1
|
Mantovani E, Martini A, Dinoto A, Zucchella C, Ferrari S, Mariotto S, Tinazzi M, Tamburin S. Biomarkers for cognitive impairment in alpha-synucleinopathies: an overview of systematic reviews and meta-analyses. NPJ Parkinsons Dis 2024; 10:211. [PMID: 39488513 PMCID: PMC11531557 DOI: 10.1038/s41531-024-00823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/19/2024] [Indexed: 11/04/2024] Open
Abstract
Cognitive impairment (CI) is common in α-synucleinopathies, i.e., Parkinson's disease, Lewy bodies dementia, and multiple system atrophy. We summarize data from systematic reviews/meta-analyses on neuroimaging, neurophysiology, biofluid and genetic diagnostic/prognostic biomarkers of CI in α-synucleinopathies. Diagnostic biomarkers include atrophy/functional neuroimaging brain changes, abnormal cortical amyloid and tau deposition, and cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers, cortical rhythm slowing, reduced cortical cholinergic and glutamatergic and increased cortical GABAergic activity, delayed P300 latency, increased plasma homocysteine and cystatin C and decreased vitamin B12 and folate, increased CSF/serum albumin quotient, and serum neurofilament light chain. Prognostic biomarkers include brain regional atrophy, cortical rhythm slowing, CSF amyloid biomarkers, Val66Met polymorphism, and apolipoprotein-E ε2 and ε4 alleles. Some AD/amyloid/tau biomarkers may diagnose/predict CI in α-synucleinopathies, but single, validated diagnostic/prognostic biomarkers lack. Future studies should include large consortia, biobanks, multi-omics approach, artificial intelligence, and machine learning to better reflect the complexity of CI in α-synucleinopathies.
Collapse
Affiliation(s)
- Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Alice Martini
- School of Psychology, Keele University, Newcastle, UK
- Addiction Department, Azienda Sanitaria Friuli Occidentale, Pordenone, Italy
| | - Alessandro Dinoto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Zucchella
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Sergio Ferrari
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
2
|
Pilotto A, Galli A, Zatti C, Placidi F, Izzi F, Premi E, Caminiti SP, Presotto L, Rizzardi A, Catania M, Lupini A, Purin L, Pasolini MP, Mercuri NB, Chiaravalotti A, Fernandes M, Calvello C, Lucchini S, Bertagna F, Paghera B, Perani D, Berg D, Padovani A, Liguori C. Insular monoaminergic deficits in prodromal α-synucleinopathies. Ann Clin Transl Neurol 2024; 11:2836-2845. [PMID: 39444171 DOI: 10.1002/acn3.52151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 10/25/2024] Open
Abstract
METHODS This study assessed data from two cohorts of patients with alpha-synucleinopathies (University of Brescia and University of Rome Tor-Vergata cohorts). Consecutive participants with video-polysomnography-confirmed iRBD, Parkinson's disease (PD), dementia with Lewy bodies (DLB) and controls underwent neurological, clinical and 123I-FP-CIT SPECT imaging assessments. Individuals with iRBD were longitudinally monitored to collect clinical phenoconversion to PD or DLB. The main outcome was to identify whole brain 123 I-FP-CIT SPECT measures reflecting monoaminergic deficits in each clinical group as compared to controls. RESULTS The cohort (n = 184) included 45 patients with iRBD, 47 PD, 42 DLB and 50 age-matched controls. Individuals with iRBD were categorized as RBD-DAT- (n = 32) and RBD-DAT+ (n = 13), according to nigrostriatal assessment used in clinical practice. Compared to controls, RBD-DAT- showed an early involvement of the left insula, which increased in RBD-DAT+, and was present in patients with Parkinson's disease and dementia with Lewy bodies. Longitudinal cox regression analyses revealed a higher risk of phenoconversion in individuals with iRBD and insular monoaminergic deficits [HR = 3.387; CI 95%: 1.18-10.27]. INTERPRETATION In this study, altered insular monoaminergic binding in iRBD was associated with phenoconversion to DLB or PD. These findings may provide a helpful stratification approach for future pharmacological or non-pharmacological interventions.
Collapse
Affiliation(s)
- Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
- Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili of Brescia, Brescia, 25123, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, 25123, Italy
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili Hospital, 25123, Brescia, Italy
| | - Alice Galli
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, 25123, Italy
| | - Cinzia Zatti
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
- Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili of Brescia, Brescia, 25123, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, 25123, Italy
| | - Fabio Placidi
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, 00133, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, 00133, Italy
| | - Enrico Premi
- Vascular Neurology, ASST Spedali Civili of Brescia, Brescia, 25123, Italy
| | - Silvia P Caminiti
- Department of Brain and Behavioral Sciences, Univeristy of Pavia, Pavia, 27100, Italy
| | - Luca Presotto
- Department of Physics "G. Occhialini", University of Milano-Bicocca, Milan, 20126, Italy
| | - Andrea Rizzardi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
- Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili of Brescia, Brescia, 25123, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, 25123, Italy
| | - Marcello Catania
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
| | - Alessandro Lupini
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
| | - Leandro Purin
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
| | - Maria P Pasolini
- Sleep Disorder Center, ASST Spedali Civili of Brescia, Brescia, 25123, Italy
| | - Nicola B Mercuri
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, 00133, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Agostino Chiaravalotti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Carmen Calvello
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Silvia Lucchini
- Nuclear Medicine Unit, University of Brescia, Brescia, 25123, Italy
| | | | - Barbara Paghera
- Nuclear Medicine Unit, University of Brescia, Brescia, 25123, Italy
| | - Daniela Perani
- Vita Salute San-Raffaele University, Milan, 20123, Italy
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, 24098, Germany
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
- Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili of Brescia, Brescia, 25123, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, 25123, Italy
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili Hospital, 25123, Brescia, Italy
- Brain Health Center, University of Brescia, 25123, Brescia, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, 00133, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| |
Collapse
|
3
|
Xu N, Xing S, Li J, Pang B, Liu M, Fan M, Zhao Y. Water extract of ginseng alleviates parkinsonism in MPTP-induced Parkinson's disease mice. PLoS One 2024; 19:e0296424. [PMID: 39302939 DOI: 10.1371/journal.pone.0296424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/13/2023] [Indexed: 09/22/2024] Open
Abstract
In this study, we investigated the neuroprotective effect of a water extract of ginseng (WEG) obtained via low-temperature extraction of the brain of mice with Parkinson's disease (PD) and the ameliorative effect on the damaged intestinal system for the treatment of dyskinesia in PD mice. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) was injected intraperitoneally into male C57BL/6 mice to establish a PD model, and WEG was given via oral gavage. The results indicated that WEG could protect the damaged neuronal cells of the mice brain, inhibit the aggregation of α-synuclein (α-Syn) in the brain, and increase the positive expression rate of tyrosine hydroxylase (TH). WEG significantly improved intestinal damage and regulated intestinal disorders (P<0.05). WEG intervention increased the levels of beneficial bacteria, such as Lactobacillus, and normalized the abundance and diversity of colonies in the intestine of mice. Our results suggested that WEG protected neurons in the brain of PD mice via inhibiting the aggregation of α-Syn in the brain and increasing the positive expression level of TH in the brain. WEG regulated the gut microbiota of mice, improved the behavioral disorders of PD mice, and offered some therapeutic effects on PD mice.
Collapse
Affiliation(s)
- Ning Xu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, PR China
| | - Shuyang Xing
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, PR China
| | - Jie Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, PR China
| | - Bo Pang
- College of Pharmacy, Jining Medical University, Rizhao, PR China
| | - Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, PR China
| | - Meiling Fan
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, PR China
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, PR China
| |
Collapse
|
4
|
Di Tella S, De Marco M, Anzuino I, Quaranta D, Baglio F, Silveri MC. The Contribution of Cognitive Control Networks in Word Selection Processing in Parkinson's Disease: Novel Insights from a Functional Connectivity Study. Brain Sci 2024; 14:913. [PMID: 39335408 PMCID: PMC11430391 DOI: 10.3390/brainsci14090913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Parkinson's disease (PD) patients are impaired in word production when the word has to be selected among competing alternatives requiring higher attentional resources. In PD, word selection processes are correlated with the structural integrity of the inferior frontal gyrus, which is critical for response selection, and the uncinate fasciculus, which is necessary for processing lexical information. In early PD, we investigated the role of the main cognitive large-scale networks, namely the salience network (SN), the central executive networks (CENs), and the default mode network (DMN), in word selection. Eighteen PD patients and sixteen healthy controls were required to derive nouns from verbs or generate verbs from nouns. Participants also underwent a resting-state functional MRI. Functional connectivity (FC) was examined using independent component analysis. Functional seeds for the SN, CENs, and DMN were defined as spheres, centered at the local activation maximum. Correlations were calculated between the FC of each functional seed and word production. A significant association between SN connectivity and task performance and, with less evidence, between CEN connectivity and the task requiring selection among a larger number of competitors, emerged in the PD group. These findings suggest the involvement of the SN and CEN in word selection in early PD, supporting the hypothesis of impaired executive control.
Collapse
Affiliation(s)
- Sonia Di Tella
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | - Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Isabella Anzuino
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | - Davide Quaranta
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | | | | |
Collapse
|
5
|
Funk AT, Hassan AAO, Waugh JL. In Humans, Insulo-striate Structural Connectivity is Largely Biased Toward Either Striosome-like or Matrix-like Striatal Compartments. Neurosci Insights 2024; 19:26331055241268079. [PMID: 39280330 PMCID: PMC11402065 DOI: 10.1177/26331055241268079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/15/2024] [Indexed: 09/18/2024] Open
Abstract
The insula is an integral component of sensory, motor, limbic, and executive functions, and insular dysfunction is associated with numerous human neuropsychiatric disorders. Insular efferents project widely, but insulo-striate projections are especially numerous. The targets of these insulo-striate projections are organized into tissue compartments, the striosome and matrix. These striatal compartments have distinct embryologic origins, afferent and efferent connectivity, dopamine pharmacology, and susceptibility to injury. Striosome and matrix appear to occupy separate sets of cortico-striato-thalamo-cortical loops, so a bias in insulo-striate projections toward one compartment may also embed an insular subregion in distinct regulatory and functional networks. Compartment-specific mapping of insulo-striate structural connectivity is sparse; the insular subregions are largely unmapped for compartment-specific projections. In 100 healthy adults, diffusion tractography was utilized to map and quantify structural connectivity between 19 structurally-defined insular subregions and each striatal compartment. Insulo-striate streamlines that reached striosome-like and matrix-like voxels were concentrated in distinct insular zones (striosome: rostro- and caudoventral; matrix: caudodorsal) and followed different paths to reach the striatum. Though tractography was generated independently in each hemisphere, the spatial distribution and relative bias of striosome-like and matrix-like streamlines were highly similar in the left and right insula. 16 insular subregions were significantly biased toward 1 compartment: 7 toward striosome-like voxels and 9 toward matrix-like voxels. Striosome-favoring bundles had significantly higher streamline density, especially from rostroventral insular subregions. The biases in insulo-striate structural connectivity that were identified mirrored the compartment-specific biases identified in prior studies that utilized injected tract tracers, cytoarchitecture, or functional MRI. Segregating insulo-striate structural connectivity through either striosome or matrix may be an anatomic substrate for functional specialization among the insular subregions.
Collapse
Affiliation(s)
- Adrian T Funk
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| | - Asim AO Hassan
- Department of Natural Sciences and Mathematics, University of Texas at Dallas, TX, USA
| | - Jeff L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
6
|
Zhang J, Zhu Q, Shi X, Huang Y, Yan L, Zhang G, Pei L, Liu J, Han X, Zhu X. NIR-II light therapy improves cognitive performance in MPTP induced Parkinson's disease rat models: A preliminary experimental study. Heliyon 2024; 10:e32800. [PMID: 38975234 PMCID: PMC11225833 DOI: 10.1016/j.heliyon.2024.e32800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Cognitive impairment is an important component of non motor symptoms in Parkinson's disease (PD), and if not addressed in a timely manner, it can easily progress to dementia. However, no effective method currently exists to completely prevent or reverse cognitive impairment associated with PD. We therefore aimed to investigate the therapeutic effect of near-infrared region II light (NIR-II) region illumination on cognitive impairment in PD through behavioral experiments (water maze and rotary rod) and multiple fluorescence immunohistochemistry techniques. The 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced group was compared with the MPTP- untreated rat group, showing a significant reduction in escape latency and significant increase in the fall latency in the MPTP-treated group. The horizontal analysis results indicated that NIR-II phototherapy improved the learning and cognitive abilities as well as coordination and balance abilities of rats. Post-treatment, the MPTP rats showed significantly shortened, escape latency, prolonged target quadrant residence time, and prolonged fall latency compared with pre-treatment. The longitudinal analysis results reaffirmed that NIR-II phototherapy improved the learning and cognitive abilities as well as coordination and balance abilities of rats. The multiple fluorescence immunohistochemistry analysis trend plot showed that the activated microglia and astrocytes in the hippocampus were highest in MPTP-induced PD untreated group, moderate in MPTP-induced PD treatment group, and lowest in the control group. Our data indicates that NIR-II illumination improves learning and cognitive impairment as well as coordination and balance abilities in PD rats by downregulating the activation of microglia and astrocytes in the hippocampus.
Collapse
Affiliation(s)
- Jiangong Zhang
- Department of Nuclear Medicine, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First Affiliated Hospital of Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Qinqin Zhu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xun Shi
- Department of Nuclear Medicine, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First Affiliated Hospital of Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Yang Huang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linlin Yan
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Guozheng Zhang
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Lei Pei
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jiahuan Liu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaowei Han
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xisong Zhu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
7
|
Yan J, Luo X, Xu J, Li D, Qiu L, Li D, Cao P, Zhang C. Unlocking the potential: T1-weighed MRI as a powerful predictor of levodopa response in Parkinson's disease. Insights Imaging 2024; 15:141. [PMID: 38853208 PMCID: PMC11162980 DOI: 10.1186/s13244-024-01690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/03/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The efficacy of levodopa, the most crucial metric for Parkinson's disease diagnosis and treatment, is traditionally gauged through the levodopa challenge test, which lacks a predictive model. This study aims to probe the predictive power of T1-weighted MRI, the most accessible modality for levodopa response. METHODS This retrospective study used two datasets: from the Parkinson's Progression Markers Initiative (219 records) and the external clinical dataset from Ruijin Hospital (217 records). A novel feature extraction method using MedicalNet, a pre-trained deep learning network, along with three previous approaches was applied. Three machine learning models were trained and tested on the PPMI dataset and included clinical features, imaging features, and their union set, using the area under the curve (AUC) as the metric. The most significant brain regions were visualized. The external clinical dataset was further evaluated using trained models. A paired one-tailed t-test was performed between the two sets; statistical significance was set at p < 0.001. RESULTS For 46 test set records (mean age, 62 ± 9 years, 28 men), MedicalNet-extracted features demonstrated a consistent improvement in all three machine learning models (SVM 0.83 ± 0.01 versus 0.73 ± 0.01, XgBoost 0.80 ± 0.04 versus 0.74 ± 0.02, MLP 0.80 ± 0.03 versus 0.70 ± 0.07, p < 0.001). Both feature sets were validated on the clinical dataset using SVM, where MedicalNet features alone achieved an AUC of 0.64 ± 0.03. Key responsible brain regions were visualized. CONCLUSION The T1-weighed MRI features were more robust and generalizable than the clinical features in prediction; their combination provided the best results. T1-weighed MRI provided insights on specific regions responsible for levodopa response prediction. CRITICAL RELEVANCE STATEMENT This study demonstrated that T1w MRI features extracted by a deep learning model have the potential to predict the levodopa response of PD patients and are more robust than widely used clinical information, which might help in determining treatment strategy. KEY POINTS This study investigated the predictive value of T1w features for levodopa response. MedicalNet extractor outperformed all other previously published methods with key region visualization. T1w features are more effective than clinical information in levodopa response prediction.
Collapse
Affiliation(s)
- Junyi Yan
- Department of Neurosurgery, Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197th, 200025, Shanghai, China
- Clinical Neuroscience Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine Luwan Brunch, Shanghai, China
| | - Xufang Luo
- Microsoft Research, Unit 4301-4304 AI Tower, No.701 Yunjin Road, 200232, Shanghai, China.
| | - Jiahang Xu
- Microsoft Research, Unit 4301-4304 AI Tower, No.701 Yunjin Road, 200232, Shanghai, China
| | - Dongsheng Li
- Microsoft Research, Unit 4301-4304 AI Tower, No.701 Yunjin Road, 200232, Shanghai, China
| | - Lili Qiu
- Microsoft Research, Unit 4301-4304 AI Tower, No.701 Yunjin Road, 200232, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Cao
- Department of Diagnostic Radiology, The University of Hong Kong Hong Kong SAR, Hong Kong, China
| | - Chencheng Zhang
- Department of Neurosurgery, Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197th, 200025, Shanghai, China.
- Clinical Neuroscience Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine Luwan Brunch, Shanghai, China.
- Ruijin-miHoYo lab, Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197th, 200025, Shanghai, China.
| |
Collapse
|
8
|
Chun MY, Lee T, Kim SH, Lee HS, Kim YJ, Lee PH, Sohn YH, Jeong Y, Chung SJ. Hypoperfusion in Alzheimer's Disease-Prone Regions and Dementia Conversion in Parkinson's Disease. Clin Nucl Med 2024; 49:521-528. [PMID: 38584352 DOI: 10.1097/rlu.0000000000005211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
PURPOSE OF THE REPORT Although early detection of individuals at risk of dementia conversion is important in patients with Parkinson's disease (PD), there is still no consensus on neuroimaging biomarkers for predicting future cognitive decline. We aimed to investigate whether cerebral perfusion patterns on early-phase 18 F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane ( 18 F-FP-CIT) PET have the potential to serve as a neuroimaging predictor for early dementia conversion in patients with PD. MATERIALS AND METHODS In this retrospective analysis, we enrolled 187 patients with newly diagnosed PD who underwent dual-phase 18 F-FP-CIT PET at initial assessment and serial cognitive assessments during the follow-up period (>5 years). Patients with PD were classified into 2 groups: the PD with dementia (PDD)-high-risk (PDD-H; n = 47) and the PDD-low-risk (PDD-L; n = 140) groups according to dementia conversion within 5 years of PD diagnosis. We explored between-group differences in the regional uptake in the early-phase 18 F-FP-CIT PET images. We additionally performed a linear discriminant analysis to develop a prediction model for early PDD conversion. RESULTS The PDD-H group exhibited hypoperfusion in Alzheimer's disease (AD)-prone regions (inferomedial temporal and posterior cingulate cortices, and insula) compared with the PDD-L group. A prediction model using regional uptake in the right entorhinal cortex, left amygdala, and left isthmus cingulate cortex could optimally distinguish the PDD-H group from the PDD-L group. CONCLUSIONS Regional hypoperfusion in the AD-prone regions on early-phase 18 F-FP-CIT PET can be a useful biomarker for predicting early dementia conversion in patients with PD.
Collapse
Affiliation(s)
| | | | | | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Phil Hyu Lee
- From the Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- From the Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
9
|
Galvez V, Romero-Rebollar C, Estudillo-Guerra MA, Fernandez-Ruiz J. Resting-state networks and their relationship with MoCA performance in PD patients. Brain Imaging Behav 2024; 18:612-621. [PMID: 38332386 DOI: 10.1007/s11682-024-00860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Although mild cognitive impairment is a common non-motor symptom experienced by individuals with Parkinson's Disease, the changes in intrinsic resting-state networks associated with its onset in Parkinson's remain underexamined. To address the issue, our study sought to examine resting-state network alterations and their association with total performance in the Montreal Cognitive Assessment and its cognitive domains in Parkinson's by means of functional magnetic resonance imaging of 29 Parkinson's patients with normal cognition, 25 Parkinson's patients with mild cognitive impairment, and 13 healthy controls. To contrast the Parkinson's groups with each other and the controls, the images were used to estimate the Z-score coefficient between the regions of interest from the default mode network, the salience network and the central executive network. Our first finding was that default mode and salience network connectivity decreased significantly in Parkinson's patients regardless of their cognitive status. Additionally, default mode network nodes had a negative and salience network nodes a positive correlation with the global assessment in Parkinson's with normal cognition; this inverse relationship of both networks to total score was not found in the group with cognitive impairment. Finally, a positive correlation was found between executive scores and anterior and posterior cortical network connectivity and, in the group with cognitive impairment, between language scores and salience network connectivity. Our results suggest that specific resting-state networks of Parkinson's patients with cognitive impairment differ from those of Parkinson's patients with normal cognition, supporting the evidence that cognitive impairment in Parkinson's Disease displays a differentiated neurodegenerative pattern.
Collapse
Affiliation(s)
- Victor Galvez
- Laboratorio de Neurociencias Cognitivas y Desarrollo, Escuela de Psicología, Universidad Panamericana, Ciudad de México, México.
| | - César Romero-Rebollar
- Escuela de Pedagogía, Universidad Panamericana, Ciudad de México, México
- Universidad Tecnológica de México-UNITEC MÉXICO-Campus en línea, Ciudad de México, México
| | - M Anayali Estudillo-Guerra
- Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
10
|
Booth S, Ko JH. Radionuclide Imaging of the Neuroanatomical and Neurochemical Substrate of Cognitive Decline in Parkinson's Disease. Nucl Med Mol Imaging 2024; 58:213-226. [PMID: 38932760 PMCID: PMC11196570 DOI: 10.1007/s13139-024-00842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 06/28/2024] Open
Abstract
Cognitive impairment is a frequent manifestation of Parkinson's disease (PD), resulting in decrease in patients' quality of life and increased societal and economic burden. However, cognitive decline in PD is highly heterogenous and the mechanisms are poorly understood. Radionuclide imaging techniques like positron emission tomography (PET) and single photon emission computed tomography (SPECT) have been used to investigate the neurochemical and neuroanatomical substrate of cognitive decline in PD. These techniques allow the assessment of different neurotransmitter systems, changes in brain glucose metabolism, proteinopathy, and neuroinflammation in vivo in PD patients. Here, we review current radionuclide imaging research on cognitive deficit in PD with a focus on predicting accelerating cognitive decline. This research could assist in the development of prognostic biomarkers for patient stratification and have utility in the development of ameliorative or disease-modifying therapies targeting cognitive deficit in PD.
Collapse
Affiliation(s)
- Samuel Booth
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, 130-745 Bannatyne Ave, Winnipeg, MB R3E 0J9 Canada
- PrairieNeuro Research Centre, Kleysen Institute of Advanced Medicine, Health Science Centre, Winnipeg, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, 130-745 Bannatyne Ave, Winnipeg, MB R3E 0J9 Canada
- PrairieNeuro Research Centre, Kleysen Institute of Advanced Medicine, Health Science Centre, Winnipeg, Canada
| |
Collapse
|
11
|
Rocha RMS, Faria-Fortini ID, Scalzo PL. Telephone-based application of the Activities of Daily Living Questionnaire in patients with Parkinson's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-8. [PMID: 38857888 DOI: 10.1055/s-0044-1787135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
BACKGROUND The Activities of Daily Living Questionnaire (ADLQ) focuses on assessing the ability to perform activities of daily living (ADLs) based on the self-perception of individuals with Parkinson's disease (PD). A Brazilian Portuguese version of the questionnaire is available (ADLQ-Brazil), and further investigation is needed to fully assess its measurement properties. OBJECTIVE To investigate construct and concurrent validity of the telephone-based administration of the ADLQ-Brazil with community individuals with PD. METHODS There were 50 adults with PD (mean age: 68 ± 9.5 years) invited to answer the ADLQ-Brazil on two randomized occasions, face-to-face and by telephone, 7 to 10 days apart. Clinical-based measures including the Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale, Timed Up and Go Test, Nine Hole Peg Test, Mini-Balance Evaluation Systems Test, Apathy Scale, Beck Depression Inventory, Modified Fatigue Impact Scale, and Parkinson Disease Quality of Life Questionnaire were applied during the first session, to establish construct validity. RESULTS The total scores on the ADLQ-Brazil were significantly associated with the clinical-based measures, thus providing evidence of construct validity. No significant differences were observed between the mean scores obtained with the face-to-face and telephone-based administration of the questionnaire (95%CI = 0.997). A high level of agreement was found in the total scores obtained between both applications of the ADLQ-Brazil (95%CI = 0.994-0.998), and most of the individual items had, on average, moderate agreement. CONCLUSION The findings provide psychometric support for the ADLQ-Brazil as a telephone interview to assess the performance of ADLs in individuals with PD.
Collapse
Affiliation(s)
- Rafaela Moura Santos Rocha
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil
| | - Iza de Faria-Fortini
- Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Departamento de Terapia Ocupacional, Belo Horizonte MG, Brazil
| | - Paula Luciana Scalzo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte MG, Brazil
| |
Collapse
|
12
|
Seemiller J, Morrow C, Hinkle JT, Perepezko K, Kamath V, Pontone GM, Mills KA. Impact of Acute Dopamine Replacement on Cognitive Function in Parkinson's Disease. Mov Disord Clin Pract 2024; 11:534-542. [PMID: 38470011 PMCID: PMC11078494 DOI: 10.1002/mdc3.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND PD causes striatal dopaminergic denervation in a posterior/dorsal to anterior/ventral gradient, leaving motor and associative cortico-striato-pallido-thalamic loops differentially susceptible to hyperdopaminergic effects with treatment. As the choice and titration of symptomatic PD medications are guided primarily by motor symptoms, it is important to understand their cognitive implications. OBJECTIVE To investigate the effects of acute dopaminergic medication administration on executive function in Parkinson's disease (PD). METHODS Participants with idiopathic PD were administered the oral Symbol Digit Modalities Test (SDMT; n = 181) and the Stroop test (n = 172) in the off-medication and "best on" medication states. ANCOVA was used to test for differences between off-medication and on-medication scores corrected for age and years of education. RESULTS After administration of symptomatic medications, scores worsened on the SDMT (F = 11.70, P < 0.001, d = -0.13), improved on the Stroop color (F = 26.89, P < 0.001, d = 0.184), word (F = 6.25, P = 0.013, d = 0.09), and color-word (F = 13.22, P < 0.001, d = 0.16) test components, and the Stroop difference and ratio-based interference scores did not significantly change. Longer disease duration correlated with lower scores on the SDMT, Stroop color, word, and color-word scores; however, longer disease duration and higher levodopa-equivalents correlated with higher Stroop difference-based interference scores. CONCLUSIONS Symptomatic medication differentially affects performance on two cognitive tests in PD. After acute treatment, core Stroop measures improved, Stroop interference was unchanged, and SDMT performance worsened, likely reflecting complex changes in processing speed and executive function related to acute treatment. When considering motor symptom therapies in PD, an individual's cognitive demands and expectations, especially regarding executive function, should be considered.
Collapse
Affiliation(s)
- Joseph Seemiller
- Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Christopher Morrow
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Jared T. Hinkle
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Kate Perepezko
- National Rehabilitation Research & Training Center on Family Support, University of PittsburghPittsburghPennsylvaniaUSA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Gregory M. Pontone
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMarylandUSA
- Department of NeurologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Kelly A. Mills
- Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
13
|
Yu X, Sun X, Wei M, Deng S, Zhang Q, Guo T, Shao K, Zhang M, Jiang J, Han Y. Innovative Multivariable Model Combining MRI Radiomics and Plasma Indexes Predicts Alzheimer's Disease Conversion: Evidence from a 2-Cohort Longitudinal Study. RESEARCH (WASHINGTON, D.C.) 2024; 7:0354. [PMID: 38711474 PMCID: PMC11070845 DOI: 10.34133/research.0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/21/2024] [Indexed: 05/08/2024]
Abstract
To explore the complementary relationship between magnetic resonance imaging (MRI) radiomic and plasma biomarkers in the early diagnosis and conversion prediction of Alzheimer's disease (AD), our study aims to develop an innovative multivariable prediction model that integrates those two for predicting conversion results in AD. This longitudinal multicentric cohort study included 2 independent cohorts: the Sino Longitudinal Study on Cognitive Decline (SILCODE) project and the Alzheimer Disease Neuroimaging Initiative (ADNI). We collected comprehensive assessments, MRI, plasma samples, and amyloid positron emission tomography data. A multivariable logistic regression analysis was applied to combine plasma and MRI radiomics biomarkers and generate a new composite indicator. The optimal model's performance and generalizability were assessed across populations in 2 cross-racial cohorts. A total of 897 subjects were included, including 635 from the SILCODE cohort (mean [SD] age, 64.93 [6.78] years; 343 [63%] female) and 262 from the ADNI cohort (mean [SD] age, 73.96 [7.06] years; 140 [53%] female). The area under the receiver operating characteristic curve of the optimal model was 0.9414 and 0.8979 in the training and validation dataset, respectively. A calibration analysis displayed excellent consistency between the prognosis and actual observation. The findings of the present study provide a valuable diagnostic tool for identifying at-risk individuals for AD and highlight the pivotal role of the radiomic biomarker. Importantly, built upon data-driven analyses commonly seen in previous radiomics studies, our research delves into AD pathology to further elucidate the underlying reasons behind the robust predictive performance of the MRI radiomic predictor.
Collapse
Affiliation(s)
- Xianfeng Yu
- Department of Neurology,
Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Xiaoming Sun
- Institute of Biomedical Engineering, School of Life Science,
Shanghai University, Shanghai 200444, China
| | - Min Wei
- Department of Neurology,
Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Shuqing Deng
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Qi Zhang
- Institute of Biomedical Engineering, School of Life Science,
Shanghai University, Shanghai 200444, China
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Kai Shao
- Department of Neurology,
Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Mingkai Zhang
- Department of Neurology,
Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Science,
Shanghai University, Shanghai 200444, China
| | - Ying Han
- Department of Neurology,
Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Center of Alzheimer’s Disease,
Beijing Institute for Brain Disorders, Beijing 100069, China
- National Clinical Research Center for Geriatric Disorders, Beijing 100053, China
| | | |
Collapse
|
14
|
Funk AT, Hassan AAO, Waugh JL. In humans, insulo-striate structural connectivity is largely biased toward either striosome-like or matrix-like striatal compartments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588409. [PMID: 38645229 PMCID: PMC11030402 DOI: 10.1101/2024.04.07.588409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The insula is an integral component of sensory, motor, limbic, and executive functions, and insular dysfunction is associated with numerous human neuropsychiatric disorders. Insular afferents project widely, but insulo-striate projections are especially numerous. The targets of these insulo-striate projections are organized into tissue compartments, the striosome and matrix. These striatal compartments have distinct embryologic origins, afferent and efferent connectivity, dopamine pharmacology, and susceptibility to injury. Striosome and matrix appear to occupy separate sets of cortico-striato-thalamo-cortical loops, so a bias in insulo-striate projections towards one compartment may also embed an insular subregion in distinct regulatory and functional networks. Compartment-specific mapping of insulo-striate structural connectivity is sparse; the insular subregions are largely unmapped for compartment-specific projections. In 100 healthy adults, we utilized probabilistic diffusion tractography to map and quantify structural connectivity between 19 structurally-defined insular subregions and each striatal compartment. Insulo-striate streamlines that reached striosome-like and matrix-like voxels were concentrated in distinct insular zones (striosome: rostro- and caudoventral; matrix: caudodorsal) and followed different paths to reach the striatum. Though tractography was generated independently in each hemisphere, the spatial distribution and relative bias of striosome-like and matrix-like streamlines were highly similar in the left and right insula. 16 insular subregions were significantly biased towards one compartment: seven toward striosome-like voxels and nine toward matrix-like voxels. Striosome-favoring bundles had significantly higher streamline density, especially from rostroventral insular subregions. The biases in insulo-striate structural connectivity we identified mirrored the compartment-specific biases identified in prior studies that utilized injected tract tracers, cytoarchitecture, or functional MRI. Segregating insulo-striate structural connectivity through either striosome or matrix may be an anatomic substrate for functional specialization among the insular subregions.
Collapse
Affiliation(s)
- AT Funk
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX
| | - AAO Hassan
- Department of Natural Sciences and Mathematics, University of Texas at Dallas
| | - JL Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| |
Collapse
|
15
|
Yang H, Yang X, Yan S. A dynamic computational model of the parallel circuit on the basal ganglia-cortex associated with Parkinson's disease dementia. BIOLOGICAL CYBERNETICS 2024; 118:127-143. [PMID: 38644417 DOI: 10.1007/s00422-024-00988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
The cognitive impairment will gradually appear over time in Parkinson's patients, which is closely related to the basal ganglia-cortex network. This network contains two parallel circuits mediated by putamen and caudate nucleus, respectively. Based on the biophysical mean-field model, we construct a dynamic computational model of the parallel circuit in the basal ganglia-cortex network associated with Parkinson's disease dementia. The simulated results show that the decrease of power ratio in the prefrontal cortex is mainly caused by dopamine depletion in the caudate nucleus and is less related to that in the putamen, which indicates Parkinson's disease dementia may be caused by a lesion of the caudate nucleus rather than putamen. Furthermore, the underlying dynamic mechanism behind the decrease of power ratio is investigated by bifurcation analysis, which demonstrates that the decrease of power ratio is due to the change of brain discharge pattern from the limit cycle mode to the point attractor mode. More importantly, the spatiotemporal course of dopamine depletion in Parkinson's disease patients is well simulated, which states that with the loss of dopaminergic neurons projecting to the striatum, motor dysfunction of Parkinson's disease is first observed, whereas cognitive impairment occurs after a period of onset of motor dysfunction. These results are helpful to understand the pathogenesis of cognitive impairment and provide insights into the treatment of Parkinson's disease dementia.
Collapse
Affiliation(s)
- Hao Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - XiaoLi Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| | - SiLu Yan
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| |
Collapse
|
16
|
Sobreira-Neto MA, Stelzer FG, Gitaí LLG, Alves RC, Eckeli AL, Schenck CH. REM sleep behavior disorder: update on diagnosis and management. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:1179-1194. [PMID: 38157884 PMCID: PMC10756822 DOI: 10.1055/s-0043-1777111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/17/2023] [Indexed: 01/03/2024]
Abstract
REM sleep behavior disorder (RBD) is characterized by a loss of atonia of skeletal muscles during REM sleep, associated with acting out behaviors during dreams. Knowledge of this pathology is important to predict neurodegenerative diseases since there is a strong association of RBD with diseases caused by the deposition of alpha-synuclein in neurons (synucleinopathies), such as Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB). Proper diagnosis of this condition will enable the use of future neuroprotective strategies before motor and cognitive symptoms. Diagnostic assessment should begin with a detailed clinical history with the patient and bed partner or roommate and the examination of any recorded home videos. Polysomnography (PSG) is necessary to verify the loss of sleep atonia and, when documented, the behaviors during sleep. Technical recommendations for PSG acquisition and analysis are defined in the AASM Manual for the scoring of sleep and associated events, and the PSG report should describe the percentage of REM sleep epochs that meet the criteria for RWA (REM without atonia) to better distinguish patients with and without RBD. Additionally, PSG helps rule out conditions that may mimic RBD, such as obstructive sleep apnea, non-REM sleep parasomnias, nocturnal epileptic seizures, periodic limb movements, and psychiatric disorders. Treatment of RBD involves guidance on protecting the environment and avoiding injuries to the patient and bed partner/roommate. Use of medications are also reviewed in the article. The development of neuroprotective medications will be crucial for future RBD therapy.
Collapse
Affiliation(s)
| | - Fernando Gustavo Stelzer
- Univeridade de São Paulo, Ribeirão Preto Medical School, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto SP, Brazil.
| | - Lívia Leite Góes Gitaí
- Universidade Federal de Alagoas, Faculty of Medicine, Division of Neurology, Maceió AL, Brazil.
| | | | - Alan Luiz Eckeli
- Univeridade de São Paulo, Ribeirão Preto Medical School, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto SP, Brazil.
| | - Carlos H. Schenck
- Minnesota Regional Sleep Disorders Center; and University of Minnesota, Medical School, Departments of Psychiatry; and Hennepin County Medical Center, Minneapolis MN, United States of America.
| |
Collapse
|
17
|
Xiao Y, Yang T, Zhang L, Wei Q, Ou R, Hou Y, Liu K, Lin J, Jiang Q, Shang H. Association between the blood pressure variability and cognitive decline in Parkinson's disease. Brain Behav 2023; 13:e3319. [PMID: 37969048 PMCID: PMC10726805 DOI: 10.1002/brb3.3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
OBJECTIVES High visit-to-visit blood pressure variability (BPV) was found to be associated with cognitive decline in the elderly. This study aimed to investigate the impact of visit-to-visit BPV on cognition in patients with early-stage Parkinson's disease (PD). DESIGN This is a retrospective analysis of a prospective cohort. SETTING AND PARTICIPANTS A total of 297 patients with early-stage PD (103 mild cognitive impairments [PD-MCI] and 194 normal cognitions [PD-NC] at baseline) were included from the Parkinson's Progression Markers Initiative study. METHODS Variation independent of mean (VIM) of the first year was used as the indicator of BPV. The Montreal Cognitive Assessment (MoCA) was used to assess global cognition. Patients were divided into PD-MCI and PD-NC according to the MoCA score at baseline. Longitudinal cerebrospinal fluid (Aβ-42, Aβ, α-synuclein, neurofilament light protein, tau phosphorylated at the threonine 181 position, total tau, glial fibrillary acidic protein) and serum (neurofilament light protein) biomarkers were assessed. The Bayesian linear growth model was used to evaluate the relationship between baseline BPV and the rate of change in cognition and biomarkers. RESULTS Higher systolic VIM of the first year was related to a greater rate of decline in MoCA score in the following years in PD-MCI (β = -.15 [95% CI -.29, -.01]). No association was found between BPV and biomarkers. CONCLUSION AND IMPLICATIONS Higher systolic VIM predicted a steeper decline in cognitive tests in PD-MCI independently from the mean value of blood pressure, orthostatic hypotension, and supine hypertension.
Collapse
Affiliation(s)
- Yi Xiao
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Tianmi Yang
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Lingyu Zhang
- Health Management CenterWest China Hospital of Sichuan UniversityChengduChina
| | - Qianqian Wei
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Ruwei Ou
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yanbing Hou
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Kuncheng Liu
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Junyu Lin
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Qirui Jiang
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Huifang Shang
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| |
Collapse
|
18
|
Parr AC, Riek HC, Coe BC, Pari G, Masellis M, Marras C, Munoz DP. Genetic variation in the dopamine system is associated with mixed-strategy decision-making in patients with Parkinson's disease. Eur J Neurosci 2023; 58:4523-4544. [PMID: 36453013 DOI: 10.1111/ejn.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Decision-making during mixed-strategy games requires flexibly adapting choice strategies in response to others' actions and dynamically tracking outcomes. Such decisions involve diverse cognitive processes, including reinforcement learning, which are affected by disruptions to the striatal dopamine system. We therefore investigated how genetic variation in dopamine function affected mixed-strategy decision-making in Parkinson's disease (PD), which involves striatal dopamine pathology. Sixty-six PD patients (ages 49-85, Hoehn and Yahr Stages 1-3) and 22 healthy controls (ages 54-75) competed in a mixed-strategy game where successful performance depended on minimizing choice biases (i.e., flexibly adapting choices trial by trial). Participants also completed a fixed-strategy task that was matched for sensory input, motor outputs and overall reward rate. Factor analyses were used to disentangle cognitive from motor aspects within both tasks. Using a within-subject, multi-centre design, patients were examined on and off dopaminergic therapy, and genetic variation was examined via a multilocus genetic profile score representing the additive effects of three single nucleotide polymorphisms (SNPs) that influence dopamine transmission: rs4680 (COMT Val158 Met), rs6277 (C957T) and rs907094 (encoding DARPP-32). PD and control participants displayed comparable mixed-strategy choice behaviour (overall); however, PD patients with genetic profile scores indicating higher dopamine transmission showed improved performance relative to those with low scores. Exploratory follow-up tests across individual SNPs revealed better performance in individuals with the C957T polymorphism, reflecting higher striatal D2/D3 receptor density. Importantly, genetic variation modulated cognitive aspects of performance, above and beyond motor function, suggesting that genetic variation in dopamine signalling may underlie individual differences in cognitive function in PD.
Collapse
Affiliation(s)
- Ashley C Parr
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Heidi C Riek
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Brian C Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Giovanna Pari
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Movement Disorder Clinic, Kingston General Hospital, Kingston, Ontario, Canada
| | - Mario Masellis
- Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Connie Marras
- Movement Disorders Clinic, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
19
|
Li J, Tan C, Zhang L, Cai S, Shen Q, Liu Q, Wang M, Song C, Zhou F, Yuan J, Liu Y, Lan B, Liao H. Neural functional network of early Parkinson's disease based on independent component analysis. Cereb Cortex 2023; 33:11025-11035. [PMID: 37746803 DOI: 10.1093/cercor/bhad342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
This work explored neural network changes in early Parkinson's disease: Resting-state functional magnetic resonance imaging was used to investigate functional alterations in different stages of Parkinson's disease (PD). Ninety-five PD patients (50 early/mild and 45 early/moderate) and 37 healthy controls (HCs) were included. Independent component analysis revealed significant differences in intra-network connectivity, specifically in the default mode network (DMN) and right frontoparietal network (RFPN), in both PD groups compared to HCs. Inter-network connectivity analysis showed reduced connectivity between the executive control network (ECN) and DMN, as well as ECN-left frontoparietal network (LFPN), in early/mild PD. Early/moderate PD exhibited decreased connectivity in ECN-LFPN, ECN-RFPN, ECN-DMN, and DMN-auditory network, along with increased connectivity in LFPN-cerebellar network. Correlations were found between ECN-DMN and ECN-LFPN connections with UPDRS-III scores in early/mild PD. These findings suggest that PD progression involves dysfunction in multiple intra- and inter-networks, particularly implicating the ECN, and a wider range of abnormal functional networks may mark the progression of the disease.
Collapse
Affiliation(s)
- Junli Li
- Department of Medical Imaging, Huizhou Central People's Hospital, Eling North Road, Huicheng District, Huizhou, Guangdong 516001, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Lin Zhang
- Department of Radiology, Chengdu Fifth People's Hospital, Mashi Street, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Qinru Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - ChenDie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Yujing Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Bowen Lan
- Department of Medical Imaging, Huizhou Central People's Hospital, Eling North Road, Huicheng District, Huizhou, Guangdong 516001, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| |
Collapse
|
20
|
Ryman SG, Shaff N, Dodd A, Nitschke S, Wertz C, Julio K, Suarez Cedeno G, Deligtisch A, Erhardt E, Lin H, Vakhtin A, Poston KL, Tarawneh R, Pirio Richardson S, Mayer A. Reduced and Delayed Cerebrovascular Reactivity in Patients with Parkinson's Disease. Mov Disord 2023; 38:1262-1272. [PMID: 37157056 PMCID: PMC10524339 DOI: 10.1002/mds.29429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Cerebrovascular dysfunction in Parkinson's disease (PD) is heterogeneous and may contribute to disease pathophysiology or progression. There is a need to understand the mechanisms by which cerebrovascular dysfunction is altered in participants with PD. OBJECTIVES The objective of this study is to test the hypothesis that participants with PD exhibit a significant reduction in the ability of the cerebral vessels to dilate in response to vasoactive challenges relative to healthy controls (HC). METHODS The current study uses a vasodilatory challenge while participants undergo functional magnetic resonance imaging to quantify the amplitude and delay of cerebrovascular reactivity in participants with PD relative to age and sex-matched HC. An analysis of covariance was used to evaluate differences in cerebrovascular reactivity amplitude and latency between PD participants and HC. RESULTS A significant main effect of group was observed for whole-brain cerebrovascular reactivity amplitude (F(1, 28) = 4.38, p = 0.046, Hedge's g = 0.73) and latency (F(1, 28) = 16.35, p < 0.001, Hedge's g = 1.42). Participants with PD exhibited reduced whole-brain amplitude and increased latencies in cerebrovascular reactivity relative to HC. The evaluation of regional effects indicates that the largest effects were observed in the cuneus, precuneus, and parietal regions. CONCLUSIONS PD participants exhibited reduced and delayed cerebrovascular reactivity. This dysfunction may play an important role in chronic hypoxia, neuroinflammation, and protein aggregation, mechanisms that could lead to disease progression. Cerebrovascular reactivity may serve as an important biomarker and target for future interventions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sephira G Ryman
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Nicholas Shaff
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Andrew Dodd
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Stephanie Nitschke
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Christopher Wertz
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Kayla Julio
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Gerson Suarez Cedeno
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Amanda Deligtisch
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, USA
| | - Henry Lin
- Department of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Neurology|Medicine, New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| | - Andrei Vakhtin
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Kathleen L Poston
- Movement Disorders Division in the Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Rawan Tarawneh
- Memory and Aging Center, Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Sarah Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
- Neurology|Medicine, New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| | - Andrew Mayer
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| |
Collapse
|
21
|
Weintraub D, Picillo M, Cho HR, Caspell‐Garcia C, Blauwendraat C, Brown EG, Chahine LM, Coffey CS, Dobkin RD, Foroud T, Galasko D, Kieburtz K, Marek K, Merchant K, Mollenhauer B, Poston KL, Simuni T, Siderowf A, Singleton A, Seibyl J, Tanner CM. Impact of the Dopamine System on Long-Term Cognitive Impairment in Parkinson Disease: An Exploratory Study. Mov Disord Clin Pract 2023; 10:943-955. [PMID: 37332638 PMCID: PMC10272925 DOI: 10.1002/mdc3.13751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/09/2023] [Accepted: 04/02/2023] [Indexed: 06/20/2023] Open
Abstract
Background Little is known about the impact of the dopamine system on development of cognitive impairment (CI) in Parkinson disease (PD). Objectives We used data from a multi-site, international, prospective cohort study to explore the impact of dopamine system-related biomarkers on CI in PD. Methods PD participants were assessed annually from disease onset out to 7 years, and CI determined by applying cut-offs to four measures: (1) Montreal Cognitive Assessment; (2) detailed neuropsychological test battery; (3) Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) cognition score; and (4) site investigator diagnosis of CI (mild cognitive impairment or dementia). The dopamine system was assessed by serial Iodine-123 Ioflupane dopamine transporter (DAT) imaging, genotyping, and levodopa equivalent daily dose (LEDD) recorded at each assessment. Multivariate longitudinal analyses, with adjustment for multiple comparisons, determined the association between dopamine system-related biomarkers and CI, including persistent impairment. Results Demographic and clinical variables associated with CI were higher age, male sex, lower education, non-White race, higher depression and anxiety scores and higher MDS-UPDRS motor score. For the dopamine system, lower baseline mean striatum dopamine transporter values (P range 0.003-0.005) and higher LEDD over time (P range <0.001-0.01) were significantly associated with increased risk for CI. Conclusions Our results provide preliminary evidence that alterations in the dopamine system predict development of clinically-relevant, cognitive impairment in Parkinson's disease. If replicated and determined to be causative, they demonstrate that the dopamine system is instrumental to cognitive health status throughout the disease course. TRIAL REGISTRATION Parkinson's Progression Markers Initiative is registered with ClinicalTrials.gov (NCT01141023).
Collapse
Affiliation(s)
- Daniel Weintraub
- Department of PsychiatryPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Marina Picillo
- Assistant Professor in Neurology at the Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoItaly
| | - Hyunkeun Ryan Cho
- Department of Biostatistics, College of Public HealthUniversity of IowaIowa CityIowaUSA
| | | | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, and the Integrative Neurogenomics Unit, Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Ethan G. Brown
- Department of NeurologyWeill Institute for Neurosciences, University of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Lana M. Chahine
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Christopher S. Coffey
- Department of Biostatistics, College of Public HealthUniversity of IowaIowa CityIowaUSA
| | - Roseanne D. Dobkin
- Department of PsychiatryRutgers University, Robert Wood Johnson Medical SchoolPiscatawayNew JerseyUSA
| | - Tatiana Foroud
- Department of Medical and Molecular GeneticsIndiana UniversityIndianapolisIndianaUSA
| | - Doug Galasko
- Department of NeurologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Karl Kieburtz
- Department of NeurologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Kenneth Marek
- Institute for Neurodegenerative DisordersNew HavenConnecticutUSA
| | - Kalpana Merchant
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Brit Mollenhauer
- Department of NeurologyUniversity Medical Center GoettingenGoettingenGermany
| | - Kathleen L. Poston
- Department of Neurology and Neurological SciencesStanford UniversityStanfordCaliforniaUSA
| | - Tanya Simuni
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Andrew Siderowf
- Department of NeurologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias, and the Molecular Genetics SectionLaboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - John Seibyl
- Institute for Neurodegenerative DisordersNew HavenConnecticutUSA
| | - Caroline M. Tanner
- Department of NeurologyWeill Institute for Neurosciences, University of California, San FranciscoSan FranciscoCaliforniaUSA
| | | |
Collapse
|
22
|
Rogdaki M, Devroye C, Ciampoli M, Veronese M, Ashok AH, McCutcheon RA, Jauhar S, Bonoldi I, Gudbrandsen M, Daly E, van Amelsvoort T, Van Den Bree M, Owen MJ, Turkheimer F, Papaleo F, Howes OD. Striatal dopaminergic alterations in individuals with copy number variants at the 22q11.2 genetic locus and their implications for psychosis risk: a [18F]-DOPA PET study. Mol Psychiatry 2023; 28:1995-2006. [PMID: 33981004 PMCID: PMC10575769 DOI: 10.1038/s41380-021-01108-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 12/31/2022]
Abstract
Dopaminergic dysregulation is one of the leading hypotheses for the pathoetiology underlying psychotic disorders such as schizophrenia. Molecular imaging studies have shown increased striatal dopamine synthesis capacity (DSC) in schizophrenia and people in the prodrome of psychosis. However, it is unclear if genetic risk for psychosis is associated with altered DSC. To investigate this, we recruited healthy controls and two antipsychotic naive groups of individuals with copy number variants, one with a genetic deletion at chromosome 22q11.2, and the other with a duplication at the same locus, who are at increased and decreased risk for psychosis, respectively. Fifty-nine individuals (21 with 22q11.2 deletion, 12 with the reciprocal duplication and 26 healthy controls) received clinical measures and [18F]-DOPA PET imaging to index striatal Kicer. There was an inverse linear effect of copy number variant number on striatal Kicer value (B = -1.2 × 10-3, SE = 2 × 10-4, p < 0.001), with controls showing levels intermediate between the two variant groups. Striatal Kicer was significantly higher in the 22q11.2 deletion group compared to the healthy control (p < 0.001, Cohen's d = 1.44) and 22q11.2 duplication (p < 0.001, Cohen's d = 2) groups. Moreover, Kicer was positively correlated with the severity of psychosis-risk symptoms (B = 730.5, SE = 310.2, p < 0.05) and increased over time in the subject who went on to develop psychosis, but was not associated with anxiety or depressive symptoms. Our findings suggest that genetic risk for psychosis is associated with dopaminergic dysfunction and identify dopamine synthesis as a potential target for treatment or prevention of psychosis in 22q11.2 deletion carriers.
Collapse
Affiliation(s)
- Maria Rogdaki
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK.
| | - Céline Devroye
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Mariasole Ciampoli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Mattia Veronese
- Centre for Neuroimaging Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Abhishekh H Ashok
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Maria Gudbrandsen
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Therese van Amelsvoort
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| | - Marianne Van Den Bree
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| |
Collapse
|
23
|
Langer A, Lucke-Paulig L, Gassner L, Krüger R, Weiss D, Gharabaghi A, Zach H, Maetzler W, Hobert MA. Additive Effect of Dopaminergic Medication on Gait Under Single and Dual-Tasking Is Greater Than of Deep Brain Stimulation in Advanced Parkinson Disease With Long-Duration Deep Brain Stimulation. Neuromodulation 2023; 26:364-373. [PMID: 35227581 DOI: 10.1016/j.neurom.2022.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Patients with advanced Parkinson disease (PD) often experience problems with mobility, including walking under single- (ST) and dual-tasking (DT) conditions. The effects of deep brain stimulation in the subthalamic nucleus (DBS) versus dopaminergic medication (Med) on these conditions are not well investigated. MATERIALS AND METHODS We used two ST and two DT-gait paradigms to evaluate the effect of DBS and dopaminergic medication on gait parameters in 14 PD patients (mean age 66 ± 8 years) under DBSOFF/MedON, DBSON/MedOFF, and DBSON/MedON conditions. They performed standardized 20-meter walks with convenient and fast speed. To test DT capabilities, they performed a checking-boxes and a subtraction task during fast-paced walking. Quantitative gait analysis was performed using a tri-axial accelerometer (Dynaport, McRoberts, The Netherlands). Dual-task costs (DTC) of gait parameters and secondary task performance were compared intraindividually between DBSOFF/MedON vs DBSON/MedON, and DBSON/MedOFF vs DBSON/MedON to estimate responsiveness. RESULTS Dopaminergic medication increased gait speed and cadence at convenient speed. It increased cadence and decreased number of steps at fast speed, and improved DTC of cadence during the checking boxes and DTC of cadence and number of steps during the subtraction tasks. DBS only improved DTC of cadence during the checking boxes and DTC of gait speed during the subtraction task. CONCLUSION Dopaminergic medication showed larger additional effects on temporal gait parameters under ST and DT conditions in advanced PD than DBS. These results, after confirmation in independent studies, should be considered in the medical management of advanced PD patients with gait and DT deficits.
Collapse
Affiliation(s)
- Agnes Langer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Lara Lucke-Paulig
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany; Department of Endocrinology, Diabetology and Geriatrics, Stuttgart General Hospital, Bad Cannstatt, Germany
| | - Lucia Gassner
- Department of Sport Physiology, Institute of Sports Sciences, University of Vienna, Vienna, Austria; Royal Melbourne Institute of Technology, Melbourne, Australia; HTA Austria - Austrian Institute for Health Technology Assessment GmbH, Vienna, Austria
| | - Rejko Krüger
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany; Luxembourg Institute of Health, Strassen, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Daniel Weiss
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Heidemarie Zach
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Walter Maetzler
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany; Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Markus A Hobert
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany; Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
24
|
Chung SJ, Kim YJ, Kim YJ, Lee HS, Jeong SH, Hong JM, Sohn YH, Yun M, Jeong Y, Lee PH. Association Between White Matter Networks and the Pattern of Striatal Dopamine Depletion in Patients With Parkinson Disease. Neurology 2022; 99:e2672-e2682. [PMID: 36195451 DOI: 10.1212/wnl.0000000000201269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Individual variability in nigrostriatal dopaminergic denervation is an important factor underlying clinical heterogeneity in Parkinson disease (PD). This study aimed to explore whether the pattern of striatal dopamine depletion was associated with white matter (WM) networks in PD. METHODS A total of 240 newly diagnosed patients with PD who underwent 18F-FP-CIT PET scans and brain diffusion tensor imaging at initial assessment were enrolled in this study. We measured 18F-FP-CIT tracer uptake as an indirect marker for striatal dopamine depletion. Factor analysis-derived striatal dopamine loss patterns were estimated in each patient to calculate the composite scores of 4 striatal subregion factors (caudate, more-affected and less-affected sensorimotor striata, and anterior putamen) based on the availability of striatal dopamine transporter. The WM structural networks that were correlated with the composite scores of each striatal subregion factor were identified using a network-based statistical analysis. RESULTS A higher composite score of caudate (i.e., relatively preserved dopaminergic innervation in the caudate) was associated with a strong structural connectivity in a single subnetwork comprising the left caudate and left frontal gyri. Selective dopamine loss in the caudate was associated with strong connectivity in the structural subnetwork whose hub nodes were bilateral thalami and left insula, which were connected to the anterior cingulum. However, no subnetworks were correlated with the composite scores of other striatal subregion factors. The connectivity strength of the network with a positive correlation with the composite score of caudate affected the frontal/executive function either directly or indirectly through the mediation of dopamine depletion in the caudate. CONCLUSIONS Our findings indicate that different patterns of striatal dopamine depletion are closely associated with WM structural alterations, which may contribute to heterogeneous cognitive profiles in individuals with PD.
Collapse
Affiliation(s)
- Seok Jong Chung
- From the Department of Neurology (S.J.C., Yun Joong Kim, Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C., Yun Joong Kim), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Program of Brain and Cognitive Engineering (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; Department of Bio and Brain Engineering (Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Yae Ji Kim
- From the Department of Neurology (S.J.C., Yun Joong Kim, Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C., Yun Joong Kim), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Program of Brain and Cognitive Engineering (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; Department of Bio and Brain Engineering (Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Joong Kim
- From the Department of Neurology (S.J.C., Yun Joong Kim, Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C., Yun Joong Kim), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Program of Brain and Cognitive Engineering (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; Department of Bio and Brain Engineering (Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- From the Department of Neurology (S.J.C., Yun Joong Kim, Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C., Yun Joong Kim), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Program of Brain and Cognitive Engineering (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; Department of Bio and Brain Engineering (Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea.
| | - Seong Ho Jeong
- From the Department of Neurology (S.J.C., Yun Joong Kim, Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C., Yun Joong Kim), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Program of Brain and Cognitive Engineering (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; Department of Bio and Brain Engineering (Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Man Hong
- From the Department of Neurology (S.J.C., Yun Joong Kim, Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C., Yun Joong Kim), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Program of Brain and Cognitive Engineering (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; Department of Bio and Brain Engineering (Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- From the Department of Neurology (S.J.C., Yun Joong Kim, Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C., Yun Joong Kim), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Program of Brain and Cognitive Engineering (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; Department of Bio and Brain Engineering (Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- From the Department of Neurology (S.J.C., Yun Joong Kim, Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C., Yun Joong Kim), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Program of Brain and Cognitive Engineering (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; Department of Bio and Brain Engineering (Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Jeong
- From the Department of Neurology (S.J.C., Yun Joong Kim, Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C., Yun Joong Kim), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Program of Brain and Cognitive Engineering (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; Department of Bio and Brain Engineering (Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- From the Department of Neurology (S.J.C., Yun Joong Kim, Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C., Yun Joong Kim), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Program of Brain and Cognitive Engineering (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology (Yae Ji Kim, Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; Department of Bio and Brain Engineering (Y.J.), Korea Advanced Institute of Science and Technology, Daejeon, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
25
|
De Masi R, Orlando S, Costa MC. Dementia-Associated Compulsive Singing (DACS): Presentation of Unpublished Clinical Cases Miniseries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10844. [PMID: 36078557 PMCID: PMC9517776 DOI: 10.3390/ijerph191710844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Dementia-associated compulsive singing (DACS) is a neurotransmettitorial-based behavioral disturbance, characterized by an unabating melodic expression, occurring in patients that suffer from evolved dementia. Previously described only as a "punding" aspect of the dopamine dysregulation syndrome (DDS) in the Parkinson's disease (PD), compulsive singing has now been described, for the first time, in four non-PD patients effectively treated with Haloperidol or Quetiapine. Unlike the DDS-associated conditions, in our cases DACS is not pharmacologically induced, being that all patients were L-dopa-free. We detected a diffuse hyperintensity of the white matter and brain atrophy, with insular shrinkage as well as ventricular system and/or sub-arachnoid space enlargement in our DACS patients. Furthermore, similarly to the other behavioral symptoms of dementia, DACS also seems to be correlated to the degree of cognitive and functional impairment, rather than its subtype. In conclusion, DACS is a non-cognitive, unpublished clinical aspect of evolved dementia, which is interesting due to the involvement of the extra-nigral dopaminergic system, resulting in an unabating altered behavior, but also to the enrichment of our knowledge in the involutional diseases of the central nervous system and their physiopathological manifestations.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Maria Carmela Costa
- Complex Operative Unit of Ophthalmology, “V. Fazzi” Hospital, 73100 Lecce, Italy
| |
Collapse
|
26
|
Kuroha Y, Takahashi T, Arai Y, Yoshino M, Kasuga K, Hasegawa A, Matsubara N, Koike R, Ikeuchi T. [Neuropsychological and regional cerebral blood flow of posterior parietal area features in patients with Parkinson's disease with mild cognitive impairment]. Rinsho Shinkeigaku 2022; 62:532-540. [PMID: 35753785 DOI: 10.5692/clinicalneurol.cn-001709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study aimed to clarify associations between neuropsychological scales and regional cerebral blood flow (rCBF) of on 123I-IMP-SPECT in patients with Parkinson's disease with mild cognitive impairment (PD-MCI). Forty-two participants (mean age, 65.5 ± 8.9 years; mean disease duration, 11.1 ±5.7 years) were evaluated using the Wechsler Adult Intelligence Scale, third edition (WAIS-III), Wechsler Memory Scale, revised (WMS-R), Stroop test, Category word fluency, Auditory verbal learning test, Raven colored progressive matrices, Trail Making Test-B, and Clock drawing test. Participants were classified into PD-MCI and PD non-demented (PD-ND) using ten of these scales or its subtests. The rCBF of the posterior cingulate gyrus, precuneus, and parietal lobes was evaluated by 123I-IMP-SPECT using the easy Z-score imaging system (eZIS analysis). Extent was the extent index of voxels showing z-score > 2, and Severity was mean z-score in those regions on eZIS analysis. Cingulate island sign score (CIScore) was the ratio of integrated z-scores of the posterior cingulate gyrus to those of the posterior cortex.Twenty-three participants were diagnosed with PD-MCI (55%). The rCBF indices were significantly increased in the PD-MCI group compared to the PD-ND group (Extent: P = 0.047; CIScore: P = 0.006). These indices were significantly correlated with WAIS-III Processing Speed (Extent: P = 0.041, R = -0.317; Severity: P = 0.047, R = -0.309), Stroop effect (Extent: P = 0.003, R = 0.443; Severity: P = 0.004, R = 0.437), WMS-R Visual memory (Extent: P = 0.019, R = -0.361; Severity: P = 0.014, R = -0.375), and Delayed memory score (Extent: P = 0.005, R = -0.423; Severity: P = 0.044, R = -0.312). The rCBF indices showed no correlations with the number of impaired cognitive domains. Collectively, decreased posterior parietal area rCBF and lower scores on selective neuropsychological scales might be helpful to detect a transition period from PD-MCI to PD-D.
Collapse
Affiliation(s)
- Yasuko Kuroha
- Department of Neurology, National Hospital Organization Nishiniigata Chuo Hospital
| | - Tetsuya Takahashi
- Department of Neurology, National Hospital Organization Nishiniigata Chuo Hospital
| | - Yuki Arai
- Certified Clinical Psychologist, National Hospital Organization Nishiniigata Chuo Hospital
| | - Mihoko Yoshino
- Certified Clinical Psychologist, National Hospital Organization Nishiniigata Chuo Hospital
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University
| | - Arika Hasegawa
- Department of Neurology, National Hospital Organization Nishiniigata Chuo Hospital
| | - Nae Matsubara
- Department of Neurology, National Hospital Organization Nishiniigata Chuo Hospital
| | - Ryoko Koike
- Department of Neurology, National Hospital Organization Nishiniigata Chuo Hospital
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University
| |
Collapse
|
27
|
Valli M, Uribe C, Mihaescu A, Strafella AP. Neuroimaging of rapid eye movement sleep behavior disorder and its relation to Parkinson's disease. J Neurosci Res 2022; 100:1815-1833. [DOI: 10.1002/jnr.25099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Mikaeel Valli
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Carme Uribe
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience University of Barcelona Barcelona Spain
| | - Alexander Mihaescu
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Antonio P. Strafella
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
- Edmond J. Safra Parkinson Disease Program & Morton and Gloria Shulman Movement Disorder Unit, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN University of Toronto Toronto Ontario Canada
| |
Collapse
|
28
|
Role of Stress-Related Dopamine Transmission in Building and Maintaining a Protective Cognitive Reserve. Brain Sci 2022; 12:brainsci12020246. [PMID: 35204009 PMCID: PMC8869980 DOI: 10.3390/brainsci12020246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
This short review presents the hypothesis that stress-dependent dopamine (DA) transmission contributes to developing and maintaining the brain network supporting a cognitive reserve. Research has shown that people with a greater cognitive reserve are better able to avoid symptoms of degenerative brain changes. The paper will review evidence that: (1) successful adaptation to stressors involves development and stabilization of effective but flexible coping strategies; (2) this process requires dynamic reorganization of functional networks in the adult brain; (3) DA transmission is amongst the principal mediators of this process; (4) age- and disease-dependent cognitive impairment is associated with dysfunctional connectivity both between and within these same networks as well as with reduced DA transmission.
Collapse
|
29
|
Cheng TC, Huang SF, Wu SY, Lin FG, Lin WS, Tsai PY. Integration of Virtual Reality into Transcranial Magnetic Stimulation Improves Cognitive Function in Patients with Parkinson's Disease with Cognitive Impairment: A Proof-of-Concept Study. JOURNAL OF PARKINSON'S DISEASE 2022; 12:723-736. [PMID: 34897103 DOI: 10.3233/jpd-212978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Emerging evidence has indicated the positive effects of repetitive transcranial magnetic stimulation (rTMS) on patients with Parkinson's disease (PD) for the treatment of mild cognitive impairment (MCI). OBJECTIVE Investigating whether combining virtual reality (VR) training with rTMS can further enhance cognitive improvement induced by rTMS treatment. METHODS We randomly assigned 40 patients with PD and MCI into three groups, namely the rTMS-VR group (n = 13), rTMS group (n = 11), and sham rTMS group (n = 16). rTMS was administered as 10 consecutive sessions of intermittent theta burst stimulation (iTBS) over the left dorsolateral prefrontal cortex. In the rTMS-VR group, VR training was administered immediately after each rTMS session. Cognitive function was measured using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and Montreal Cognitive Assessment (MoCA) at baseline, immediately after intervention, and at 3-month follow-up. RESULTS Compared with the rTMS group, the rTMS-VR group exhibited significantly more improvements in total and delayed memory scores of the RBANS and the visuospatial/executive function score of the MoCA after intervention (p = 0.000∼0.046) and the delayed memory score of the RBANS at 3-month follow-up (p = 0.028). CONCLUSION The integrated rTMS-VR protocol achieved a superior outcome in global cognitive function, more effectively enhancing working memory and visuospatial executive function than did the rTMS protocol alone. The combination of VR and rTMS can be an effective regimen for improving the cognitive function of patients with PD.
Collapse
Affiliation(s)
- Tsai-Chin Cheng
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Fong Huang
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shang-Yu Wu
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fu-Gong Lin
- Department of Optometry, University of Kang Ning, Taipei, Taiwan
| | - Wang-Sheng Lin
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Yuan-Shan Branch, Yilan, Taiwan
| | - Po-Yi Tsai
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
- National Yang-Ming Chiao-Tung University, School of Medicine, Taipei, Taiwan
| |
Collapse
|
30
|
Tan YJ, Saffari SE, Zhao Y, Ng EYL, Yong ACW, Ng SYE, Chia NSY, Choi X, Heng D, Neo S, Xu Z, Tay KY, Au WL, Tan EK, Tan LCS, Ng ASL. Longitudinal Study of SNCA Rep1 Polymorphism on Executive Function in Early Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:865-870. [PMID: 35068417 DOI: 10.3233/jpd-213029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The alpha-synuclein gene promoter (SNCA-Rep1) is associated with Parkinson's disease (PD), but its relationship with performance across individual cognitive domains in early PD is unknown. This study aims to investigate Rep1 polymorphism and longitudinal change in cognition in early PD. In this longitudinal study, Rep1 allele lengths ("long" and "short") were determined in 204 early PD patients. All participants underwent annual neuropsychological assessments and followed up for 3 years. Linear-mixed model was performed to investigate the association of Rep1 status and longitudinal change in individual cognitive domains. At 3 years, significant decline in executive function was observed in long Rep1 allele carriers vs short allele carriers, controlling for potential confounders. This is the first longitudinal study demonstrating that long Rep1 allele carriers are at higher risk for executive dysfunction in early PD.
Collapse
Affiliation(s)
- Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
| | - Seyed Ehsan Saffari
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Center for Quantitative Medicine, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Yi Zhao
- Department of Clinical Translational Research, Singapore General Hospital, Singapore
| | - Ebonne Y L Ng
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Alisa C W Yong
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
| | - Samuel Y E Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
| | - Nicole S Y Chia
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
| | - Xinyi Choi
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Dede Heng
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Shermyn Neo
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
| | - Zheyu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
| | - Kay Yaw Tay
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
| | - Wing Lok Au
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
| | - Eng-King Tan
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
- Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson's Disease and Movement Disorders Centre, USA Parkinson Foundation International Center of Excellence, National Neuroscience Institute, Singapore
- Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
31
|
Lin H, Liu Z, Yan W, Zhang D, Liu J, Xu B, Li W, Zhang Q, Cai X. Brain connectivity markers in advanced Parkinson's disease for predicting mild cognitive impairment. Eur Radiol 2021; 31:9324-9334. [PMID: 34109485 DOI: 10.1007/s00330-021-08086-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Mild cognitive impairment (MCI) is a well-defined non-motor manifestation and a harbinger of dementia in Parkinson's disease. This study is to investigate brain connectivity markers of MCI using diffusion tensor imaging and resting-state functional MRI, and help MCI diagnosis in PD patients. METHODS We evaluated 131 advanced PD patients (disease duration > 5 years; 59 patients with MCI) and 48 healthy control subjects who underwent a diffusion-weighted and resting-state functional MRI scanning. The patients were randomly assigned to training (n = 100) and testing (n = 31) groups. According to the Brainnetome Atlas, ROI-based structural and functional connectivity analysis was employed to extract connectivity features. To identify features with significant discriminative power for patient classification, all features were put into an all-relevant feature selection procedure within cross-validation loops. RESULTS Nine features were identified to be significantly relevant to patient classification. They showed significant differences between PD patients with and without MCI and positively correlated with the MoCA score. Five of them did not differ between general MCI subjects and healthy controls from the ADNI database, which suggested that they could uniquely play a part in the MCI diagnosis of PD. On basis of these relevant features, the random forest model constructed from the training group achieved an accuracy of 83.9% in the testing group, to discriminate patients with and without MCI. CONCLUSIONS The results of our study provide preliminary evidence that structural and functional connectivity abnormalities may contribute to cognitive impairment and allow to predict the outcome of MCI diagnosis in PD. KEY POINTS • Nine MCI markers were identified using an all-relevant feature selection procedure. • Five of nine markers differed between MCI and NC in PD, but not in general persons. • A random forest model achieved an accuracy of 83.9% for MCI diagnosis in PD.
Collapse
Affiliation(s)
- Hai Lin
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 3002# Sungang West Road, Futian District, Shenzhen, 518035, China
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shenzhen University School of Medicine, Shenzhen, China
| | - Zesi Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 3002# Sungang West Road, Futian District, Shenzhen, 518035, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Yan
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Doudou Zhang
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 3002# Sungang West Road, Futian District, Shenzhen, 518035, China
- Shenzhen University School of Medicine, Shenzhen, China
| | - Jiali Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 3002# Sungang West Road, Futian District, Shenzhen, 518035, China
- Shenzhen University School of Medicine, Shenzhen, China
| | - Bin Xu
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 3002# Sungang West Road, Futian District, Shenzhen, 518035, China
- Shenzhen University School of Medicine, Shenzhen, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 3002# Sungang West Road, Futian District, Shenzhen, 518035, China
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shenzhen University School of Medicine, Shenzhen, China
| | - Qiusheng Zhang
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 3002# Sungang West Road, Futian District, Shenzhen, 518035, China.
- Shenzhen University School of Medicine, Shenzhen, China.
| | - Xiaodong Cai
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 3002# Sungang West Road, Futian District, Shenzhen, 518035, China.
- Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
32
|
Theta Burst Magnetic Stimulation Improves Parkinson’s-Related Cognitive Impairment: A Randomised Controlled Study. Neurorehabil Neural Repair 2021. [DOI: 10.1177/15459683211041311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Evidence remains mixed as to the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in treating mild cognitive impairment (MCI) in patients with Parkinson’s disease (PD). Objective. In this study, we examined the short- and long-term effects of patterned rTMS. Methods. We randomly assigned 35 patients with PD with MCI to two groups. One group received intermittent theta burst stimulation (iTBS; n = 20), and the other received its sham counterpart (n = 15). The stimulations were applied over the left dorsolateral prefrontal cortex for 10 consecutive weekdays. Measurements based on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and Montreal Cognitive Assessment (MoCA) were conducted at three time points: at baseline, immediately after the last intervention and at 3-month follow-up. Each patient received a 99mTc-TRODAT-1 single-photon emission computed tomography (SPECT) brain scan at baseline. Results. The iTBS group exhibited significantly greater improvement than the sham group did in total RBANS and MoCA scores ( p < .001 for both) immediately after intervention and at the 3-month follow-up. Radiotracer uptake in the bilateral basal ganglion in baseline SPECT was positively correlated with response to iTBS conditioning with respect to improvements in MoCA scores ( p = .021). Conclusion. This randomised controlled trial provides evidence that a consecutive iTBS protocol can achieve a persistent and wide-ranging therapeutic effect in patients with PD with MCI.
Collapse
|
33
|
Herrera ML, Deza-Ponzio R, Ghersi MS, de la Villarmois EA, Virgolini MB, Pérez MF, Molina VA, Bellini MJ, Hereñú CB. Early Cognitive Impairment Behind Nigrostriatal Circuit Neurotoxicity: Are Astrocytes Involved? ASN Neuro 2021; 12:1759091420925977. [PMID: 32466659 PMCID: PMC7263115 DOI: 10.1177/1759091420925977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cognitive dysfunction is one of the most severe nonmotor symptoms of nigrostriatal impairment. This occurs as a result of profound functional and morphological changes of different neuronal circuits, including modifications in the plasticity and architecture of hippocampal synapses. Such alterations can be implicated in the genesis and progression of dementia associated with neurodegenerative diseases including Parkinson-like symptoms. There are few studies regarding cognitive changes in nigrostriatal animal models. The aim of this study was to characterize the onset of memory deficit after induction of neurotoxicity with 6-hydroxydopamine (6-OHDA) and its correlation with hippocampal dysfunction. For this, we bilaterally microinjected 6-OHDA in dorsolateral Caudate-Putamen unit (CPu) and then, animals were tested weekly for working memory, spatial short-term memory, and motor performance. We evaluated tyrosine hydroxylase (TH) as a dopamine marker, aldehyde dehydrogenase 2 (ALDH2), a mitochondria detoxification enzyme and astrocyte glial fibrillar acid protein (GFAP) an immunoreactivity marker involved in different areas: CPu, substantia nigra, prefrontal cortex, and hippocampus. We observed a specific prefrontal cortex and nigrostriatal pathway TH reduction while ALDH2 showed a decrease-positive area in all the studied regions. Moreover, GFAP showed a specific CPu decrease and hippocampus increase of positively stained area on the third week after toxicity. We also evaluated the threshold to induce long-term potentiation in hippocampal excitability. Our findings showed that reduced hippocampal synaptic transmission was accompanied by deficits in memory processes, without affecting motor performance on the third-week post 6-OHDA administration. Our results suggest that 3 weeks after neurotoxic administration, astrocytes and ALDH2 mitochondrial enzyme modifications participate in altering the properties that negatively affect hippocampal function and consequently cognitive behavior.
Collapse
Affiliation(s)
- Macarena L Herrera
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Romina Deza-Ponzio
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Marisa S Ghersi
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Emilce A de la Villarmois
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Miriam B Virgolini
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Mariela F Pérez
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Victor A Molina
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - María J Bellini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Claudia B Hereñú
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| |
Collapse
|
34
|
He W, Wang JC, Tsai PY. Theta Burst Magnetic Stimulation Improves Parkinson's-Related Cognitive Impairment: A Randomised Controlled Study. Neurorehabil Neural Repair 2021; 35:986-995. [PMID: 34467796 DOI: 10.1177/1545968321104131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background. Evidence remains mixed as to the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in treating mild cognitive impairment (MCI) in patients with Parkinson's disease (PD). Objective. In this study, we examined the short- and long-term effects of patterned rTMS. Methods. We randomly assigned 35 patients with PD with MCI to two groups. One group received intermittent theta burst stimulation (iTBS; n = 20), and the other received its sham counterpart (n = 15). The stimulations were applied over the left dorsolateral prefrontal cortex for 10 consecutive weekdays. Measurements based on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and Montreal Cognitive Assessment (MoCA) were conducted at three time points: at baseline, immediately after the last intervention and at 3-month follow-up. Each patient received a 99mTc-TRODAT-1 single-photon emission computed tomography (SPECT) brain scan at baseline. Results. The iTBS group exhibited significantly greater improvement than the sham group did in total RBANS and MoCA scores (p < .001 for both) immediately after intervention and at the 3-month follow-up. Radiotracer uptake in the bilateral basal ganglion in baseline SPECT was positively correlated with response to iTBS conditioning with respect to improvements in MoCA scores (p = .021). Conclusion. This randomised controlled trial provides evidence that a consecutive iTBS protocol can achieve a persistent and wide-ranging therapeutic effect in patients with PD with MCI.
Collapse
Affiliation(s)
- Weijia He
- Department of Medicine and Therapeutics, Faculty of Medicine, Division of Neurology, 71024The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jia-Chi Wang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang-Ming Chiao-Tung University, School of Medicine, Taipei, Taiwan
| | - Po-Yi Tsai
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang-Ming Chiao-Tung University, School of Medicine, Taipei, Taiwan
| |
Collapse
|
35
|
Goelman G, Dan R, Růžička F, Bezdicek O, Jech R. Asymmetry of the insula-sensorimotor circuit in Parkinson's disease. Eur J Neurosci 2021; 54:6267-6280. [PMID: 34449938 DOI: 10.1111/ejn.15432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022]
Abstract
Patients with Parkinson's disease (PD) experience motor and non-motor symptoms, suggesting alterations of the motor and/or limbic system or more probably of their communications. We hypothesized that the communication between the insula (part of the limbic system) and sensorimotor cortex in PD is altered and hemispheric asymmetric. Furthermore, that this asymmetry relates to non-motor symptoms, and specifically, that apathy-related asymmetry is unique to PD. To test these hypotheses, we used a novel multivariate time-frequency analysis method applied to resting-state functional magnetic resonance imaging (MRI) data of 28 controls and 25 participants with PD measured in their OFF medication state. The analysis infers directionality of coupling, that is, afferent or efferent, among four anatomical regions, thus defining directed pathways of information flow, which enables the extension of symmetry measures to include directionality. A major right asymmetry reduction of the dorsal-posterior insula efferent and a slight bilateral increase of insula afferent pathways were observed in participants with PD versus controls. Between-group pathways that correlated with mild cognitive impairments combined the central-executive and default-mode networks through the right insula. Apathy-correlated pathways of the posterior insula in participants with PD versus controls exhibited reduced right efferent and increased left afferent. Because apathy scores were comparable between the groups and effects of the other motor and non-motor symptoms were statistically removed by the analysis, the differences in apathy-correlated pathways were suggested as unique to PD. These pathways could be predictors in the pre-symptomatic phase in patients with apathy.
Collapse
Affiliation(s)
- Gadi Goelman
- Department of Neurology, Hadassah Hebrew University Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rotem Dan
- Department of Neurology, Hadassah Hebrew University Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Filip Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Ondrej Bezdicek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| |
Collapse
|
36
|
Kang SW, Jeon S, Lee YG, Park M, Baik K, Jung JH, Chung SJ, Yoo HS, Jeong SH, Yun M, Lee PH, Sohn YH, Evans AC, Ye BS. Implication of metabolic and dopamine transporter PET in dementia with Lewy bodies. Sci Rep 2021; 11:14394. [PMID: 34257349 PMCID: PMC8277897 DOI: 10.1038/s41598-021-93442-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/24/2021] [Indexed: 11/08/2022] Open
Abstract
To evaluate the implication of 18F-fluorodeoxyglucose (FDG)- and dopamine transporter (DAT)-positron emission tomography (PET) in the diagnosis and clinical symptoms of dementia with Lewy bodies (DLB), 55 DLB patients and 49 controls underwent neuropsychological evaluation and FDG-, DAT-, and 18F-Florbetaben (FBB) PET. DAT- and FDG-uptake and FDG/DAT ratio were measured in the anterior and posterior striatum. The first principal component (PC1) of FDG subject residual profiles was identified for each subject. Receiver operating characteristic curve analyses for the diagnosis of DLB were performed using FDG- and DAT-PET biomarkers as predictors, and general linear models for motor severity and cognitive scores were performed adding FBB standardized uptake value ratio as a predictor. Increased metabolism in the bilateral putamen, vermis, and somato-motor cortices, which characterized PC1, was observed in the DLB group, compared to the control group. A combination of posterior putamen FDG/DAT ratio and PC1 showed the highest diagnostic accuracy (91.8% sensitivity and 96.4% specificity), which was significantly greater than that obtained by DAT uptake alone. Striatal DAT uptake and PC1 independently contributed to motor severity and language, memory, frontal/executive, and general cognitive dysfunction in DLB patients, while only PC1 contributed to attention and visuospatial dysfunction.
Collapse
Affiliation(s)
- Sung Woo Kang
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Seun Jeon
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Gun Lee
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Mincheol Park
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
37
|
Meta-Analysis of Cognition in Parkinson's Disease Mild Cognitive Impairment and Dementia Progression. Neuropsychol Rev 2021; 32:149-160. [PMID: 33860906 DOI: 10.1007/s11065-021-09502-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
Mild cognitive changes, including executive dysfunction, are seen in Parkinson's Disease (PD). Approximately 30% of individuals with PD develop Parkinson's disease dementia (PDD). Mild cognitive impairment (MCI) has been identified as a transitional state between normal cognition and dementia. Although PD-MCI and its cognitive correlates have been increasingly studied as a risk indicator for development of PDD, investigations into the PD-MCI construct have yielded heterogeneous findings. Thus, a typical PD-MCI cognitive profile remains undefined. The present meta-analysis examined published cross-sectional studies of PD-MCI and cognitively normal PD (PD-CN) groups to provide aggregated effect sizes of group test performance by cognitive domain. Subsequently, longitudinal studies examining PD-MCI to PDD progression were meta-analyzed. Ninety-two cross-sectional articles of PD-MCI vs. PD-CN were included; 5 longitudinal studies of PD-MCI conversion to PDD were included. Random effects meta-analytic models were constructed resulting in effect sizes (Hedges' g) for cognitive domains. Overall performance across all measures produced a large effect size (g = 0.83, 95% CI [0.79, 0.86], t2 = 0.18) in cross-sectional analyses, with cognitive screeners producing the largest effect (g = 1.09, 95% CI [1.00, 1.17], t2 = 0.19). Longitudinally, overall measures produced a moderate effect (g = 0.47, 95% CI [0.40, 0.53], t2 = 0.01), with measures of executive functioning exhibiting the largest effect (g = 0.70, 95% CI [0.51, 0.89], t2 = 0.01). Longitudinal effects were made more robust by low heterogeneity. This report provides the first comprehensive meta-analysis of PD-MCI cognitive outcomes and predictors in PD-MCI conversion to PDD. Limitations include heterogeneity of cross-sectional effect sizes and the potential impact of small-study effects. Areas for continued research include visuospatial skills and visual memory in PD-MCI and longitudinal examination of executive dysfunction in PD-MCI.
Collapse
|
38
|
Pan C, Ren J, Li L, Li Y, Xu J, Xue C, Hu G, Yu M, Chen Y, Zhang L, Zhang W, Hu X, Sun Y, Liu W, Chen J. Differential functional connectivity of insular subdivisions in de novo Parkinson's disease with mild cognitive impairment. Brain Imaging Behav 2021; 16:1-10. [PMID: 33770371 DOI: 10.1007/s11682-021-00471-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 02/01/2023]
Abstract
The insula, consisting of functionally diverse subdivisions, plays a significant role in Parkinson's disease (PD)-related cognitive disorders. However, the functional connectivity (FC) patterns of insular subdivisions in PD remain unclear. Our aim is to investigate the changes in FC patterns of insular subdivisions and their relationships with cognitive domains. Three groups of participants were recruited in this study, including PD patients with mild cognitive impairment (PD-MCI, n = 25), PD patients with normal cognition (PD-NC, n = 13), and healthy controls (HCs, n = 17). Resting-state functional magnetic resonance imaging (rs-fMRI) was used to investigate the FC in insular subdivisions of the three groups. Moreover, all participants underwent a neuropsychological battery to assess cognition so that the relationship between altered FC and cognitive performance could be elucidated. Compared with the PD-NC group, the PD-MCI group exhibited increased FC between the left dorsal anterior insular (dAI) and the right superior parietal gyrus (SPG), and altered FC was negatively correlated with memory and executive function. Compared with the HC group, the PD-MCI group showed significantly increased FC between the right dAI and the right median cingulate and paracingulate gyri (DCG), and altered FC was positively related to attention/working memory, visuospatial function, and language. Our findings highlighted the different abnormal FC patterns of insular subdivisions in PD patients with different cognitive abilities. Furthermore, dysfunction of the dAI may partly contribute to the decline in executive function and memory in early drug-naïve PD patients.
Collapse
Affiliation(s)
- Chenxi Pan
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China
| | - Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China
| | - Lanting Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China
| | - Yuqian Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China
| | - Jianxia Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Guanjie Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Miao Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China
| | - Yong Chen
- Department of Laboratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Li Zhang
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Wenbing Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiao Hu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yu Sun
- School of Biology Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210029, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China.
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, 210029, Nanjing, Jiangsu, China.
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
39
|
Li C, Pang X, Shi K, Long Q, Liu J, Zheng J. The Insula Is a Hub for Functional Brain Network in Patients With Anti- N-Methyl-D-Aspartate Receptor Encephalitis. Front Neurosci 2021; 15:642390. [PMID: 33790737 PMCID: PMC8005702 DOI: 10.3389/fnins.2021.642390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/29/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In recent years, imaging technologies have been rapidly evolving, with an emphasis on the characterization of brain structure changes and functional imaging in patients with autoimmune encephalitis. However, the neural basis of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis and its linked cognitive decline is unclear. Our research aimed to assess changes in the functional brain network in patients with anti-NMDAR encephalitis and whether these changes lead to cognitive impairment. METHODS Twenty-one anti-NMDAR encephalitis patients and 22 age-, gender-, and education status-matched healthy controls were assessed using resting functional magnetic resonance imaging (fMRI) scanning and neuropsychological tests, including the Hamilton Depression Scale (HAMD24), the Montreal Cognitive Assessment (MoCA), and the Hamilton Anxiety Scale (HAMA). A functional brain network was constructed using fMRI, and the topology of the network parameters was analyzed using graph theory. Next, we extracted the aberrant topological parameters of the functional network as seeds and compared causal connectivity with the whole brain. Lastly, we explored the correlation of aberrant topological structures with deficits in cognitive performance. RESULTS Relative to healthy controls, anti-NMDAR encephalitis patients exhibited decreased MoCA scores and increased HAMA and HAMD24 scores (p < 0.05). The nodal clustering coefficient and nodal local efficiency of the left insula (Insula_L) were significantly decreased in anti-NMDAR encephalitis patients (p < 0.05 following Bonferroni correction). Moreover, anti-NMDAR encephalitis patients showed a weakened causal connectivity from the left insula to the left inferior parietal lobe (Parietal_Inf_L) compared to healthy controls. Conversely, the left superior parietal lobe (Parietal_sup_L) exhibited an enhanced causal connectivity to the left insula in anti-NMDAR encephalitis patients compared to controls. Unexpectedly, these alterations were not correlated with any neuropsychological test scores. CONCLUSION This research describes topological abnormalities in the functional brain network in anti-NMDAR encephalitis. These results will be conducive to understand the structure and function of the brain network of patients with anti-NMDAR encephalitis and further explore the neuropathophysiological mechanisms.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaomin Pang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke Shi
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qijia Long
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinping Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
40
|
Espadas I, Ortiz O, García-Sanz P, Sanz-Magro A, Alberquilla S, Solis O, Delgado-García JM, Gruart A, Moratalla R. Dopamine D2R is Required for Hippocampal-dependent Memory and Plasticity at the CA3-CA1 Synapse. Cereb Cortex 2021; 31:2187-2204. [PMID: 33264389 PMCID: PMC7945019 DOI: 10.1093/cercor/bhaa354] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/04/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dopamine receptors play an important role in motivational, emotional, and motor responses. In addition, growing evidence suggests a key role of hippocampal dopamine receptors in learning and memory. It is well known that associative learning and synaptic plasticity of CA3-CA1 requires the dopamine D1 receptor (D1R). However, the specific role of the dopamine D2 receptor (D2R) on memory-related neuroplasticity processes is still undefined. Here, by using two models of D2R loss, D2R knockout mice (Drd2-/-) and mice with intrahippocampal injections of Drd2-small interfering RNA (Drd2-siRNA), we aimed to investigate how D2R is involved in learning and memory as well as in long-term potentiation of the hippocampus. Our studies revealed that the genetic inactivation of D2R impaired the spatial memory, associative learning, and the classical conditioning of eyelid responses. Similarly, deletion of D2R reduced the activity-dependent synaptic plasticity in the hippocampal CA1-CA3 synapse. Our results demonstrate the first direct evidence that D2R is essential in behaving mice for trace eye blink conditioning and associated changes in hippocampal synaptic strength. Taken together, these results indicate a key role of D2R in regulating hippocampal plasticity changes and, in consequence, acquisition and consolidation of spatial and associative forms of memory.
Collapse
Affiliation(s)
- Isabel Espadas
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Oscar Ortiz
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Patricia García-Sanz
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Adrián Sanz-Magro
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Samuel Alberquilla
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Oscar Solis
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | | | - Agnès Gruart
- División de Neurociencias, Univ. Pablo de Olavide, Sevilla 41013, Spain
| | - Rosario Moratalla
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| |
Collapse
|
41
|
Han L, Lu J, Tang Y, Fan Y, Chen Q, Li L, Liu F, Wang J, Zuo C, Zhao J. Dopaminergic and Metabolic Correlations With Cognitive Domains in Non-demented Parkinson's Disease. Front Aging Neurosci 2021; 13:627356. [PMID: 33664663 PMCID: PMC7921728 DOI: 10.3389/fnagi.2021.627356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/20/2021] [Indexed: 11/18/2022] Open
Abstract
Background Accruing positron emission tomography (PET) studies have suggested that dopaminergic functioning and metabolic changes are correlated with cognitive dysfunction in Parkinson’s disease (PD). Yet, the relationship between dopaminergic or cerebral metabolism and different cognitive domains in PD is poorly understood. To address this scarcity, we aimed to investigate the interactions among dopaminergic bindings, metabolic network changes, and the cognitive domains in PD patients. Methods We recruited 41 PD patients, including PD patients with no cognitive impairment (PD-NC; n = 21) and those with mild cognitive impairment (PD-MCI; n = 20). All patients underwent clinical evaluations and a schedule of neuropsychological tests and underwent both 11C-N-2-carbomethoxy-3-(4-fluorophenyl)-tropane (11C-CFT) and 18F-fluorodeoxyglucose (18F-FDG) PET imaging. Results 11C-CFT imaging revealed a significant positive correlation between executive function and striatal dopamine transporter (DAT) binding at both the voxel and regional levels. Metabolic imaging revealed that executive function correlated with 18F-FDG uptake, mainly in inferior frontal gyrus, putamen, and insula. Further analysis indicated that striatal DAT binding correlated strictly with metabolic activity in the temporal gyrus, medial frontal gyrus, and cingulate gyrus. Conclusion Our findings might promote the understanding of the neurobiological mechanisms underlying cognitive impairment in PD.
Collapse
Affiliation(s)
- Linlin Han
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yilin Tang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun Fan
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qisi Chen
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengtao Liu
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
A Comprehensive Meta-analysis on Short-term and Working Memory Dysfunction in Parkinson's Disease. Neuropsychol Rev 2021; 31:288-311. [PMID: 33523408 DOI: 10.1007/s11065-021-09480-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/05/2021] [Indexed: 12/29/2022]
Abstract
A previous meta-analysis demonstrated short-term memory (STM) and working memory (WM) dysfunction in patients with Parkinson's disease (PD). However, considerable research on the topic that calls into question the extent of such impairments in PD has since been published. The aim of the present quantitative review was to provide the largest statistical overview on STM and WM dysfunction in Parkinson's disease (PD), while simultaneously providing novel insights on moderating factors of effect size heterogeneity in PD. The systematic literature search in PubMed, PsycINFO, PsycArticles, Scopus and Web of Science databases allowed us to estimate 350 effect sizes from 145 empirical studies that reported STM and WM scores for patients with PD against healthy controls. The outcomes indicated general dysfunction in the visuospatial domain and poor verbal WM in PD. Subgroup analyses suggested that mild cognitive impairment is associated with STM and WM difficulties in PD. Furthermore, meta-regression analyses revealed that disease duration accounted for more than 80% of the visuospatial STM effect size variance (β = 0.136, p < .001, R2 = .8272), larger daily levodopa equivalent dose was associated with WM dysfunction (verbal: β = -0.001, p = .016, R2 = .1812; visuospatial: β = 0.003, p = .069, R2 = .2340), and years of education partially explained the verbal STM effect size variance (β = -0.027, p = .040, R2 = .1171). Collectively, these findings advance our understanding of underlying factors that influence STM and WM functioning in PD, while at the same time providing novel directions for future research.
Collapse
|
43
|
Functional connectivity between resting-state networks reflects decline in executive function in Parkinson's disease: A longitudinal fMRI study. NEUROIMAGE-CLINICAL 2021; 28:102468. [PMID: 33383608 PMCID: PMC7581965 DOI: 10.1016/j.nicl.2020.102468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 11/22/2022]
Abstract
Over time, Parkinson’s disease (PD) patients declined on multiple cognitive domains. Executive dysfunction was related to interactions between specific resting-state networks. These interactions involved deep grey matter, frontoparietal, and attentional networks. Destabilization of functional network interactions may influence PD progression.
Deficits in cognitive functioning are a common yet poorly understood symptom in Parkinson’s disease (PD). Recent studies have highlighted the importance of (dynamic) interactions between resting-state networks for cognition, which remains understudied in PD. We investigated how altered (dynamic) functional interactions between brain networks relate to cognitive dysfunction in PD patients. In this fMRI study, 50 PD patients (mean age 65.5 years ± 6.27) on dopaminergic medication were studied cross-sectionally, and of this cohort 31 PD patients were studied longitudinally. MRI imaging and neuropsychological testing was performed at two time points, with a follow-up duration of approximately three years. Functional connectivity within and between seven resting-state networks was calculated (both statically and dynamically) and correlated with four neuropsychological test scores; a combined score of (four) executive tasks, a motor perseveration, memory, and category fluency task. Cognitive dysfunction was determined based on a longitudinal sample of age-matched healthy controls (n = 13). PD patients showed dysfunction on six out of seven cognitive tasks when compared to healthy controls. Severity of executive dysfunction was correlated with higher static and lower dynamic functional connectivity between deep gray matter regions and the frontoparietal network (DGM-FPN). Over time, declining executive function was related to increasing static DGM-FPN connectivity, together with changes of connectivity involving the dorsal attention network (amongst others with the ventral attention network). Static functional connectivity between the ventral and dorsal attention network correlated with motor perseveration. Our findings demonstrate that in PD patients, dysfunctional communication between (i) subcortical, fronto-parietal and attention networks mostly underlies worsening of executive functioning, (ii) attention networks are involved in motor perseveration.
Collapse
|
44
|
Wilson H, de Natale ER, Politis M. Nucleus basalis of Meynert degeneration predicts cognitive impairment in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:189-205. [DOI: 10.1016/b978-0-12-819975-6.00010-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
45
|
Huang V, Hogan DB, Ismail Z, Maxwell CJ, Smith EE, Callahan BL. Evaluating the Real-World Representativeness of Participants with Mild Cognitive Impairment in Canadian Research Protocols: a Comparison of the Characteristics of a Memory Clinic Patients and Research Samples. Can Geriatr J 2020; 23:297-328. [PMID: 33282050 PMCID: PMC7704078 DOI: 10.5770/cgj.23.416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Studies of mild cognitive impairment (MCI) employ rigorous eligibility criteria, resulting in sampling that may not be representative of the broader clinical population. Objective To compare the characteristics of MCI patients in a Calgary memory clinic to those of MCI participants in published Canadian studies. Methods Clinic participants included 555 MCI patients from the PROspective Registry of Persons with Memory SyMPToms (PROMPT) registry in Calgary. Research participants included 4,981 individuals with MCI pooled from a systematic literature review of 112 original, English-language peer-reviewed Canadian studies. Both samples were compared on baseline sociodemographic variables, medical and psychiatric comorbidities, and cognitive performance for MCI due to Alzheimer’s disease and Parkinson’s disease. Results Overall, clinic patients tended to be younger, more often male, and more educated than research participants. Psychiatric disorders, traumatic brain injury, and sensory impairment were commonplace in PROMPT (up to 83% affected) but > 80% studies in the systematic review excluded these conditions. PROMPT patients also performed worse on global cognition measures than did research participants. Conclusion Stringent eligibility criteria in Canadian research studies excluded a considerable subset of MCI patients with comorbid medical or psychiatric conditions. This exclusion may contribute to differences in cognitive performance and outcomes compared to real-world clinical samples.
Collapse
Affiliation(s)
- Vivian Huang
- Department of Psychology, Ryerson University, Toronto, ON
| | - David B Hogan
- Cumming School of Medicine, University of Calgary, Calgary, AB.,Hotchkiss Brain Institute, Calgary, AB
| | - Zahinoor Ismail
- Cumming School of Medicine, University of Calgary, Calgary, AB.,Hotchkiss Brain Institute, Calgary, AB.,Mathison Centre for Mental Health Research & Education, Calgary, AB.,Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Colleen J Maxwell
- Hotchkiss Brain Institute, Calgary, AB.,Schools of Pharmacy and Public Health & Health Systems, University of Waterloo, Waterloo, ON
| | - Eric E Smith
- Cumming School of Medicine, University of Calgary, Calgary, AB.,Hotchkiss Brain Institute, Calgary, AB
| | - Brandy L Callahan
- Hotchkiss Brain Institute, Calgary, AB.,Mathison Centre for Mental Health Research & Education, Calgary, AB.,Department of Psychology, University of Calgary, Calgary, AB
| |
Collapse
|
46
|
Mihaescu AS, Kim J, Masellis M, Graff-Guerrero A, Cho SS, Christopher L, Valli M, Díez-Cirarda M, Koshimori Y, Strafella AP. Graph theory analysis of the dopamine D2 receptor network in Parkinson's disease patients with cognitive decline. J Neurosci Res 2020; 99:947-965. [PMID: 33271630 DOI: 10.1002/jnr.24760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 12/30/2022]
Abstract
Cognitive decline in Parkinson's disease (PD) is a common sequela of the disorder that has a large impact on patient well-being. Its physiological etiology, however, remains elusive. Our study used graph theory analysis to investigate the large-scale topological patterns of the extrastriatal dopamine D2 receptor network. We used positron emission tomography with [11 C]FLB-457 to measure the binding potential of cortical dopamine D2 receptors in two networks: the meso-cortical dopamine network and the meso-limbic dopamine network. We also investigated the application of partial volume effect correction (PVEC) in conjunction with graph theory analysis. Three groups were investigated in this study divided according to their cognitive status as measured by the Montreal Cognitive Assessment score, with a score ≤25 considered cognitively impaired: (a) healthy controls (n = 13, 11 female), (b) cognitively unimpaired PD patients (PD-CU, n = 13, 5 female), and (c) PD patients with mild cognitive impairment (PD-MCI, n = 17, 4 female). In the meso-cortical network, we observed increased small-worldness, normalized clustering, and local efficiency in the PD-CU group compared to the PD-MCI group, as well as a hub shift in the PD-MCI group. Compensatory reorganization of the meso-cortical dopamine D2 receptor network may be responsible for some of the cognitive preservation observed in PD-CU. These results were found without PVEC applied and PVEC proved detrimental to the graph theory analysis. Overall, our findings demonstrate how graph theory analysis can be used to detect subtle changes in the brain that would otherwise be missed by regional comparisons of receptor density.
Collapse
Affiliation(s)
- Alexander S Mihaescu
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, ON, Canada
| | - Jinhee Kim
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Institute of Medical Science, University of Toronto, ON, Canada.,LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, ON, Canada
| | - Sang Soo Cho
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Leigh Christopher
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Mikaeel Valli
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, ON, Canada
| | - María Díez-Cirarda
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Yuko Koshimori
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Antonio P Strafella
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, ON, Canada.,Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Program in Parkinson Disease, Neurology Division, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Novel PET Biomarkers to Disentangle Molecular Pathways across Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9122581. [PMID: 33276490 PMCID: PMC7761606 DOI: 10.3390/cells9122581] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need to disentangle the etiological puzzle of age-related neurodegenerative diseases, whose clinical phenotypes arise from known, and as yet unknown, pathways that can act distinctly or in concert. Enhanced sub-phenotyping and the identification of in vivo biomarker-driven signature profiles could improve the stratification of patients into clinical trials and, potentially, help to drive the treatment landscape towards the precision medicine paradigm. The rapidly growing field of neuroimaging offers valuable tools to investigate disease pathophysiology and molecular pathways in humans, with the potential to capture the whole disease course starting from preclinical stages. Positron emission tomography (PET) combines the advantages of a versatile imaging technique with the ability to quantify, to nanomolar sensitivity, molecular targets in vivo. This review will discuss current research and available imaging biomarkers evaluating dysregulation of the main molecular pathways across age-related neurodegenerative diseases. The molecular pathways focused on in this review involve mitochondrial dysfunction and energy dysregulation; neuroinflammation; protein misfolding; aggregation and the concepts of pathobiology, synaptic dysfunction, neurotransmitter dysregulation and dysfunction of the glymphatic system. The use of PET imaging to dissect these molecular pathways and the potential to aid sub-phenotyping will be discussed, with a focus on novel PET biomarkers.
Collapse
|
48
|
Tao L, Wang L, Chen X, Liu F, Ruan F, Zhang J, Shen L, Yu Y. Modulation of Interhemispheric Functional Coordination in Breast Cancer Patients Receiving Chemotherapy. Front Psychol 2020; 11:1689. [PMID: 32849022 PMCID: PMC7403228 DOI: 10.3389/fpsyg.2020.01689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022] Open
Abstract
Objectives Chemotherapy induces cognitive impairments including memory impairment attention deficit and executive dysfunction in patients with breast cancer (BC) during or after chemotherapy. Previous studies identified brain structural and functional changes in BC patients receiving chemotherapy; however, there are no studies assessing functional connectivity (FC) between homotopic brain regions in BC patients using a voxel-mirrored homotopic connectivity (VMHC) method. In the present study, we explored cognitive function and whole brain homotopic FC in BC patients receiving chemotherapy compared with healthy controls using the VMHC method. Methods The present cross-sectional study included 35 premenopausal women with breast cancer who received chemotherapy, as well as 32 age- and sex-matched healthy controls (HC). All subjects underwent resting-state functional magnetic resonance imaging, which measured homotopic brain FC, and cognitive neuropsychological assessments evaluating attention, memory, and executive function domains. Results The BC group had lower VMHC than the HC group in the cingulated posterior, insular and postcentral regions. No region exhibited higher VMHC in the BC group than in HC group. Correlation analysis in the BC group indicated that VMHC values in the cingulated posterior were significantly correlated with executive function tests, and that the VMHC values in the insular were significantly correlated with memory tests. Conclusion The present study showed that VMHC decreased in different brain regions including cingulated posterior, insular and postcentral regions. A significant correlation was observed between the VMHC values in the brain regions and neuropsychological tests. These results suggested that changes in VMHC values in different brain regions may underlie cognitive changes in BC patients receiving chemotherapy.
Collapse
Affiliation(s)
- Longxiang Tao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Xingui Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Fujun Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Feiyan Ruan
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingjie Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Shen
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
49
|
Fu T, Klietz M, Nösel P, Wegner F, Schrader C, Höglinger GU, Dadak M, Mahmoudi N, Lanfermann H, Ding XQ. Brain Morphological Alterations Are Detected in Early-Stage Parkinson's Disease with MRI Morphometry. J Neuroimaging 2020; 30:786-792. [PMID: 33405336 DOI: 10.1111/jon.12769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/27/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE To detect brain morphological alterations in patients with early Parkinson's disease (PD) by using magnetic resonance imaging (MRI) morphometry under radiological diagnostic conditions. METHODS T1-weighted brain images of 18 early PD patients and 18 age-sex-matched healthy controls (HCs) were analyzed with free software Computational Anatomy Toolbox (CAT12). Regional cortical thickness (rCTh) in 68 atlas-defined regions-of-interest (ROIs) and subcortical gray matter volume (SGMV) in 14 atlas-defined ROIs were determined and compared between patients and HCs by paired comparison using both ROI-wise and voxel-wise analyses. False-discovery rate (FDR) was used multiple comparison correction. Possible correlations between brain morphological changes in patients and clinical observations were also analyzed. RESULTS Comparing to the HCs, the ROI-wise analysis revealed rCTh thinning significantly in left medial orbitofrontal (P = .001), by trend (P < .05 but not significant after FDR correction) in four other ROIs located in frontal and temporal lobes, and a volume decreasing trend in left pallidum of the PD patients, while the voxel-wise analysis revealed one cluster with rCTh thinning trend located between left insula and superior temporal region of the patients. In addition, the patients showed more distinct rCTh thinning in ipsilateral hemisphere and SGMV deceasing trends in contralateral hemisphere in respect of the symptom-onset body side. CONCLUSION Brain morphological alterations in early PD patients are evident despite of their inconspicuous findings in standard MRI. Quantitative morphological measurements with CAT12 may be an applicable add-on tool for clinical diagnosis of early PD. These results have to be verified in future studies with larger patient samples.
Collapse
Affiliation(s)
- Tong Fu
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Patrick Nösel
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | - Mete Dadak
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Nima Mahmoudi
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Heinrich Lanfermann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Xiao-Qi Ding
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
50
|
Fathy YY, Hepp DH, de Jong FJ, Geurts JJG, Foncke EMJ, Berendse HW, van de Berg WDJ, Schoonheim MM. Anterior insular network disconnection and cognitive impairment in Parkinson's disease. NEUROIMAGE-CLINICAL 2020; 28:102364. [PMID: 32781423 PMCID: PMC7417948 DOI: 10.1016/j.nicl.2020.102364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/30/2022]
Abstract
Cognitive dysfunction in PD is related to FC of the dorsal anterior insula (dAI) In PD only, FC between the dAI and DMN was most strongly related to cognition. FC of dAI with anterior cingulate was reduced and related to cognition in PD. Increased DMN and FPN centrality is related to dAI-ACC disconnection in PD. Altered interplay between dAI, DMN, and FPN underlies poor cognition in PD.
Background The insula is a central brain hub involved in cognition and affected in Parkinson’s disease (PD). The aim of this study was to assess functional connectivity (FC) and betweenness centrality (BC) of insular sub-regions and their relationship with cognitive impairment in PD. Methods Whole-brain 3D-T1, resting-state functional MRI and a battery of cognitive tests (CAMCOG) were included for 53 PD patients and 15 controls. The insular cortex was segmented into ventral (vAI) and dorsal (dAI) anterior and posterior sub-regions. Connectivity between insular sub-regions and resting-state networks was assessed and related to cognition; BC was used to further explore nodes associated with cognition. Results Cognitive performance was significantly lower in PD patients compared to controls (p < 0.01) and was associated with FC of the dAI with default mode network (DMN) (adjusted R2 = 0.37, p < 0.001). In controls, cognitive performance was positively related to FC of the dAI with the fronto-parietal network (FPN) only (adjusted R2 = 0.5, p = 0.003). Regionally, FC of the dAI with the anterior cingulate cortex (ACC) was significantly reduced in PD (F(1,65) = 11, p = 0.002) and correlated with CAMCOG (r = 0.4, p = 0.001). DMN and FPN showed increased BC in PD which correlated with cognition and reduced connectivity of dAI with the ACC (rs = −0.33, p = 0.014 and rs = −0.44, p = 0.001 respectively). Conclusions These results highlight the relevance of the insula in cognitive dysfunction in PD. Disconnection of the dAI with ACC was related to altered centrality in the DMN and FPN only in patients. Disturbance in this network triad appears to be particularly relevant for cognitive impairment in PD.
Collapse
Affiliation(s)
- Yasmine Y Fathy
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Neurology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Dagmar H Hepp
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Frank J de Jong
- Department of Neurology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Elisabeth M J Foncke
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Henk W Berendse
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|