1
|
Theparambil SM, Begum G, Rose CR. pH regulating mechanisms of astrocytes: A critical component in physiology and disease of the brain. Cell Calcium 2024; 120:102882. [PMID: 38631162 PMCID: PMC11423562 DOI: 10.1016/j.ceca.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H+]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H+] (pHi) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pHi regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid. Notably, astrocyte pH regulators are modulated by various neuronal signals, suggesting their pivotal role in regulating brain acid-base balance in both health and disease. This review presents the mechanisms involved in pH regulation in astrocytes and discusses their potential impact on extracellular pH under physiological conditions and in brain disorders. Targeting astrocytic pH regulatory mechanisms represents a promising therapeutic approach for modulating brain acid-base balance in diseases, offering a potential critical contribution to neuroprotection.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Faculty of Health and Medicine, Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, Lancaster, UK.
| | - Gulnaz Begum
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
2
|
Nguyen J, Win PW, Nagano TS, Shin EH, Newcomb C, Arking DE, Castellani CA. Mitochondrial DNA copy number reduction via in vitro TFAM knockout remodels the nuclear epigenome and transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577835. [PMID: 38352513 PMCID: PMC10862824 DOI: 10.1101/2024.01.29.577835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is associated with several age-related chronic diseases and is a predictor of all-cause mortality. Here, we examine site-specific differential nuclear DNA (nDNA) methylation and differential gene expression resulting from in vitro reduction of mtDNA-CN to uncover shared genes and biological pathways mediating the effect of mtDNA-CN on disease. Epigenome and transcriptome profiles were generated for three independent human embryonic kidney (HEK293T) cell lines harbouring a mitochondrial transcription factor A (TFAM) heterozygous knockout generated via CRISPR-Cas9, and matched control lines. We identified 4,242 differentially methylated sites, 228 differentially methylated regions, and 179 differentially expressed genes associated with mtDNA-CN. Integrated analysis uncovered 381 Gene-CpG pairs. GABAA receptor genes and related pathways, the neuroactive ligand receptor interaction pathway, ABCD1/2 gene activity, and cell signalling processes were overrepresented, providing insight into the underlying biological mechanisms facilitating these associations. We also report evidence implicating chromatin state regulatory mechanisms as modulators of mtDNA-CN effect on gene expression. We demonstrate that mitochondrial DNA variation signals to the nuclear DNA epigenome and transcriptome and may lead to nuclear remodelling relevant to development, aging, and complex disease.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Phyo W. Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tyler Shin Nagano
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Elly H. Shin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Charles Newcomb
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christina A. Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Children’s Health Research Institute, Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
3
|
Abstract
Carbonic anhydrase II deficiency (OMIM # 259730), initially called "osteopetrosis with renal tubular acidosis and cerebral calcification syndrome", reveals an important role for the enzyme carbonic anhydrase II (CA II) in osteoclast and renal tubule function. Discovered in 1972 and subsequently given various names, CA II deficiency now describes >100 affected individuals encountered predominantly from the Middle East and Mediterranean region. In 1983, CA II deficiency emerged as the first osteopetrosis (OPT) understood metabolically, and in 1991 the first understood molecularly. CA II deficiency is the paradigm OPT featuring failure of osteoclasts to resorb bone due to inability to acidify their pericellular milieu. The disorder presents late in infancy or early in childhood with fracturing, developmental delay, weakness, short stature, and/or cranial nerve compression and palsy. Mental retardation is common. The skeletal findings may improve by adult life, and CA II deficiency can be associated with a normal life-span. Therefore, it has been considered an "intermediate" type of OPT. In CA II deficiency, OPT is uniquely accompanied by renal tubular acidosis (RTA) of proximal, distal, or combined type featuring hyperchloremic metabolic acidosis, rarely with hypokalemia and paralysis. Cerebral calcification uniquely appears in early childhood. The etiology is bi-allelic loss-of-function mutations of CA2 that encodes CA II. Prenatal diagnosis requires mutational analysis of CA2. Although this enzymopathy reveals how CA II is important for the skeleton and kidney tubule, the pathogenesis of the mental subnormality and cerebral calcification is less well understood. Several mouse models of CA II deficiency have shown growth hormone deficiency, yet currently there is no standard pharmacologic therapy for patients. Treatment of the systemic acidosis is often begun when growth is complete. Although CA II deficiency is an "osteoclast-rich" OPT, and therefore transplantation of healthy osteoclasts can improve the skeletal disease, the RTA and central nervous system difficulties persist.
Collapse
Affiliation(s)
- Michael P Whyte
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Calder AD, Arulkumaran S, D'Arco F. Imaging in osteopetrosis. Bone 2022; 165:116560. [PMID: 36116759 DOI: 10.1016/j.bone.2022.116560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
Abstract
Imaging investigations are critical in the management of children with suspected and confirmed osteopetrosis. In severe cases, imaging can provide rapid confirmation of the diagnosis, whilst in milder cases, imaging findings may be the first or only indicators of the disease. Imaging can also identify major complications, including fractures and neurological compromise. We review the pathophysiological basis for the imaging findings in osteopetrosis, focusing on the impact of loss of various osteoclast functions leading to elevated bone density, hyperostosis, modelling abnormalities and bone fragility. We give an overview of the specific imaging findings, both skeletal and neuroradiological, in the spectrum of osteopetrotic disorders, including in the related entities of pyknodysostosis and dysosteosclerosis. We also explore potential radiological differential diagnoses.
Collapse
Affiliation(s)
- Alistair D Calder
- Radiology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, United Kingdom.
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Felice D'Arco
- Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, United Kingdom
| |
Collapse
|
5
|
Agrawal N, Mahata R, Chakraborty PP, Basu K. Secondary distal renal tubular acidosis and sclerotic metabolic bone disease in seronegative spondyloarthropathy. BMJ Case Rep 2022; 15:e248712. [PMID: 35292549 PMCID: PMC8928265 DOI: 10.1136/bcr-2021-248712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 11/03/2022] Open
Abstract
Adults with distal renal tubular acidosis (dRTA) commonly present with hypokalaemia (with/without paralysis), nephrolithiasis/nephrocalcinosis and vague musculoskeletal symptoms. All adults with dRTA should be thoroughly evaluated for systemic diseases, certain medications and toxins. The leading cause of acquired or secondary dRTA in adults is primary Sjögren syndrome (SS); however, other collagen vascular diseases (CVDs) including seronegative spondyloarthropathy (SSpA) may at times give rise to secondary dRTA. Metabolic bone disease is often encountered in adults with dRTA, and the list includes osteomalacia and secondary osteoporosis; sclerotic metabolic bone disease is an extremely rare manifestation of dRTA. Coexistence of dRTA and sclerotic bone disease is seen in primary dRTA due to mutation in CA2 gene and acquired dRTA secondary to systemic fluorosis. Primary SS and SSpA, rarely if ever, may also lead to both secondary dRTA and osteosclerosis. Circulating autoantibodies against carbonic anhydrase II and possibly calcium sensing receptor may explain both these features in patients with CVD.
Collapse
Affiliation(s)
- Neeti Agrawal
- Endocrinology & Metabolism, Medical College and Hospital Kolkata, Kolkata, West Bengal, India
| | - Rahin Mahata
- Endocrinology & Metabolism, Medical College and Hospital Kolkata, Kolkata, West Bengal, India
| | | | - Kaushik Basu
- General Medicine & Rheumatology, Medical College and Hospital Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Ma R, Johnson JHR, Tang Y, Fitzgerald MC. Analysis of Brain Protein Stability Changes in Mouse Models of Normal Aging and α-Synucleinopathy Reveals Age- and Disease-Related Differences. J Proteome Res 2021; 20:5156-5168. [PMID: 34606284 DOI: 10.1021/acs.jproteome.1c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we utilize the stability of proteins from rates of oxidation (SPROX) technique, to profile the thermodynamic stabilities of proteins in brain tissue cell lysates from Huα-Syn(A53T) transgenic mice at three time points including at 1 month (n = 9), at 6 months (n = 7), and at the time (between 9 and 16 months) a mouse became symptomatic (n = 8). The thermodynamic stability profiles generated here on 332 proteins were compared to thermodynamic stability profiles generated on the same proteins from similarly aged wild-type mice using a two-way unbalanced analysis of variance (ANOVA) analysis. This analysis identified a group of 22 proteins with age-related protein stability changes and a group of 11 proteins that were differentially stabilized in the Huα-Syn(A53T) transgenic mouse model. A total of 9 of the 11 proteins identified here with disease-related stability changes have been previously detected in human cerebral spinal fluid and thus have potential utility as biomarkers of Parkinson's disease (PD). The differential stability observed for one protein, glutamate decarboxylase 2 (Gad2), with an age-related change in stability, was consistent with the differential presence of a known, age-related truncation product of this protein, which is shown here to have a higher folding stability than full-length Gad2. Mass spectrometry data were deposited at ProteomeXchange (PXD016985).
Collapse
Affiliation(s)
- Renze Ma
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, United States
| | - Julia H R Johnson
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, United States
| | - Yun Tang
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, United States
| |
Collapse
|
7
|
Imenez Silva PH, Unwin R, Hoorn EJ, Ortiz A, Trepiccione F, Nielsen R, Pesic V, Hafez G, Fouque D, Massy ZA, De Zeeuw CI, Capasso G, Wagner CA. Acidosis, cognitive dysfunction and motor impairments in patients with kidney disease. Nephrol Dial Transplant 2021; 37:ii4-ii12. [PMID: 34718761 PMCID: PMC8713149 DOI: 10.1093/ndt/gfab216] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolic acidosis, defined as a plasma or serum bicarbonate concentration <22 mmol/L, is a frequent consequence of chronic kidney disease (CKD) and occurs in ~10–30% of patients with advanced stages of CKD. Likewise, in patients with a kidney transplant, prevalence rates of metabolic acidosis range from 20% to 50%. CKD has recently been associated with cognitive dysfunction, including mild cognitive impairment with memory and attention deficits, reduced executive functions and morphological damage detectable with imaging. Also, impaired motor functions and loss of muscle strength are often found in patients with advanced CKD, which in part may be attributed to altered central nervous system (CNS) functions. While the exact mechanisms of how CKD may cause cognitive dysfunction and reduced motor functions are still debated, recent data point towards the possibility that acidosis is one modifiable contributor to cognitive dysfunction. This review summarizes recent evidence for an association between acidosis and cognitive dysfunction in patients with CKD and discusses potential mechanisms by which acidosis may impact CNS functions. The review also identifies important open questions to be answered to improve prevention and therapy of cognitive dysfunction in the setting of metabolic acidosis in patients with CKD.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zürich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zürich, Switzerland
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Ewout J Hoorn
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Francesco Trepiccione
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy.,Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Rikke Nielsen
- Department of Biomedicine-Anatomy, University of Aarhus, Aarhus, Denmark
| | - Vesna Pesic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Denis Fouque
- CarMeN, INSERM 1060, Université Claude Bernard Lyon 1, Lyon, France.,Service de Néphrologie, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Ziad A Massy
- Department of Nephrology, Ambroise Paré University Hospital, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt, France.,Centre de Recherche en Epidémiologie et Santé des Populations, Institut National de la Santé et de la Recherche Médicale U1018-Team 5, Université de Versailles Saint-Quentin-en-Yvelines, University Paris Saclay, Villejuif, France
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy of Art and Science, Amsterdam, The Netherlands
| | - Giovambattista Capasso
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy.,Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zürich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zürich, Switzerland
| | | |
Collapse
|
8
|
Kar P, Millo T, Saha S, Mahtab S, Agarwal S, Goswami R. Osteogenic Mechanisms of Basal Ganglia Calcification and its ex vivo Model in the Hypoparathyroid Milieu. Endocrinology 2021; 162:6128830. [PMID: 33539507 DOI: 10.1210/endocr/bqab024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Indexed: 01/10/2023]
Abstract
CONTEXT Basal-ganglia calcification (BGC) is common (70%) in patients with chronic hypoparathyroidism. Interestingly, cortical gray matter is spared from calcification. The mechanism of BGC, role of hyperphosphatemia, and modulation of osteogenic molecules by parathyroid hormone (PTH) in its pathogenesis is not clear. OBJECTIVE We assessed the expression of a large repertoire of molecules with proosteogenic or antiosteogenic effects, including neuroprogenitor cells in caudate, dentate, and cortical gray matter from normal autopsy tissues. The effect of high phosphate and PTH was assessed in an ex vivo model of BGC using striatum tissue culture of the Sprague-Dawley rat. METHODS The messenger RNA and protein expression of 39 molecules involved in multiple osteogenic pathways were assessed in 25 autopsy tissues using reverse-transcriptase polymerase chain reaction, Western blot, and immunofluorescence. The striatal culture was maintained in a hypoparathyroid milieu for 24 days with and without (a) high phosphate (10-mm β-glycerophosphate) and (b) PTH(1-34) (50 ng/mL Dulbecco's modified Eagle's medium-F12 media) for their effect on striatal calcification and osteogenic molecules. RESULTS Procalcification molecules (osteonectin, β-catenin, klotho, FZD4, NT5E, LRP5, WNT3A, collagen-1α, and SOX2-positive neuroprogenitor stem cells) had significantly higher expression in the caudate than gray matter. Caudate nuclei also had higher expression of antiosteogenic molecules (osteopontin, carbonic anhydrase-II [CA-II], MGP, sclerostin, ISG15, ENPP1, and USP18). In an ex vivo model, striatum culture showed an increased propensity for calcified nodules with mineral deposition similar to that of bone tissue on Fourier-transformed infrared spectroscopy, alizarin, and von Kossa stain. Mineralization in striatal culture was enhanced by high phosphate and decreased by exogenous PTH through increased expression of CA-II. CONCLUSION This study provides a conceptual advance on the molecular mechanisms of BGC and the possibility of PTH therapy to prevent this complication in a hypoparathyroid milieu.
Collapse
Affiliation(s)
- Parmita Kar
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Tabin Millo
- Department of Forensic Medicine and Toxicology, New Delhi, Delhi, India
| | - Soma Saha
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Samrina Mahtab
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Shipra Agarwal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Ravinder Goswami
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
9
|
Intracranial calcifications in childhood: Part 2. Pediatr Radiol 2020; 50:1448-1475. [PMID: 32642802 DOI: 10.1007/s00247-020-04716-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
This article is the second of a two-part series on intracranial calcification in childhood. In Part 1, the authors discussed the main differences between physiological and pathological intracranial calcification. They also outlined histological intracranial calcification characteristics and how these can be detected across different neuroimaging modalities. Part 1 emphasized the importance of age at presentation and intracranial calcification location and proposed a comprehensive neuroimaging approach toward the differential diagnosis of the causes of intracranial calcification. Pathological intracranial calcification can be divided into infectious, congenital, endocrine/metabolic, vascular, and neoplastic. In Part 2, the chief focus is on discussing endocrine/metabolic, vascular, and neoplastic intracranial calcification etiologies of intracranial calcification. Endocrine/metabolic diseases causing intracranial calcification are mainly from parathyroid and thyroid dysfunction and inborn errors of metabolism, such as mitochondrial disorders (MELAS, or mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes; Kearns-Sayre; and Cockayne syndromes), interferonopathies (Aicardi-Goutières syndrome), and lysosomal disorders (Krabbe disease). Specific noninfectious causes of intracranial calcification that mimic TORCH (toxoplasmosis, other [syphilis, varicella-zoster, parvovirus B19], rubella, cytomegalovirus, and herpes) infections are known as pseudo-TORCH. Cavernous malformations, arteriovenous malformations, arteriovenous fistulas, and chronic venous hypertension are also known causes of intracranial calcification. Other vascular-related causes of intracranial calcification include early atherosclerosis presentation (children with risk factors such as hyperhomocysteinemia, familial hypercholesterolemia, and others), healed hematoma, radiotherapy treatment, old infarct, and disorders of the microvasculature such as COL4A1- and COL4A2-related diseases. Intracranial calcification is also seen in several pediatric brain tumors. Clinical and familial information such as age at presentation, maternal exposure to teratogens including viruses, and association with chromosomal abnormalities, pathogenic genes, and postnatal infections facilitates narrowing the differential diagnosis of the multiple causes of intracranial calcification.
Collapse
|
10
|
Ozsoy HZ. Carbonic anhydrase enzymes: Likely targets for inhalational anesthetics. Med Hypotheses 2019; 123:118-124. [PMID: 30696581 DOI: 10.1016/j.mehy.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Inhalational anesthetics such as isoflurane, desflurane and halothane are the mainstay medications for surgical procedures; upon inhalation, they produce anesthesia described as reversible unconsciousness with the features of amnesia, sleep, immobility and analgesia. To date, how they produce anesthesia is unknown. This study proposes that carbonic anhydrase enzymes are likely targets mediating the actions of inhalational anesthetics. Carbonic anhydrase enzymes, commonly expressed in living organisms, utilize carbon dioxide (CO2) as a substrate and can generate H+ and HCO3- from CO2 with a great efficiency. There are remarkable lines of evidence for their likely roles in mediating anesthetic actions. Firstly, carbonic anhydrase enzymes are extensively expressed in the brain and spinal cord, and their importance in the brain activity, especially for the GABA and NMDA receptor signaling pathways, has been demonstrated in numerous studies. According to these studies, they provide HCO3- for GABA-A receptor activities and also buffer HCO3- excess resulting from NMDA receptor activation. Activation of GABA-A and inhibition of NMDA receptors are associated with the induction of anesthesia by the intravenous general anesthetics propofol and ketamine, respectively. Secondly, the carbonic anhydrase inhibitors topiramate and zonisamide are effectively used in the treatment of epilepsy for decades; their chronic use results in the requirement of increased levels of amobarbital in order to produce anesthesia in the epileptic patients during WADA test. In addition, given that CO2 is a substrate for these enzymes, their tertiary structure is likely has a hydrophobic pocket suitable for the anesthetic molecules to bind. Inhalational anesthetic molecules, which are lipophilic and inert in nature, have an ability to cross the membranes and inhibit carbonic anhydrases, which might not be accessible by topiramate and zonisamide. Unlike carbonic anhydrase inhibitors, they could bind to the hydrophobic pocket for CO2 molecules and produce a profound effect called anesthesia. Finally, there is a great deal of similarities between the physiological actions of inhalational anesthetics and carbonic anhydrase inhibitors; moreover well-known side effects of inhalational anesthetics could be associated with the inhibition of carbonic anhydrases. Therefore, this article presents a hypothesis that the anesthetic actions of inhalational anesthetics could be due to their inhibitory effects on the carbonic anhydrases. Investigating this hypothesis might lead to the development of new safer anesthetics, and more importantly it might reveal an endogenous anesthetic pathway, in which the carbonic anhydrase system is a component along with the GABA-A and NMDA receptor systems.
Collapse
Affiliation(s)
- H Z Ozsoy
- 2515 Gramercy Street, Houston, TX 77030, United States.
| |
Collapse
|
11
|
[Osteopetrosis, renal tubular acidosis, cerebral calcifications: a familial case]. An Pediatr (Barc) 2018; 91:276-278. [PMID: 30193799 DOI: 10.1016/j.anpedi.2018.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 11/21/2022] Open
|
12
|
Akkemik E, Cicek B, Camadan Y, Calisir U, Onbasioglu Z. The determination of the carbonic anhydrases activators in vitro effect of mixed donor crown ethers. J Biochem Mol Toxicol 2018; 32:e22032. [PMID: 29327806 DOI: 10.1002/jbt.22032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/24/2017] [Accepted: 12/27/2017] [Indexed: 01/06/2023]
Abstract
Carbonic anhydrases (CAs) play an important function in various physiological and pathological processes. Therefore, many researchers work in this field in order to design and synthesize new drugs. Both inhibitors and activators of CAs, which are associated with the diagnosis and treatment of many diseases, are very important. The emergence of the use of CA activators in the treatment of Alzheimer has led many scholars to work on this issue. In this study, CA activators and inhibitors are determined. The crown ethers compounds (1, 2, 3, 6, 7, 8, and 9) were found to cause activation on enzyme activities of hCA I and II. The AC50 values on hCA I and II of the compounds are in the range of 4.6565-374.979 μM. The 4 (IC50 ; 1.301 and 3.215 μM for hCA I and II) and 5 (IC50 ; 73.96 and 378.5 μM for hCA I and II) compounds were found to cause inhibition on enzyme activities of hCA I and II.
Collapse
Affiliation(s)
- Ebru Akkemik
- Faculty of Engineering and Architecture, Food Engineering, Siirt University, Siirt 56100, Turkey.,Science and Technology Research and Application Center, Siirt University, Siirt 56100, Turkey
| | - Baki Cicek
- Department of Chemistry, Faculty of Arts and Sciences, Balikesir University, Balikesir 10145, Turkey
| | - Yasemin Camadan
- Vocational School of Health Services, Pharmacy Services, Artvin Coruh University, Artvin 08000, Turkey
| | - Umit Calisir
- Science and Technology Research and Application Center, Siirt University, Siirt 56100, Turkey.,Department of Chemistry, Faculty of Arts and Sciences, Balikesir University, Balikesir 10145, Turkey
| | - Zekai Onbasioglu
- Department of Chemistry, Faculty of Arts and Sciences, Balikesir University, Balikesir 10145, Turkey
| |
Collapse
|
13
|
Five- and Six-Membered Nitrogen-Containing Compounds as Selective Carbonic Anhydrase Activators. Molecules 2017; 22:molecules22122178. [PMID: 29232847 PMCID: PMC6149746 DOI: 10.3390/molecules22122178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022] Open
Abstract
It has been proven that specific isoforms of human carbonic anhydrase (hCA) are able to fine-tune physiological pathways connected to signal processing, and that decreased CAs expression negatively influences cognition, leading to mental retardation, Alzheimer's disease, and aging-related cognitive dysfunctions. For this reason, a small library of natural and synthetic nitrogen containing cyclic derivatives was assayed as activators of four human isoforms of carbonic anhydrase (hCA I, II, IV and VII). Most of the compounds activated hCA I, IV and VII in the micromolar range, with KAs ranging between 3.46 and 80.5 μM, whereas they were not active towards hCA II (KAs > 100 μM). Two natural compounds, namely l-(+)-ergothioneine (1) and melatonin (2), displayed KAs towards hCA VII in the nanomolar range after evaluation by a CO₂ hydration method in vitro, showing a rather efficient and selective activation profile with respect to histamine, used as a reference compound. Corroborated with the above in vitro findings, a molecular modelling in silico approach has been performed to correlate these biological data, and to elucidate the binding interaction of these activators within the enzyme active site.
Collapse
|
14
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
15
|
Baghel MS, Thakur MK. Differential proteome profiling in the hippocampus of amnesic mice. Hippocampus 2017; 27:845-859. [PMID: 28449397 DOI: 10.1002/hipo.22735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022]
Abstract
Amnesia or memory loss is associated with brain aging and several neurodegenerative pathologies including Alzheimer's disease (AD). This can be induced by a cholinergic antagonist scopolamine but the underlying molecular mechanism is poorly understood. This study of proteome profiling in the hippocampus could provide conceptual insights into the molecular mechanisms involved in amnesia. To reveal this, mice were administered scopolamine to induce amnesia and memory impairment was validated by novel object recognition test. Using two-dimensional gel electrophoresis coupled with MALDI-MS/MS, we have analyzed the hippocampal proteome and identified 18 proteins which were differentially expressed. Out of these proteins, 11 were downregulated and 7 were upregulated in scopolamine-treated mice as compared to control. In silico analysis showed that the majority of identified proteins are involved in metabolism, catalytic activity, and cytoskeleton architectural functions. STRING interaction network analysis revealed that majority of identified proteins exhibit common association with Actg1 cytoskeleton and Vdac1 energy transporter protein. Furthermore, interaction map analysis showed that Fascin1 and Coronin 1b individually interact with Actg1 and regulate the actin filament dynamics. Vdac1 was significantly downregulated in amnesic mice and showed interaction with other proteins in interaction network. Therefore, we silenced Vdac1 in the hippocampus of normal young mice and found similar impairment in recognition memory of Vdac1 silenced and scopolamine-treated mice. Thus, these findings suggest that Vdac1-mediated disruption of energy metabolism and cytoskeleton architecture might be involved in scopolamine-induced amnesia.
Collapse
Affiliation(s)
- Meghraj Singh Baghel
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, India
| | - Mahendra Kumar Thakur
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
16
|
Taylor L, Arnér K, Ghosh F. First Responders: Dynamics of Pre-Gliotic Müller Cell Responses in The Isolated Adult Rat Retina. Curr Eye Res 2014; 40:1245-60. [DOI: 10.3109/02713683.2014.988360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Le Darz A, Mingot A, Bouazza F, Castelli U, Karam O, Tanc M, Supuran CT, Thibaudeau S. Fluorinated pyrrolidines and piperidines incorporating tertiary benzenesulfonamide moieties are selective carbonic anhydrase II inhibitors. J Enzyme Inhib Med Chem 2014; 30:737-45. [PMID: 25431145 DOI: 10.3109/14756366.2014.963072] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 02/02/2023] Open
Abstract
A series of substituted pyrrolidines and piperidines were synthesized using superacid HF/SbF5 chemistry. Investigated as inhibitors of several human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, i.e. the cytosolic hCA I and II as well as the tumor-associated transmembrane isoforms hCA IX and XII, these compounds showed a never yet reported selectivity toward the human carbonic anhydrase hCA II. In the tertiary benzenesulfonamide family, this class of inhibitors points out a new mechanism of action for human carbonic anhydrase II inhibition.
Collapse
|
18
|
Reibring CG, El Shahawy M, Hallberg K, Kannius-Janson M, Nilsson J, Parkkila S, Sly WS, Waheed A, Linde A, Gritli-Linde A. Expression patterns and subcellular localization of carbonic anhydrases are developmentally regulated during tooth formation. PLoS One 2014; 9:e96007. [PMID: 24789143 PMCID: PMC4006843 DOI: 10.1371/journal.pone.0096007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrases (CAs) play fundamental roles in several physiological events, and emerging evidence points at their involvement in an array of disorders, including cancer. The expression of CAs in the different cells of teeth is unknown, let alone their expression patterns during odontogenesis. As a first step towards understanding the role of CAs during odontogenesis, we used immunohistochemistry, histochemistry and in situ hybridization to reveal hitherto unknown dynamic distribution patterns of eight CAs in mice. The most salient findings include expression of CAII/Car2 not only in maturation-stage ameloblasts (MA) but also in the papillary layer, dental papilla mesenchyme, odontoblasts and the epithelial rests of Malassez. We uncovered that the latter form lace-like networks around incisors; hitherto these have been known to occur only in molars. All CAs studied were produced by MA, however CAIV, CAIX and CARPXI proteins were distinctly enriched in the ruffled membrane of the ruffled MA but exhibited a homogeneous distribution in smooth-ended MA. While CAIV, CAVI/Car6, CAIX, CARPXI and CAXIV were produced by all odontoblasts, CAIII distribution displayed a striking asymmetry, in that it was virtually confined to odontoblasts in the root of molars and root analog of incisors. Remarkably, from initiation until near completion of odontogenesis and in several other tissues, CAXIII localized mainly in intracellular punctae/vesicles that we show to overlap with LAMP-1- and LAMP-2-positive vesicles, suggesting that CAXIII localizes within lysosomes. We showed that expression of CAs in developing teeth is not confined to cells involved in biomineralization, pointing at their participation in other biological events. Finally, we uncovered novel sites of CA expression, including the developing brain and eye, the olfactory epithelium, melanoblasts, tongue, notochord, nucleus pulposus and sebaceous glands. Our study provides important information for future single or multiple gene targeting strategies aiming at deciphering the function of CAs during odontogenesis.
Collapse
Affiliation(s)
- Claes-Göran Reibring
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Maha El Shahawy
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
- Department of Oral Biology, Minia University, Minia, Egypt
| | - Kristina Hallberg
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Marie Kannius-Janson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Jeanette Nilsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Seppo Parkkila
- School of Medicine and BioMediTech, University of Tampere and Fimlab, Tampere University Hospital, Tampere, Finland
| | - William S. Sly
- Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Abdul Waheed
- Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Anders Linde
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
19
|
Kurtz I. NBCe1 as a model carrier for understanding the structure-function properties of Na⁺ -coupled SLC4 transporters in health and disease. Pflugers Arch 2014; 466:1501-16. [PMID: 24515290 DOI: 10.1007/s00424-014-1448-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 01/17/2023]
Abstract
SLC4 transporters are membrane proteins that in general mediate the coupled transport of bicarbonate (carbonate) and share amino acid sequence homology. These proteins differ as to whether they also transport Na(+) and/or Cl(-), in addition to their charge transport stoichiometry, membrane targeting, substrate affinities, developmental expression, regulatory motifs, and protein-protein interactions. These differences account in part for the fact that functionally, SLC4 transporters have various physiological roles in mammals including transepithelial bicarbonate transport, intracellular pH regulation, transport of Na(+) and/or Cl(-), and possibly water. Bicarbonate transport is not unique to the SLC4 family since the structurally unrelated SLC26 family has at least three proteins that mediate anion exchange. The present review focuses on the first of the sodium-dependent SLC4 transporters that was identified whose structure has been most extensively studied: the electrogenic Na(+)-base cotransporter NBCe1. Mutations in NBCe1 cause proximal renal tubular acidosis (pRTA) with neurologic and ophthalmologic extrarenal manifestations. Recent studies have characterized the important structure-function properties of the transporter and how they are perturbed as a result of mutations that cause pRTA. It has become increasingly apparent that the structure of NBCe1 differs in several key features from the SLC4 Cl(-)-HCO3 (-) exchanger AE1 whose structural properties have been well-studied. In this review, the structure-function properties and regulation of NBCe1 will be highlighted, and its role in health and disease will be reviewed in detail.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, and Brain Research Institute, UCLA, Los Angeles, CA, USA,
| |
Collapse
|
20
|
Chénier S, Noor A, Dupuis L, Stavropoulos DJ, Mendoza-Londono R. Osteopathia striata with cranial sclerosis and developmental delay in a male with a mosaic deletion in chromosome region Xq11.2. Am J Med Genet A 2012; 158A:2946-52. [PMID: 22987541 DOI: 10.1002/ajmg.a.35619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/24/2012] [Indexed: 12/31/2022]
Abstract
Osteopathia striata with cranial sclerosis (OSCS) is an X-linked disease caused by mutations involving WTX (FAM123B), a tumor suppressor protein with dual functions. OSCS typically affects females whereas males generally have fetal or neonatal lethality. Surviving affected males have characteristic facial dysmorphisms, skeletal features such as macrocephaly and short stature, neurodevelopmental disabilities and a high prevalence of neuromuscular anomalies. On imaging, hemizygous males display marked cranial and peripheral skeletal sclerosis without the metaphyseal striations that are seen in women with OSCS. Observations of striation in males may be indicative of a somatic mosaic mutation in WTX. To date only two cases of surviving males haves been confirmed with mosaic point mutations in WTX. We report on the first case of a male with a mosaic deletion of the entire WTX gene. We show that a mosaic deletion in a hemizygous male patient can cause a mild phenotype of OSCS, including facial and skull base bone striations, nasal stenosis, conductive hearing loss, global developmental delay, and mild facial dysmorphology without short stature or macrocephaly.
Collapse
Affiliation(s)
- Sébastien Chénier
- The Hospital for Sick Children, Department of Paediatric Laboratory Medicine, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Abu-Amero KK, Kondkar AA, Salih MAM, Alorainy IA, Khan AO, Oystreck DT, Bosley TM. Partial chromosome 7 duplication with a phenotype mimicking the HOXA1 spectrum disorder. Ophthalmic Genet 2012; 34:90-6. [DOI: 10.3109/13816810.2012.718850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Al-Owain M, Al-Zaidan H, Al-Hassnan Z. Map of autosomal recessive genetic disorders in Saudi Arabia: Concepts and future directions. Am J Med Genet A 2012; 158A:2629-40. [DOI: 10.1002/ajmg.a.35551] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/06/2012] [Indexed: 12/23/2022]
|
23
|
Millichap JG. Carbonic Anhydrase Type II Deficiency Syndrome. Pediatr Neurol Briefs 2012. [DOI: 10.15844/pedneurbriefs-26-1-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|