotypes in Corticobasal Syndrome with or without Amyloidosis Biomarkers. J Alzheimers Dis 2021; 74:331-343. [PMID: 32039846 DOI: 10.3233/jad-190961] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Corticobasal syndrome (CBS) is a neuropathologically heterogeneous entity. The use of cerebrospinal fluid and amyloid biomarkers enables detection of underlying Alzheimer's disease (AD) pathology. We thus compared clinical, eye movement, and 18FDG-PET imaging characteristics in CBS in two groups of patients divided according to their amyloid biomarkers profile. Fourteen patients presenting with CBS and amyloidosis (CBS-A+) were compared with 16 CBS patients without amyloidosis (CBS-A-). The two groups showed similar motor abnormalities (parkinsonism, dystonia) and global cognitive functions. Unlike CBS-A+ patients who displayed more posterior cortical abnormalities, CBS-A- patients demonstrated more anterior cortical and brain stem dysfunctions on the basis of neuropsychological testing, study of saccade velocities and brain hypometabolism areas on 18FDG-PET. Interestingly, Dopamine Transporter SPECT imaging showed similar levels of dopaminergic degeneration in both groups. These findings confirm common and distinct brain abnormalities between the different neurodegenerative diseases that result in CBS. We demonstrate the importance of a multidisciplinary approach to improve diagnosis in vivo in particular on oculomotor examination.
Collapse
Affiliation(s)
- Agnès Benvenutto
- Department of Neurology and Neuropsychology, and CMMR PACA Ouest, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Eric Guedj
- Department of Nuclear Medecine, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,CERIMED, Aix-Marseille Univ, Marseille, France.,Aix Marseille Univ, UMR 7249, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Olivier Felician
- Department of Neurology and Neuropsychology, and CMMR PACA Ouest, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix-Marseille Univ, INSERM UMR 1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders Department, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix-Marseille Univ, CNRS, INT, Institut Neurosciences Timone, Marseille, France
| | - Jean-Philippe Azulay
- Department of Neurology and Movement Disorders Department, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix-Marseille Univ, CNRS, INT, Institut Neurosciences Timone, Marseille, France
| | - Mathieu Ceccaldi
- Department of Neurology and Neuropsychology, and CMMR PACA Ouest, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix-Marseille Univ, INSERM UMR 1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Lejla Koric
- Department of Neurology and Neuropsychology, and CMMR PACA Ouest, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, UMR 7249, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|
46
|
Palleis C, Brendel M, Finze A, Weidinger E, Bötzel K, Danek A, Beyer L, Nitschmann A, Kern M, Biechele G, Rauchmann BS, Häckert J, Höllerhage M, Stephens AW, Drzezga A, van Eimeren T, Villemagne VL, Schildan A, Barthel H, Patt M, Sabri O, Bartenstein P, Perneczky R, Haass C, Levin J, Höglinger GU. Cortical [ 18 F]PI-2620 Binding Differentiates Corticobasal Syndrome Subtypes. Mov Disord 2021; 36:2104-2115. [PMID: 33951244 DOI: 10.1002/mds.28624] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Corticobasal syndrome is associated with cerebral protein aggregates composed of 4-repeat (~50% of cases) or mixed 3-repeat/4-repeat tau isoforms (~25% of cases) or nontauopathies (~25% of cases). OBJECTIVES The aim of this single-center study was to investigate the diagnostic value of the tau PET-ligand [18 F]PI-2620 in patients with corticobasal syndrome. METHODS Forty-five patients (71.5 ± 7.6 years) with corticobasal syndrome and 14 age-matched healthy controls underwent [18 F]PI-2620-PET. Beta-amyloid status was determined by cerebral β-amyloid PET and/or CSF analysis. Subcortical and cortical [18 F]PI-2620 binding was quantitatively and visually compared between β-amyloid-positive and -negative patients and controls. Regional [18 F]PI-2620 binding was correlated with clinical and demographic data. RESULTS Twenty-four percent (11 of 45) were β-amyloid-positive. Significantly elevated [18 F]PI-2620 distribution volume ratios were observed in both β-amyloid-positive and β-amyloid-negative patients versus controls in the dorsolateral prefrontal cortex and basal ganglia. Cortical [18 F]PI-2620 PET positivity was distinctly higher in β-amyloid-positive compared with β-amyloid-negative patients with pronounced involvement of the dorsolateral prefrontal cortex. Semiquantitative analysis of [18 F]PI-2620 PET revealed a sensitivity of 91% for β-amyloid-positive and of 65% for β-amyloid-negative cases, which is in excellent agreement with prior clinicopathological data. Regardless of β-amyloid status, hemispheric lateralization of [18 F]PI-2620 signal reflected contralateral predominance of clinical disease severity. CONCLUSIONS Our data indicate a value of [18 F]PI-2620 for evaluating corticobasal syndrome, providing quantitatively and regionally distinct signals in β-amyloid-positive as well as β-amyloid-negative corticobasal syndrome. In corticobasal syndrome, [18 F]PI-2620 may potentially serve for a differential diagnosis and for monitoring disease progression. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Carla Palleis
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Endy Weidinger
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | - Maike Kern
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, Ludwig-Maximilians-University, Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Jan Häckert
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | | | | | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany.,Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, Julich, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Victor L Villemagne
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andreas Schildan
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | | | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London, United Kingdom
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
47
|
Dunalska A, Pikul J, Schok K, Wiejak KA, Alster P. The Significance of Vascular Pathogenesis in the Examination of Corticobasal Syndrome. Front Aging Neurosci 2021; 13:668614. [PMID: 34017244 PMCID: PMC8129188 DOI: 10.3389/fnagi.2021.668614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Corticobasal syndrome (CBS) is a clinical entity, classified as an atypical Parkinsonism, characterized by both motor and higher cortical dysfunctions. The clinical manifestation of CBS is associated with several pathologies, among which corticobasal degeneration (CBD) is the most common. The aim of our study was to elaborate on the possible vascular pathogenesis of CBS and consider types of vascular lesions in these cases. Several cases of vascular CBS are described in the literature. The majority of presented patients were affected by internal carotid artery (ICA) stenosis and ischemic strokes; few cases were associated with vascular malformations or autoimmune diseases. Vascular CBS is preceded by an abrupt onset. The clinical manifestation does not significantly differ with non-vascular CBS. Patients with vascular CBS are usually elderly; often with coexistent hypertension, dyslipidemia and diabetes mellitus. Inferring from our observations, cerebral hypoperfusion can play a significant role in neuropathological changes in neurodegenerative diseases. To the best of our knowledge paper is the first comprehensive review of vascular CBS and we are positive that our observations show that further research concerning the vascular pathogenesis of tauopathy atypical Parkinsonism is required.
Collapse
Affiliation(s)
- Anna Dunalska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Julia Pikul
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Schok
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Anna Wiejak
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
48
|
Abstract
Two pathologically distinct neurodegenerative conditions, progressive supranuclear palsy and corticobasal degeneration, share in common deposits of tau proteins that differ both molecularly and ultrastructurally from the common tau deposits diagnostic of Alzheimer disease. The proteinopathy in these disorders is characterized by fibrillary aggregates of 4R tau proteins. The clinical presentations of progressive supranuclear palsy and of corticobasal degeneration are often confused with more common disorders such as Parkinson disease or subtypes of frontotemporal lobar degeneration. Neither of these 4R tau disorders has effective therapy, and while there are emerging molecular imaging approaches to identify patients earlier in the course of disease, there are as yet no reliably sensitive and specific approaches to diagnoses in life. In this review, aspects of the clinical syndromes, neuropathology, and molecular biomarker imaging studies applicable to progressive supranuclear palsy and to corticobasal degeneration will be presented. Future development of more accurate molecular imaging approaches is proposed.
Collapse
Affiliation(s)
- Kirk A Frey
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, The University of Michigan Health System, Ann Arbor, MI.
| |
Collapse
|
49
|
Shea YF, Pan Y, Mak HKF, Bao Y, Lee SC, Chiu PKC, Chan HWF. A systematic review of atypical Alzheimer's disease including behavioural and psychological symptoms. Psychogeriatrics 2021; 21:396-406. [PMID: 33594793 DOI: 10.1111/psyg.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the commonest cause of dementia, characterized by the clinical presentation of progressive anterograde episodic memory impairment. However, atypical presentation of patients is increasingly recognized. These atypical AD include logopenic aphasia, behavioural variant AD, posterior cortical atrophy, and corticobasal syndrome. These atypical AD are more common in patients with young onset AD before the age of 65 years old. Since medical needs (including the behavioural and psychological symptoms of dementia) of atypical AD patients could be different from typical AD patients, it is important for clinicians to be aware of these atypical forms of AD. In addition, disease modifying treatment may be available in the future. This review aims at providing an update on various important subtypes of atypical AD including behavioural and psychological symptoms.
Collapse
Affiliation(s)
- Yat-Fung Shea
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Yining Pan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Henry Ka-Fung Mak
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yiwen Bao
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Shui-Ching Lee
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Patrick Ka-Chun Chiu
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Hon-Wai Felix Chan
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| |
Collapse
|
50
|
Xu M, Lu M, Zhang W, Jin Q, Chen Y. Simultaneous Detection of Six Isoforms of Tau Protein in Human Cerebrospinal Fluid by Multidimensional Mass Spectrometry-Based Targeted Proteomics. J Proteome Res 2021; 20:2299-2307. [PMID: 33843226 DOI: 10.1021/acs.jproteome.0c00826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abnormal expression of Tau protein can cause the development of Alzheimer's disease (AD). So far, much evidence has demonstrated that Tau has multiple isoforms. These isoforms are suggested to have distinct physiological roles and contribute unequally to the progress of AD. Thus, detection of individual Tau isoforms may be helpful to better understand the link between clinical outcome and Tau status and to further improve AD diagnosis and treatment. However, few studies have been conducted on absolute quantification of Tau isoforms, probably due to high sequence homology and also low abundance of these isoforms in biofluids such as cerebrospinal fluid (CSF). Therefore, mass spectrometry-based targeted proteomics was attempted here. This targeted proteomics approach can principally measure a protein of interest at the surrogate peptide level, yet little has been done to detect protein isoforms, probably due to lack of isoform-specific surrogate peptides in mass spectrometry. In this study, separations in more dimensions were added, including immunoprecipitation (IP) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for sample pretreatment and systems of linear equations for post-lab data extraction. Moreover, the reliability of the approach including IP enrichment, gel separation, and linear algebra algorithms was discussed. As a result, each isoform of Tau protein can be individually detected and quantified. Using IP enrichment, ∼250-fold enhancement of sensitivity was achieved. The ultimate LOQ was 0.50 nM. Finally, this multidimensional mass spectrometry-based targeted proteomics assay was validated and applied to simultaneous quantitative analysis of six Tau isoforms in CSF of AD patients.
Collapse
Affiliation(s)
- Mengying Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Meiyan Lu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wenjun Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qingwen Jin
- Sir Run Run Hospital Affiliated to Nanjing Medical University, Nanjing 211100, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.,State Key Laboratory of Reproductive Medicine, Nanjing 210029, China.,Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Nanjing 210029, China
| |
Collapse
|