1
|
Bouanani Z, Rhalem I, Lahnine G, Akammar A, Bouardi NE, Alami B, Lamrani YA, Maaroufi M, Boubbou M. Total cerebellar agenesis: A case report of a very rare condition. Radiol Case Rep 2024; 19:4569-4571. [PMID: 39220794 PMCID: PMC11362815 DOI: 10.1016/j.radcr.2024.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024] Open
Abstract
Complete cerebellar agenesis is an extremely rare condition characterized by the complete absence of cerebellar tissue. Only a small number of cases have been reported, with varying motor and cognitive deficits. We describe a case of an 11-month-old baby with developmental delay, whose CT scan evaluation showed the complete absence of the cerebellum with no other associated cerebral malformation.
Collapse
Affiliation(s)
- Zineb Bouanani
- University of Sidi Mohammed Benabdallah, Radiology Department, CHU Hassan II, Fès, Morocco
| | - Insaf Rhalem
- University of Sidi Mohammed Benabdallah, Radiology Department, CHU Hassan II, Fès, Morocco
| | - Ghita Lahnine
- University of Sidi Mohammed Benabdallah, Radiology Department, CHU Hassan II, Fès, Morocco
| | - Amal Akammar
- University of Sidi Mohammed Benabdallah, Radiology Department, CHU Hassan II, Fès, Morocco
| | - Nizar El Bouardi
- University of Sidi Mohammed Benabdallah, Radiology Department, CHU Hassan II, Fès, Morocco
| | - Badreddine Alami
- University of Sidi Mohammed Benabdallah, Radiology Department, CHU Hassan II, Fès, Morocco
| | - Youssef Alaoui Lamrani
- University of Sidi Mohammed Benabdallah, Radiology Department, CHU Hassan II, Fès, Morocco
| | - Mustapha Maaroufi
- University of Sidi Mohammed Benabdallah, Radiology Department, CHU Hassan II, Fès, Morocco
| | - Meryem Boubbou
- University of Sidi Mohammed Benabdallah, Radiology Department, CHU Hassan II, Fès, Morocco
| |
Collapse
|
2
|
Fiez JA, Stoodley CJ. Small but Mighty: Ten Myths and Misunderstandings About the Cerebellum. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:628-634. [PMID: 39175784 PMCID: PMC11338294 DOI: 10.1162/nol_e_00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Affiliation(s)
- Julie A. Fiez
- Departments of Psychology, Neuroscience, and Communication Science and Disorders, Learning Research and Development Center, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine J. Stoodley
- Developing Brain Institute and Center for Prenatal, Neonatal and Maternal Health Research, Children’s National Hospital, Washington DC, USA
- Departments of Neuroscience and Pediatrics, The George Washington School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
3
|
Calandrelli R, Tuzza L, Romeo DM, Arpaia C, Colosimo C, Pilato F. Extremely Preterm Infants with a Near-total Absence of Cerebellum: Usefulness of Quantitative Magnetic Resonance in Predicting the Motor Outcome. CEREBELLUM (LONDON, ENGLAND) 2024; 23:981-992. [PMID: 37603264 DOI: 10.1007/s12311-023-01593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
This study aims to evaluate in extremely premature infants the severity of brain structural injury causing total absence or near-total absence of cerebellar hemispheres by using MRI visual and volumetric scoring systems. It also aims to assess the role of the score systems in predicting motor outcome. We developed qualitative and quantitative MRI scoring systems to grade the overall brain damage severity in 16 infants with total absence or near-total absence of cerebellar hemispheres. The qualitative scoring system assessed the severity of macrostructural abnormalities of cerebellum, brainstem, supratentorial gray and white matters, ventricles while the quantitative scoring system weighted the loss of brain tissue volumes, and gross motor function classification system (GMFCS) was used to assess motor function at 1- and 5-year follow-ups.Positive correlations between both MRI scores and GMFCS scales were detected at follow-ups (p > 0.05), but only the volumetric score could identify those infants developing higher levels of motor impairment.Brain volumetric MRI offers an unbiassed assessment of prenatal brain damage. The quantitative scoring system, performed at term equivalent age, can be a helpful tool for predicting the long-term motor outcome in extremely preterm infants with a near-total absence of cerebellum.
Collapse
Affiliation(s)
- Rosalinda Calandrelli
- Radiology and Neuroradiology Unit, Department of Imaging, Radiation Therapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 1, 00168, Rome, Italy.
| | - Laura Tuzza
- Radiology and Neuroradiology Unit, Department of Imaging, Radiation Therapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 1, 00168, Rome, Italy
| | - Domenico Marco Romeo
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Chiara Arpaia
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cesare Colosimo
- Radiology and Neuroradiology Unit, Department of Imaging, Radiation Therapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 1, 00168, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabio Pilato
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, -00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, -00128, Rome, Italy
| |
Collapse
|
4
|
Baizer JS. Neuroanatomy of autism: what is the role of the cerebellum? Cereb Cortex 2024; 34:94-103. [PMID: 38696597 PMCID: PMC11484497 DOI: 10.1093/cercor/bhae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 05/04/2024] Open
Abstract
Autism (or autism spectrum disorder) was initially defined as a psychiatric disorder, with the likely cause maternal behavior (the very destructive "refrigerator mother" theory). It took several decades for research into brain mechanisms to become established. Both neuropathological and imaging studies found differences in the cerebellum in autism spectrum disorder, the most widely documented being a decreased density of Purkinje cells in the cerebellar cortex. The popular interpretation of these results is that cerebellar neuropathology is a critical cause of autism spectrum disorder. We challenge that view by arguing that if fewer Purkinje cells are critical for autism spectrum disorder, then any condition that causes the loss of Purkinje cells should also cause autism spectrum disorder. We will review data on damage to the cerebellum from cerebellar lesions, tumors, and several syndromes (Joubert syndrome, Fragile X, and tuberous sclerosis). Collectively, these studies raise the question of whether the cerebellum really has a role in autism spectrum disorder. Autism spectrum disorder is now recognized as a genetically caused developmental disorder. A better understanding of the genes that underlie the differences in brain development that result in autism spectrum disorder is likely to show that these genes affect the development of the cerebellum in parallel with the development of the structures that do underlie autism spectrum disorder.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, 123 Sherman Hall, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
5
|
Masi M. An evidence-based critical review of the mind-brain identity theory. Front Psychol 2023; 14:1150605. [PMID: 37965649 PMCID: PMC10641890 DOI: 10.3389/fpsyg.2023.1150605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
In the philosophy of mind, neuroscience, and psychology, the causal relationship between phenomenal consciousness, mentation, and brain states has always been a matter of debate. On the one hand, material monism posits consciousness and mind as pure brain epiphenomena. One of its most stringent lines of reasoning relies on a 'loss-of-function lesion premise,' according to which, since brain lesions and neurochemical modifications lead to cognitive impairment and/or altered states of consciousness, there is no reason to doubt the mind-brain identity. On the other hand, dualism or idealism (in one form or another) regard consciousness and mind as something other than the sole product of cerebral activity pointing at the ineffable, undefinable, and seemingly unphysical nature of our subjective qualitative experiences and its related mental dimension. Here, several neuroscientific findings are reviewed that question the idea that posits phenomenal experience as an emergent property of brain activity, and argue that the premise of material monism is based on a logical correlation-causation fallacy. While these (mostly ignored) findings, if considered separately from each other, could, in principle, be recast into a physicalist paradigm, once viewed from an integral perspective, they substantiate equally well an ontology that posits mind and consciousness as a primal phenomenon.
Collapse
Affiliation(s)
- Marco Masi
- Independent Researcher, Knetzgau, Germany
| |
Collapse
|
6
|
Albantakis L, Barbosa L, Findlay G, Grasso M, Haun AM, Marshall W, Mayner WGP, Zaeemzadeh A, Boly M, Juel BE, Sasai S, Fujii K, David I, Hendren J, Lang JP, Tononi G. Integrated information theory (IIT) 4.0: Formulating the properties of phenomenal existence in physical terms. PLoS Comput Biol 2023; 19:e1011465. [PMID: 37847724 PMCID: PMC10581496 DOI: 10.1371/journal.pcbi.1011465] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/26/2023] [Indexed: 10/19/2023] Open
Abstract
This paper presents Integrated Information Theory (IIT) 4.0. IIT aims to account for the properties of experience in physical (operational) terms. It identifies the essential properties of experience (axioms), infers the necessary and sufficient properties that its substrate must satisfy (postulates), and expresses them in mathematical terms. In principle, the postulates can be applied to any system of units in a state to determine whether it is conscious, to what degree, and in what way. IIT offers a parsimonious explanation of empirical evidence, makes testable predictions concerning both the presence and the quality of experience, and permits inferences and extrapolations. IIT 4.0 incorporates several developments of the past ten years, including a more accurate formulation of the axioms as postulates and mathematical expressions, the introduction of a unique measure of intrinsic information that is consistent with the postulates, and an explicit assessment of causal relations. By fully unfolding a system's irreducible cause-effect power, the distinctions and relations specified by a substrate can account for the quality of experience.
Collapse
Affiliation(s)
- Larissa Albantakis
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Leonardo Barbosa
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, Virginia, United States of America
| | - Graham Findlay
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Matteo Grasso
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Andrew M. Haun
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - William Marshall
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Mathematics and Statistics, Brock University, St. Catharines, Ontario, Canada
| | - William G. P. Mayner
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Alireza Zaeemzadeh
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Melanie Boly
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neurology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bjørn E. Juel
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Shuntaro Sasai
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
- Araya Inc., Tokyo, Japan
| | - Keiko Fujii
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Isaac David
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jeremiah Hendren
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
- Graduate School Language & Literature, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jonathan P. Lang
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Marchese SM, Esposti R, Farinelli V, Ciaccio C, De Laurentiis A, D’Arrigo S, Cavallari P. Pediatric Slow-Progressive, but Not Non-Progressive Cerebellar Ataxia Delays Intra-Limb Anticipatory Postural Adjustments in the Upper Arm. Brain Sci 2023; 13:brainsci13040620. [PMID: 37190585 DOI: 10.3390/brainsci13040620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
We recently investigated the role of the cerebellum during development, reporting that children with genetic slow-progressive ataxia (SlowP) show worse postural control during quiet stance and gait initiation compared to healthy children (H). Instead, children with genetic non-progressive ataxia (NonP) recalled the behavior of H. This may derive from compensatory networks, which are hindered by disease progression in SlowP while free to develop in NonP. In the aim of extending our findings to intra-limb postural control, we recorded, in 10 NonP, 10 SlowP and 10 H young patients, Anticipatory Postural Adjustments (APAs) in the proximal muscles of the upper-limb and preceding brisk index finger flexions. No significant differences in APA timing occurred between NonP and H, while APAs in SlowP were delayed. Indeed, the excitatory APA in Triceps Brachii was always present but significantly delayed with respect to both H and NonP. Moreover, the inhibitory APAs in the Biceps Brachii and Anterior Deltoid, which are normally followed by a late excitation, could not be detected in most SlowP children, as if inhibition was delayed to the extent where there was overlap with a late excitation. In conclusion, disease progression seems to be detrimental for intra-limb posture, supporting the idea that inter- and intra-limb postures seemingly share the same control mechanism.
Collapse
Affiliation(s)
- Silvia Maria Marchese
- Human Physiology Section of the DePT, Università degli Studi di Milano, 20133 Milan, Italy
| | - Roberto Esposti
- Human Physiology Section of the DePT, Università degli Studi di Milano, 20133 Milan, Italy
| | - Veronica Farinelli
- Human Physiology Section of the DePT, Università degli Studi di Milano, 20133 Milan, Italy
| | - Claudia Ciaccio
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20133 Milan, Italy
| | - Arianna De Laurentiis
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20133 Milan, Italy
| | - Stefano D’Arrigo
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20133 Milan, Italy
| | - Paolo Cavallari
- Human Physiology Section of the DePT, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
8
|
Liyana Arachige M, Seneviratne U, John N, Ma H, Phan TG. Mapping topography and network of brain injury in patients with disorders of consciousness. Front Neurol 2023; 14:1027160. [PMID: 37064187 PMCID: PMC10090673 DOI: 10.3389/fneur.2023.1027160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundThere is a growing interest in the topography of brain regions associated with disorders of consciousness. This has caused increased research output, yielding many publications investigating the topic with varying methodologies. The objective of this study was to ascertain the topographical regions of the brain most frequently associated with disorders of consciousness.MethodsWe performed a cross-sectional text-mining analysis of disorders of consciousness studies. A text mining algorithm built in the Python programming language searched documents for anatomical brain terminology. We reviewed primary PubMed studies between January 1st 2000 to 8th February 2023 for the search query “Disorders of Consciousness.” The frequency of brain regions mentioned in these articles was recorded, ranked, then built into a graphical network. Subgroup analysis was performed by evaluating the impact on our results if analyses were based on abstracts, full-texts, or topic-modeled groups (non-negative matrix factorization was used to create subgroups of each collection based on their key topics). Brain terms were ranked by their frequency and concordance was measured between subgroups. Graphical analysis was performed to explore relationships between the anatomical regions mentioned. The PageRank algorithm (used by Google to list search results in order of relevance) was used to determine global importance of the regions.ResultsThe PubMed search yielded 24,944 abstracts and 3,780 full texts. The topic-modeled subgroups contained 2015 abstracts and 283 full texts. Text Mining across all document groups concordantly ranked the thalamus the highest (Savage score = 11.716), followed by the precuneus (Savage score = 4.983), hippocampus (Savage score = 4.483). Graphical analysis had 5 clusters with the thalamus once again having the highest PageRank score (PageRank = 0.0344).ConclusionThe thalamus, precuneus and cingulate cortex are strongly associated with disorders of consciousness, likely due to the roles they play in maintaining awareness and involvement in the default mode network, respectively. The findings also suggest that other areas of the brain like the cerebellum, cuneus, amygdala and hippocampus also share connections to consciousness should be further investigated.
Collapse
Affiliation(s)
- Manoj Liyana Arachige
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Monash Health, Clayton, VIC, Australia
| | - Udaya Seneviratne
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Monash Health, Clayton, VIC, Australia
| | - Nevin John
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Monash Health, Clayton, VIC, Australia
| | - Henry Ma
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Monash Health, Clayton, VIC, Australia
| | - Thanh G. Phan
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Monash Health, Clayton, VIC, Australia
- *Correspondence: Thanh G. Phan,
| |
Collapse
|
9
|
Kitazono J, Aoki Y, Oizumi M. Bidirectionally connected cores in a mouse connectome: towards extracting the brain subnetworks essential for consciousness. Cereb Cortex 2022; 33:1383-1402. [PMID: 35860874 PMCID: PMC9930638 DOI: 10.1093/cercor/bhac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/15/2022] Open
Abstract
Where in the brain consciousness resides remains unclear. It has been suggested that the subnetworks supporting consciousness should be bidirectionally (recurrently) connected because both feed-forward and feedback processing are necessary for conscious experience. Accordingly, evaluating which subnetworks are bidirectionally connected and the strength of these connections would likely aid the identification of regions essential to consciousness. Here, we propose a method for hierarchically decomposing a network into cores with different strengths of bidirectional connection, as a means of revealing the structure of the complex brain network. We applied the method to a whole-brain mouse connectome. We found that cores with strong bidirectional connections consisted of regions presumably essential to consciousness (e.g. the isocortical and thalamic regions, and claustrum) and did not include regions presumably irrelevant to consciousness (e.g. cerebellum). Contrarily, we could not find such correspondence between cores and consciousness when we applied other simple methods that ignored bidirectionality. These findings suggest that our method provides a novel insight into the relation between bidirectional brain network structures and consciousness.
Collapse
Affiliation(s)
- Jun Kitazono
- Corresponding authors: Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan. ,
| | - Yuma Aoki
- Graduate School of Information Science and Technology, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masafumi Oizumi
- Corresponding authors: Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan. ,
| |
Collapse
|
10
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Carai A, Marras CE. Networking of the Human Cerebellum: From Anatomo-Functional Development to Neurosurgical Implications. Front Neurol 2022; 13:806298. [PMID: 35185765 PMCID: PMC8854219 DOI: 10.3389/fneur.2022.806298] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
In the past, the cerebellum was considered to be substantially involved in sensory-motor coordination. However, a growing number of neuroanatomical, neuroimaging, clinical and lesion studies have now provided converging evidence on the implication of the cerebellum in a variety of cognitive, affective, social, and behavioral processes as well. These findings suggest a complex anatomo-functional organization of the cerebellum, involving a dense network of cortical territories and reciprocal connections with many supra-tentorial association areas. The final architecture of cerebellar networks results from a complex, highly protracted, and continuous development from childhood to adulthood, leading to integration between short-distance connections and long-range extra-cerebellar circuits. In this review, we summarize the current evidence on the anatomo-functional organization of the cerebellar connectome. We will focus on the maturation process of afferent and efferent neuronal circuitry, and the involvement of these networks in different aspects of neurocognitive processing. The final section will be devoted to identifying possible implications of this knowledge in neurosurgical practice, especially in the case of posterior fossa tumor resection, and to discuss reliable strategies to improve the quality of approaches while reducing postsurgical morbidity.
Collapse
Affiliation(s)
- Alessandro De Benedictis
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Luca de Palma
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
11
|
Costanzo F, Zanni G, Fucà E, Di Paola M, Barresi S, Travaglini L, Colafati GS, Gambardella A, Bellacchio E, Bertini E, Menghini D, Vicari S. Cerebellar Agenesis and Bilateral Polimicrogyria Associated with Rare Variants of CUB and Sushi Multiple Domains 1 Gene (CSMD1): A Longitudinal Neuropsychological and Neuroradiological Case Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031224. [PMID: 35162247 PMCID: PMC8835405 DOI: 10.3390/ijerph19031224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar agenesis is an extremely rare condition characterized by a near complete absence of the cerebellum. The pathogenesis and molecular basis remain mostly unknown. We report the neuroradiological, molecular, neuropsychological and behavioral characterization of a 5-year-old girl, with cerebellar agenesis associated with parietal and peri-Sylvian polymicrogyria, followed-up for 10 years at four time points. Whole exome sequencing identified two rare variants in CSMD1, a gene associated with neurocognitive and psychiatric alterations. Mild intellectual impairment, cerebellar ataxia and deficits in language, memory and executive functions, with relatively preserved adaptive and psychopathological domains, were initially showed. Phonological awareness and verbal memory declined at 11 years of age, and social and anxiety problems emerged. Adaptive and psychopathological characteristics dramatically worsened at 15 years. In summary, the developmental clinical outcome showed impairment in multiple cognitive functions in childhood, with a progressive decline in cognitive and adaptive abilities and the emergence of psychopathological symptoms in adolescence. The observed phenotype could be the result of a complex interplay between cerebellar abnormality, brain malformation and the relations with CSMD1 variants. These findings may provide insights into the developmental clinical outcomes of a co-occurrence between rare brain malformation and rare genetic variants associated to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital IRCCS, Via Ferdinando Baldelli 41, I-00146 Rome, Italy; (F.C.); (E.F.); (S.V.)
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo 15, I-00146 Rome, Italy; (G.Z.); (L.T.); (E.B.)
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital IRCCS, Via Ferdinando Baldelli 41, I-00146 Rome, Italy; (F.C.); (E.F.); (S.V.)
| | - Margherita Di Paola
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306, I-00179 Rome, Italy;
- Department of Mental Health, King Faisal Specialist Hospital & Research Center, Riyadh 12713, Saudi Arabia
| | - Sabina Barresi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo 15, I-00146 Rome, Italy;
| | - Lorena Travaglini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo 15, I-00146 Rome, Italy; (G.Z.); (L.T.); (E.B.)
| | - Giovanna Stefania Colafati
- Oncological Neuroradiology Unit, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, I-00100 Rome, Italy;
| | - Antonio Gambardella
- Institute of Neurology, University Magna Græcia, I-88100 Catanzaro, Italy;
- Institute of Molecular Bioimaging and Physiology, National Research Council, I-88100 Catanzaro, Italy
| | - Emanuele Bellacchio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Viale di San Paolo 15, I-00146 Rome, Italy;
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo 15, I-00146 Rome, Italy; (G.Z.); (L.T.); (E.B.)
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital IRCCS, Via Ferdinando Baldelli 41, I-00146 Rome, Italy; (F.C.); (E.F.); (S.V.)
- Correspondence: ; Tel.: +39-0668597091
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital IRCCS, Via Ferdinando Baldelli 41, I-00146 Rome, Italy; (F.C.); (E.F.); (S.V.)
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, Largo Agostino Gemelli 1, I-00168 Rome, Italy
| |
Collapse
|
12
|
Chalif JI, de Lourdes Martínez-Silva M, Pagiazitis JG, Murray AJ, Mentis GZ. Control of mammalian locomotion by ventral spinocerebellar tract neurons. Cell 2022; 185:328-344.e26. [PMID: 35063074 PMCID: PMC8852337 DOI: 10.1016/j.cell.2021.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 01/22/2023]
Abstract
Locomotion is a complex behavior required for animal survival. Vertebrate locomotion depends on spinal interneurons termed the central pattern generator (CPG), which generates activity responsible for the alternation of flexor and extensor muscles and the left and right side of the body. It is unknown whether multiple or a single neuronal type is responsible for the control of mammalian locomotion. Here, we show that ventral spinocerebellar tract neurons (VSCTs) drive generation and maintenance of locomotor behavior in neonatal and adult mice. Using mouse genetics, physiological, anatomical, and behavioral assays, we demonstrate that VSCTs exhibit rhythmogenic properties and neuronal circuit connectivity consistent with their essential role in the locomotor CPG. Importantly, optogenetic activation and chemogenetic silencing reveals that VSCTs are necessary and sufficient for locomotion. These findings identify VSCTs as critical components for mammalian locomotion and provide a paradigm shift in our understanding of neural control of complex behaviors.
Collapse
Affiliation(s)
- Joshua I. Chalif
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA,Dept. of Neurology, Columbia University, New York, NY 10032, USA
| | - María de Lourdes Martínez-Silva
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA,Dept. of Neurology, Columbia University, New York, NY 10032, USA
| | - John G. Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA,Dept. of Neurology, Columbia University, New York, NY 10032, USA
| | - Andrew J. Murray
- Sainsbury Wellcome Centre, University College London, 25 Howland Street, London W1T 4JG, UK
| | - George Z. Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA,Dept. of Neurology, Columbia University, New York, NY 10032, USA,Dept. of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA,Corresponding author & Lead contact: Tel: +1-212-305-9846,
| |
Collapse
|
13
|
Bina L, Romano V, Hoogland TM, Bosman LWJ, De Zeeuw CI. Purkinje cells translate subjective salience into readiness to act and choice performance. Cell Rep 2021; 37:110116. [PMID: 34910904 DOI: 10.1016/j.celrep.2021.110116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/06/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
The brain selectively allocates attention from a continuous stream of sensory input. This process is typically attributed to computations in distinct regions of the forebrain and midbrain. Here, we explore whether cerebellar Purkinje cells encode information about the selection of sensory inputs and could thereby contribute to non-motor forms of learning. We show that complex spikes of individual Purkinje cells change the sensory modality they encode to reflect changes in the perceived salience of sensory input. Comparisons with mouse models deficient in cerebellar plasticity suggest that changes in complex spike activity instruct potentiation of Purkinje cells simple spike firing, which is required for efficient learning. Our findings suggest that during learning, climbing fibers do not directly guide motor output, but rather contribute to a general readiness to act via changes in simple spike activity, thereby bridging the sequence from non-motor to motor functions.
Collapse
Affiliation(s)
- Lorenzo Bina
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands
| | - Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands
| | - Tycho M Hoogland
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands.
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands.
| |
Collapse
|
14
|
Cognitive behavioral therapy (CBT), acceptance and commitment therapy (ACT), and Morita therapy (MT); comparison of three established psychotherapies and possible common neural mechanisms of psychotherapies. J Neural Transm (Vienna) 2021; 129:805-828. [PMID: 34889976 DOI: 10.1007/s00702-021-02450-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Psychotherapies aim to relieve patients from mental distress by guiding them toward healthier attitudes and behaviors. Psychotherapies can differ substantially in concepts and approaches. In this review article, we compare the methods and science of three established psychotherapies: Morita Therapy (MT), which is a 100-year-old method established in Japan; Cognitive Behavioral Therapy (CBT), which-worldwide-has become the major psychotherapy; and Acceptance and Commitment Therapy (ACT), which is a relatively young psychotherapy that shares some characteristics with MT. The neuroscience of psychotherapy as a system is only beginning to be understood, but relatively solid scientific information is available about some of its important aspects such as learning, physical health, and social interactions. On average, psychotherapies work best if combined with pharmacotherapies. This synergy may rely on the drugs helping to "kickstart" the use of neural pathways (behaviors) to which a patient otherwise has poor access. Improved behavior, guided by psychotherapy, can then consolidate these pathways by their continued usage throughout a patient's life.
Collapse
|
15
|
Tripathi V, Bharadwaj P. Neuroscience of the yogic theory of consciousness. Neurosci Conscious 2021; 2021:niab030. [PMID: 34925910 PMCID: PMC8675243 DOI: 10.1093/nc/niab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/29/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Yoga as a practice and philosophy of life has been followed for more than 4500 years with known evidence of yogic practices in the Indus Valley Civilization. The last few decades have seen a resurgence in the utility of yoga and meditation as a practice with growing scientific evidence behind it. Significant scientific literature has been published, illustrating the benefits of yogic practices including 'asana', 'pranayama' and 'dhyana' on mental and physical well-being. Electrophysiological and recent functional magnetic resonance imaging (fMRI) studies have found explicit neural signatures for yogic practices. In this article, we present a review of the philosophy of yoga, based on the dualistic 'Sankhya' school, as applied to consciousness summarized by Patanjali in his yoga sutras followed by a discussion on the five 'vritti' (modulations of mind), the practice of 'pratyahara', 'dharana', 'dhyana', different states of 'samadhi', and 'samapatti'. We formulate the yogic theory of consciousness (YTC), a cohesive theory that can model both external modulations and internal states of the mind. We propose that attention, sleep and mind wandering should be understood as unique modulatory states of the mind. YTC allows us to model the external states, internal states of meditation, 'samadhi' and even the disorders of consciousness. Furthermore, we list some testable neuroscientific hypotheses that could be answered using YTC and analyse the benefits, outcomes and possible limitations.
Collapse
Affiliation(s)
- Vaibhav Tripathi
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Pallavi Bharadwaj
- Laboratory for Information Design and Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Two Curious Cases of Complete Cerebellar Agenesis. Can J Neurol Sci 2021; 49:719-721. [PMID: 34412719 DOI: 10.1017/cjn.2021.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Reconciling Current Theories of Consciousness. J Neurosci 2020; 40:1994-1996. [PMID: 32132221 DOI: 10.1523/jneurosci.2740-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 11/21/2022] Open
|
18
|
Winters JJ. The temporally-integrated causality landscape: A theoretical framework for consciousness and meaning. Conscious Cogn 2020; 83:102976. [PMID: 32590193 DOI: 10.1016/j.concog.2020.102976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/28/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
Theoretical approaches to understanding consciousness have begun to converge upon areas of general agreement, yet substantive differences remain. Here, I introduce a new theoretical framework for the emergence of consciousness from the functional integration of the thalamocortical system: the Temporally-Integrated Causality Landscape (TICL). TICL presents a novel perspective which addresses important phenomenological characteristics of consciousness that other frameworks, such as IIT, do not. First, the TICL is based upon the observation that conscious experiences are temporally continuous, not discrete. Secondly, the TICL establishes a thalamocortical basis for the point-of-view. According to TICL, consciousness is composed of contents that arise from neuronal subsystems that have meaning from the point-of-view of the larger, integrated system in which they are nested. Meaningful contents emerge from the subsystems because they exhibit a level of temporally-integrated causality (TIC) that is distinguishable from that of the larger system.
Collapse
Affiliation(s)
- Jesse J Winters
- Department of Psychiatry, University of Michigan, Ann Arbor MI, USA.
| |
Collapse
|
19
|
The Optogenetic Revolution in Cerebellar Investigations. Int J Mol Sci 2020; 21:ijms21072494. [PMID: 32260234 PMCID: PMC7212757 DOI: 10.3390/ijms21072494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
The cerebellum is most renowned for its role in sensorimotor control and coordination, but a growing number of anatomical and physiological studies are demonstrating its deep involvement in cognitive and emotional functions. Recently, the development and refinement of optogenetic techniques boosted research in the cerebellar field and, impressively, revolutionized the methodological approach and endowed the investigations with entirely new capabilities. This translated into a significant improvement in the data acquired for sensorimotor tests, allowing one to correlate single-cell activity with motor behavior to the extent of determining the role of single neuronal types and single connection pathways in controlling precise aspects of movement kinematics. These levels of specificity in correlating neuronal activity to behavior could not be achieved in the past, when electrical and pharmacological stimulations were the only available experimental tools. The application of optogenetics to the investigation of the cerebellar role in higher-order and cognitive functions, which involves a high degree of connectivity with multiple brain areas, has been even more significant. It is possible that, in this field, optogenetics has changed the game, and the number of investigations using optogenetics to study the cerebellar role in non-sensorimotor functions in awake animals is growing. The main issues addressed by these studies are the cerebellar role in epilepsy (through connections to the hippocampus and the temporal lobe), schizophrenia and cognition, working memory for decision making, and social behavior. It is also worth noting that optogenetics opened a new perspective for cerebellar neurostimulation in patients (e.g., for epilepsy treatment and stroke rehabilitation), promising unprecedented specificity in the targeted pathways that could be either activated or inhibited.
Collapse
|
20
|
Zippo AG, Castiglioni I, Lin J, Borsa VM, Valente M, Biella GEM. Short-Term Classification Learning Promotes Rapid Global Improvements of Information Processing in Human Brain Functional Connectome. Front Hum Neurosci 2020; 13:462. [PMID: 32009918 PMCID: PMC6971211 DOI: 10.3389/fnhum.2019.00462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/17/2019] [Indexed: 01/21/2023] Open
Abstract
Classification learning is a preeminent human ability within the animal kingdom but the key mechanisms of brain networks regulating learning remain mostly elusive. Recent neuroimaging advancements have depicted human brain as a complex graph machinery where brain regions are nodes and coherent activities among them represent the functional connections. While long-term motor memories have been found to alter functional connectivity in the resting human brain, a graph topological investigation of the short-time effects of learning are still not widely investigated. For instance, classification learning is known to orchestrate rapid modulation of diverse memory systems like short-term and visual working memories but how the brain functional connectome accommodates such modulations is unclear. We used publicly available repositories (openfmri.org) selecting three experiments, two focused on short-term classification learning along two consecutive runs where learning was promoted by trial-by-trial feedback errors, while a further experiment was used as supplementary control. We analyzed the functional connectivity extracted from BOLD fMRI signals, and estimated the graph information processing in the cerebral networks. The information processing capability, characterized by complex network statistics, significantly improved over runs, together with the subject classification accuracy. Instead, null-learning experiments, where feedbacks came with poor consistency, did not provoke any significant change in the functional connectivity over runs. We propose that learning induces fast modifications in the overall brain network dynamics, definitely ameliorating the short-term potential of the brain to process and integrate information, a dynamic consistently orchestrated by modulations of the functional connections among specific brain regions.
Collapse
Affiliation(s)
- Antonio G Zippo
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Jianyi Lin
- Department of Mathematics, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Virginia M Borsa
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Maurizio Valente
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Gabriele E M Biella
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
21
|
Dovjak GO, Brugger PC, Gruber GM, Song JW, Weber M, Langs G, Bettelheim D, Prayer D, Kasprian G. Prenatal assessment of cerebellar vermian lobulation: fetal MRI with 3-Tesla postmortem validation. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:623-630. [PMID: 28782259 DOI: 10.1002/uog.18826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES To optimize the imaging assessment of fetal hindbrain malformations, this observational magnetic resonance imaging (MRI) study aimed to assess whether fetal vermian lobulation can be quantified accurately and whether the relative growth of vermian lobules is uniform. METHODS This retrospective study included singleton fetuses which underwent T2-weighted MRI in vivo with a 1.5-Tesla (T) scanner or within 24 h postmortem with a 3-T scanner between January 2007 and November 2016 at the Medical University of Vienna. We included only those showing normal structural brain development on ultrasound and MRI and which had image quality appropriate for quantitative analysis, i.e. good image quality and a precise midsagittal slice. Fetal brains were segmented and, for all discernible vermian lobules, we determined the mean relative area contribution (MRAC, the proportion of the lobule relative to the total vermian area, in terms of number of voxels). Inter- and intrarater measurement variability of a representative selection (21 cases) was determined by intraclass correlation coefficient (ICC) for voxel-based differences. A linear regression model was used to assess the correlation between the relative size of each vermian lobule (i.e. MRAC) and gestational age. RESULTS A total of 78 fetuses scanned in vivo aged 18-32 gestational weeks and seven fetuses scanned postmortem aged 16-30 weeks had a precise midsagittal slice and image quality sufficient for quantitative analysis. After 22 weeks of gestation, seven of the nine known vermian lobules could be discriminated reliably. The MRAC showed a mean ± SD difference of only 2.89 ± 3.01% between in-vivo and postmortem measurements. The ICC of voxel-based interrater differences was mean ± SD, 0.91 ± 0.05 and the intrarater ICC was 0.95 ± 0.03. Growth of cerebellar lobules was non-uniform: the MRAC of culmen and DFT (declive + folium + tuber) increased with gestational age, whereas that of lingula, centralis, pyramis and nodulus decreased. The growth of the uvula showed no significant correlation with gestational age. CONCLUSIONS Fetal vermian lobulation can be assessed accurately and reliably after 22 weeks on precise midsagittal sequences with 1.5-T T2-weighted MRI. Fetal vermian lobules show non-uniform growth, with expansion of DFT and culmen at the expense of the other vermian lobules. Evaluation and elucidation of vermian lobulation in normal fetuses should enable better characterization of fetuses with hindbrain malformations. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- G O Dovjak
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - P C Brugger
- Center for Anatomy and Cell Biology, Department of Anatomy, Medical University of Vienna, Vienna, Austria
| | - G M Gruber
- Center for Anatomy and Cell Biology, Department of Anatomy, Medical University of Vienna, Vienna, Austria
| | - J W Song
- Department of Radiology and Biomedical Imaging, Yale New Haven Hospital, New Haven, CT, USA
| | - M Weber
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - G Langs
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - D Bettelheim
- Department of Obstetrics and Fetomaternal Medicine, Medical University of Vienna, Vienna, Austria
| | - D Prayer
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - G Kasprian
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Absence of associative motor learning and impaired time perception in a rare case of complete cerebellar agenesis. Neuropsychologia 2018; 117:551-557. [PMID: 30031016 DOI: 10.1016/j.neuropsychologia.2018.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/20/2018] [Accepted: 07/18/2018] [Indexed: 11/23/2022]
Abstract
Primary cerebellar agenesis (PCA), a brain disease where the cerebellum does not develop, is an extremely rare congenital disease with only eleven living cases reported thus far. Studies of the PCA case will thus provide valuable insights into the necessity of cerebellar development for controlling and modulating cognitive functions of the brain. In this follow-up study, we further investigated the performance of associative learning and time perception of a 26-year-old female complete PCA case. We assessed whether delayed eyeblink conditioning (EBC), which represents prototypical associative motor learning function of the cerebellum, could be partially compensated by the extracerebellar brain regions in complete absence of the cerebellum. We also assessed whether the cerebellum, a critical brain region for millisecond-range interval timing, is essential for perception of the second-range time interval. Twelve neurotypical age-matched individuals were used as controls. We found that although the complete PCA patient had only mild to moderate motor deficits, she was unable to perform the delayed EBC even after 1-week of extensive training. Additionally, the PCA patient also performed poorly during time reproduction experiments in which she overproduced the millisecond-range time intervals, while underproduced the second-range time intervals. The PCA patient also failed to perform the temporal eyeblink conditioning with a 5 s fixed interval as the conditioned stimulus. These results indicate that the cerebellum is indispensable for associative motor learning and involved in timing of sub-second intervals, as well as in the perception of second-range intervals.
Collapse
|
23
|
Sarnaik R, Raman IM. Control of voluntary and optogenetically perturbed locomotion by spike rate and timing of neurons of the mouse cerebellar nuclei. eLife 2018; 7:29546. [PMID: 29659351 PMCID: PMC5902160 DOI: 10.7554/elife.29546] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 03/30/2018] [Indexed: 11/13/2022] Open
Abstract
Neurons of the cerebellar nuclei (CbN), which generate cerebellar output, are inhibited by Purkinje cells. With extracellular recordings during voluntary locomotion in head-fixed mice, we tested how the rate and coherence of inhibition influence CbN cell firing and well-practiced movements. Firing rates of Purkinje and CbN cells were modulated systematically through the stride cycle (~200–300 ms). Optogenetically stimulating ChR2-expressing Purkinje cells with light steps or trains evoked either asynchronous or synchronous inhibition of CbN cells. Steps slowed CbN firing. Trains suppressed CbN cell firing less effectively, but consistently altered millisecond-scale spike timing. Steps or trains that perturbed stride-related modulation of CbN cell firing rates correlated well with irregularities of movement, suggesting that ongoing locomotion is sensitive to alterations in modulated CbN cell firing. Unperturbed locomotion continued more often during trains than steps, however, suggesting that stride-related modulation of CbN spiking is less readily disrupted by synchronous than asynchronous inhibition.
Collapse
Affiliation(s)
- Rashmi Sarnaik
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
24
|
Ibáñez A, Zimerman M, Sedeño L, Lori N, Rapacioli M, Cardona JF, Suarez DMA, Herrera E, García AM, Manes F. Early bilateral and massive compromise of the frontal lobes. NEUROIMAGE-CLINICAL 2018; 18:543-552. [PMID: 29845003 PMCID: PMC5964834 DOI: 10.1016/j.nicl.2018.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
The frontal lobes are one of the most complex brain structures involved in both domain-general and specific functions. The goal of this work was to assess the anatomical and cognitive affectations from a unique case with massive bilateral frontal affectation. We report the case of GC, an eight-year old child with nearly complete affectation of bilateral frontal structures and spared temporal, parietal, occipital, and cerebellar regions. We performed behavioral, neuropsychological, and imaging (MRI, DTI, fMRI) evaluations. Neurological and neuropsychological examinations revealed a mixed pattern of affected (executive control/abstraction capacity) and considerably preserved (consciousness, language, memory, spatial orientation, and socio-emotional) functions. Both structural (DTI) and functional (fMRI) connectivity evidenced abnormal anterior connections of the amygdala and parietal networks. In addition, brain structural connectivity analysis revealed almost complete loss of frontal connections, with atypical temporo-posterior pathways. Similarly, functional connectivity showed an aberrant frontoparietal network and relative preservation of the posterior part of the default mode network and the visual network. We discuss this multilevel pattern of behavioral, structural, and functional connectivity results. With its unique pattern of compromised and preserved structures and functions, this exceptional case offers new constraints and challenges for neurocognitive theories.
Collapse
Affiliation(s)
- Agustín Ibáñez
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad Autónoma del Caribe, Barranquilla, Colombia; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile; Centre of Excellence in Cognition and its Disorders, Australian Research Council (ACR), Sydney, Australia.
| | - Máximo Zimerman
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Lucas Sedeño
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Nicolas Lori
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Laboratory of Neuroimaging and Neuroscience (LANEN), Institute of Translational and Cognitive Neuroscience (INCyT), INECO Foundation, Rosario, Argentina
| | - Melina Rapacioli
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Juan F Cardona
- Instituto de Psicología, Universidad del Valle, Cali, Colombia
| | | | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad ICESI, Cali, Colombia
| | - Adolfo M García
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Facundo Manes
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| |
Collapse
|
25
|
Abstract
During the past decades neuroanatomic, neuroimaging, and clinical studies have substantially changed the long-standing view of the role of the cerebellum as a sole coordinator of sensorimotor function. Currently, the cerebellum is considered to be crucially implicated in a variety of cognitive, affective, social, and behavioral processes as well. In this chapter we aim to summarize a number of critical insights from different research areas (neuroanatomy, functional neuroimaging, clinical practice) that provide evidence for a role of the cerebellum in motor speech and nonmotor language processing in both adults and children. Neuroanatomic studies have provided a robust basis for the development of new insights in the modulatory role of the cerebellum in neurocognition, including nonmotor language processing by means of identifying a dense network of crossed reciprocal connections between the cerebellum and the supratentorial association areas. A topologic distinction has been established between the "motor" cerebellum, projecting to the cortical motor areas, and the "cognitive/affective" cerebellum, connected with the cortical and limbic association areas. Neuroimaging studies have demonstrated cerebellar involvement in several different language tasks, even after controlling for motor aspects. In addition, several clinical studies have identified a variety of nonmotor linguistic deficits after cerebellar disease in both children and adults, implying a prominent role for the cerebellum in linguistic processes. Functional neuroimaging has confirmed the functional impact of cerebellar lesions on remote, structurally intact cortical regions via crossed cerebellocerebral diaschisis. Overall, evidence from neuroanatomic, neuroimaging, and clinical studies shows a (strongly lateralized) involvement of the cerebellum in a broad spectrum of nonmotor language functions through a dense network of crossed and reciprocal cerebellocerebral connections. It is argued that the cerebellum is involved in language in a similar manner as it is involved in motor functions: through monitoring/coordinating cortical functions via timing and sequencing mechanisms.
Collapse
Affiliation(s)
- Peter Mariën
- Clinical and Experimental Neurolinguistics, Free University of Brussels, Brussels, Belgium.
| | - Renato Borgatti
- Department of Neuropsychiatry and Neurorehabilitation Unit, Eugenio Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| |
Collapse
|
26
|
An Acquired Form of Dandy-Walker Malformation with Enveloping Hemosiderin Deposits. Case Rep Pediatr 2017; 2017:3861608. [PMID: 29209547 PMCID: PMC5676387 DOI: 10.1155/2017/3861608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/09/2017] [Indexed: 11/17/2022] Open
Abstract
Dandy-Walker malformation (DWM) is a posterior fossa anomaly characterized by hypoplasia and upward rotation of the cerebellar vermis and cystic dilation of the fourth ventricle. The cyst of DWM rarely extends posteriorly to almost completely fill the entire posterior fossa, which mimics primary cerebellar agenesis, a cerebellar porencephalic cyst, and an arachnoid cyst due to the lack of clarity of the thin cystic wall. A 10-month-old female born at 23 weeks' gestation with cerebellar hemorrhage in the neonatal period was admitted to our hospital with dysphagia and side-to-side head bobbing. The detection of hemosiderin deposits enveloping the cyst wall by T2 star-weighted angiography (SWAN) was useful for the differential diagnosis of an acquired form of DWM from primary cerebellar agenesis. Cyst fenestration successfully improved dysphagia and head bobbing. A pathological specimen of the perforated cyst consisted of collagen fibers with hemosiderin deposits but lacked congenital cyst components. In infants with posterior fossa cysts, SWAN will be useful for a differential diagnosis between DWM and primary cerebellar agenesis.
Collapse
|
27
|
Sousa AMM, Meyer KA, Santpere G, Gulden FO, Sestan N. Evolution of the Human Nervous System Function, Structure, and Development. Cell 2017; 170:226-247. [PMID: 28708995 DOI: 10.1016/j.cell.2017.06.036] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/21/2017] [Accepted: 06/22/2017] [Indexed: 12/22/2022]
Abstract
The nervous system-in particular, the brain and its cognitive abilities-is among humans' most distinctive and impressive attributes. How the nervous system has changed in the human lineage and how it differs from that of closely related primates is not well understood. Here, we consider recent comparative analyses of extant species that are uncovering new evidence for evolutionary changes in the size and the number of neurons in the human nervous system, as well as the cellular and molecular reorganization of its neural circuits. We also discuss the developmental mechanisms and underlying genetic and molecular changes that generate these structural and functional differences. As relevant new information and tools materialize at an unprecedented pace, the field is now ripe for systematic and functionally relevant studies of the development and evolution of human nervous system specializations.
Collapse
Affiliation(s)
- André M M Sousa
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Kyle A Meyer
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Forrest O Gulden
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
28
|
Ronconi L, Casartelli L, Carna S, Molteni M, Arrigoni F, Borgatti R. When one is Enough: Impaired Multisensory Integration in Cerebellar Agenesis. Cereb Cortex 2017; 27:2041-2051. [PMID: 26946125 DOI: 10.1093/cercor/bhw049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the last two decades, an intriguing shift in the understanding of the cerebellum has led to consider the nonmotor functions of this structure. Although various aspects of perceptual and sensory processing have been linked to the cerebellar activity, whether the cerebellum is essential for binding information from different sensory modalities remains uninvestigated. Multisensory integration (MSI) appears very early in the ontogenesis and is critical in several perceptual, cognitive, and social domains. For the first time, we investigated MSI in a rare case of cerebellar agenesis without any other associated brain malformations. To this aim, we measured reaction times (RTs) after the presentation of visual, auditory, and audiovisual stimuli. A group of neurotypical age-matched individuals was used as controls. Although we observed the typical advantage of the auditory modality relative to the visual modality in our patient, a clear impairment in MSI was found. Beyond the obvious prudence necessary for inferring definitive conclusions from this single-case picture, this finding is of interest in the light of reduced MSI abilities reported in several neurodevelopmental and psychiatric disorders-such as autism, dyslexia, and schizophrenia-in which the cerebellum has been implicated.
Collapse
Affiliation(s)
- L Ronconi
- Developmental and Cognitive Neuroscience Laboratory, Department of General Psychology, University of Padova, 35122 Padova, Italy.,Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842 Lecco, Italy
| | - L Casartelli
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842 Lecco, Italy.,Developmental Psychopathology Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - S Carna
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842 Lecco, Italy.,Developmental Psychopathology Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - M Molteni
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842 Lecco, Italy
| | | | - R Borgatti
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCSEugenio Medea, Bosisio Parini, 23842 Lecco, Italy
| |
Collapse
|
29
|
Poretti A, Boltshauser E, Huisman TAGM. Prenatal Cerebellar Disruptions: Neuroimaging Spectrum of Findings in Correlation with Likely Mechanisms and Etiologies of Injury. Neuroimaging Clin N Am 2017; 26:359-72. [PMID: 27423799 DOI: 10.1016/j.nic.2016.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is increasing evidence that the cerebellum is susceptible to prenatal infections and hemorrhages and that congenital morphologic anomalies of the cerebellum may be caused by disruptive (acquired) causes. Starting from the neuroimaging pattern, this report describes a spectrum of prenatal cerebellar disruptions including cerebellar agenesis, unilateral cerebellar hypoplasia, cerebellar cleft, global cerebellar hypoplasia, and vanishing cerebellum in Chiari type II malformation. The neuroimaging findings, possible causative disruptive events, and clinical features of each disruption are discussed. Recognition of cerebellar disruptions and their differentiation from cerebellar malformations is important in terms of diagnosis, prognosis, and genetic counselling.
Collapse
Affiliation(s)
- Andrea Poretti
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Charlotte R. Bloomberg Children's Center, The Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room 4174, 1800 Orleans Street, Baltimore, MD 21287-0842, USA; Department of Pediatric Neurology, University Children's Hospital, Steinwiesstrasse 75, Zurich 8032, Switzerland.
| | - Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital, Steinwiesstrasse 75, Zurich 8032, Switzerland
| | - Thierry A G M Huisman
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Charlotte R. Bloomberg Children's Center, The Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room 4174, 1800 Orleans Street, Baltimore, MD 21287-0842, USA
| |
Collapse
|
30
|
Casartelli L, Federici A, Cesareo A, Biffi E, Valtorta G, Molteni M, Ronconi L, Borgatti R. Role of the cerebellum in high stages of motor planning hierarchy. J Neurophysiol 2017; 117:1474-1482. [PMID: 28077667 DOI: 10.1152/jn.00771.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 11/22/2022] Open
Abstract
Motor planning is not a monolithic process, and distinct stages of motor planning are responsible for encoding different levels of abstractness. However, how these distinct components are mapped into different neural substrates remains an open question. We studied one of these high-level motor planning components, defined as second-order motor planning, in a patient (R.G.) with an extremely rare case of cerebellar agenesis but without any other cortical malformations. Second-order motor planning dictates that when two acts must be performed sequentially, planning of the second act can influence execution of the first. We used an optoelectronic system for kinematic analysis to compare R.G.'s performance with age-matched controls in a second-order motor planning task. The first act was to reach for an object, and the second was to place it into a small or large container. Our results showed that despite the expected difficulties in fine-motor skills, second-order motor planning (i.e., the ability to modulate the first act as a function of the nature of the second act) was preserved even in the patient with congenital absence of the cerebellum. These results open new intriguing speculations about the role of the cerebellum in motor planning abilities. Although prudence is imperative when suggesting conclusions made on the basis of single-case findings, this evidence suggests fascinating hypotheses about the neural circuits that support distinct stages of the motor planning hierarchy, and regarding the functional role of second-order motor planning in motor cognition and its potential dysfunction in autism.NEW & NOTEWORTHY Traditionally, the cerebellum was considered essential for motor planning. By studying an extremely rare patient with cerebellar agenesis and a group of neurotypical controls, we found that high stages of the motor planning hierarchy can be preserved even in this patient with congenital absence of the cerebellum. Our results provide interesting insights that shed light on the neural circuits supporting distinct levels of motor planning. Furthermore, the results are intriguing because of their potential clinical implications in autism.
Collapse
Affiliation(s)
- Luca Casartelli
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy;
| | - Alessandra Federici
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Ambra Cesareo
- Bioengeenering Laboratory, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.,TBM Laboratory, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Emilia Biffi
- Bioengeenering Laboratory, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Giulia Valtorta
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Luca Ronconi
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Trento, Italy; and
| | - Renato Borgatti
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| |
Collapse
|
31
|
García AM, Sedeño L, Herrera Murcia E, Couto B, Ibáñez A. A Lesion-Proof Brain? Multidimensional Sensorimotor, Cognitive, and Socio-Affective Preservation Despite Extensive Damage in a Stroke Patient. Front Aging Neurosci 2017; 8:335. [PMID: 28119603 PMCID: PMC5222788 DOI: 10.3389/fnagi.2016.00335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022] Open
Abstract
In this study, we report an unusual case of mutidimensional sensorimotor, cognitive, and socio-affective preservation in an adult with extensive, acquired bilateral brain damage. At age 43, patient CG sustained a cerebral hemorrhage and a few months later, she suffered a second (ischemic) stroke. As a result, she exhibited extensive damage of the right hemisphere (including frontal, temporal, parietal, and occipital regions), left Sylvian and striatal areas, bilateral portions of the insula and the amygdala, and the splenium. However, against all probability, she was unimpaired across a host of cognitive domains, including executive functions, attention, memory, language, sensory perception (e.g., taste recognition and intensity discrimination), emotional processing (e.g., experiencing of positive and negative emotions), and social cognition skills (prosody recognition, theory of mind, facial emotion recognition, and emotional evaluation). Her functional integrity was further confirmed through neurological examination and contextualized observation of her performance in real-life tasks. In sum, CG's case resists straightforward classifications, as the extent and distribution of her lesions would typically produce pervasive, multidimensional deficits. We discuss the rarity of this patient against the backdrop of other reports of atypical cognitive preservation, expound the limitations of several potential accounts, and highlight the challenges that the case poses for current theories of brain organization and resilience.
Collapse
Affiliation(s)
- Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro UniversityBuenos Aires, Argentina; National Scientific and Technical Research Council (CONICET)Buenos Aires, Argentina; Faculty of Elementary and Special Education, National University of CuyoMendoza, Argentina
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro UniversityBuenos Aires, Argentina; National Scientific and Technical Research Council (CONICET)Buenos Aires, Argentina
| | | | - Blas Couto
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro UniversityBuenos Aires, Argentina; National Scientific and Technical Research Council (CONICET)Buenos Aires, Argentina; Universidad Autónoma del CaribeBarranquilla, Colombia; Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo IbáñezSantiago de Chile, Chile; Centre of Excellence in Cognition and its Disorders, Australian Research CouncilSydney, NSW, Australia
| |
Collapse
|
32
|
Abstract
The vulnerability of the cerebellum during prenatal life to disruptive events such as hemorrhage and infection leads to a wide variety of morphological abnormalities. This review discusses various prenatal cerebellar disruptions including cerebellar agenesis, unilateral cerebellar hypoplasia, cerebellar cleft, global cerebellar hypoplasia, and vanishing cerebellum in Chiari type II malformation. For each entity, we discuss the definition, potential pathomechanism, clinical findings including neurocognitive and behavioral problems, neuroimaging features, and management. Accurate recognition of cerebellar disruptions and their differentiation from malformations is important in terms of diagnosis, prognosis, and genetic counselling.
Collapse
Affiliation(s)
- Thangamadhan Bosemani
- Section of Pediatric Neuroradiology and Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Poretti
- Section of Pediatric Neuroradiology and Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Ashraf O, Jabeen S, Khan A, Shaheen F. Primary cerebellar agenesis presenting as isolated cognitive impairment. J Pediatr Neurosci 2016; 11:150-2. [PMID: 27606028 PMCID: PMC4991160 DOI: 10.4103/1817-1745.187646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Primary cerebellar agenesis is a rare entity. To the best of our knowledge, eleven living cases have been reported till date. Most of these were associated with some degree of motor impairment. We present a case of cerebellar agenesis in a child who presented with cognitive abnormalities leading to poor performance at school. No motor impairment was seen. Among the eleven cases reported earlier, only one case showed lack of motor impairment.
Collapse
Affiliation(s)
- Obaid Ashraf
- Department of Radiodiagnosis and Imaging, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Shumyla Jabeen
- Department of Radiodiagnosis and Imaging, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Azhar Khan
- Department of Radiodiagnosis and Imaging, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Feroze Shaheen
- Department of Radiodiagnosis and Imaging, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
34
|
Gelal FM, Kalaycı TÖ, Çelebisoy M, Karakaş L, Akkurt HE, Koç F. Clinical and MRI findings of cerebellar agenesis in two living adult patients. Ann Indian Acad Neurol 2016; 19:255-7. [PMID: 27293341 PMCID: PMC4888693 DOI: 10.4103/0972-2327.160054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cerebellar agenesis (CA) is an extremely rare entity. We present two adult patients with CA. The 61-year-old man had ataxia, dysarthria, abnormalities in cerebellar tests, severe cognitive impairment, and moderate mental retardation. The 26-year-old woman had dysmetria, dysdiadochokinesia, and dysarthria as well as mild cognitive impairment and mild mental retardation. Magnetic resonance imaging (MRI) showed complete absence of the cerebellum with small residual vermis. Brainstem was hypoplastic and structures above tentorium were normal. Supratentorial white matter bundles were unaffected in diffusion tensor tractography. Only few adult patients with CA have so far been published. These cases show that patients with CA present with a variety of developmental, clinical, and mental abnormalities; and emphasize the role of the cerebellum in normal motor, language, and mental development.
Collapse
Affiliation(s)
- Fazıl Mustafa Gelal
- Department of Radiology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
| | - Tuğçe Özlem Kalaycı
- Department of Radiology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
| | - Mehmet Çelebisoy
- Department of Neurology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
| | - Levent Karakaş
- Department of Radiology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
| | - Hülya Erdoğan Akkurt
- Department of Radiology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
| | - Feray Koç
- Department of Ophthalmology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
35
|
Integrated information theory: from consciousness to its physical substrate. Nat Rev Neurosci 2016; 17:450-61. [DOI: 10.1038/nrn.2016.44] [Citation(s) in RCA: 644] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Abstract
The near-total absence of the cerebellum is a rare congenital condition with a wide phenotypic heterogeneity ranging from a severe to mild impairment of motor, cognitive, and behavioral functions. In this study, the case of a 48-year-old right-handed man with a near-total absence of the cerebellum was examined with the aim of understanding the long-term reorganization of a brain developed without a cerebellum. Clinical, neuropsychological evaluation and a neuroimaging study on a 3-T scanner were carried out. Both conventional structural diffusion tensor imaging (DTI) and functional (resting-state fMRI) data were acquired. A severe neuropsychomotor delay in infancy and adolescence involving motor skills, cognitive, and affective competencies was observed, which improved over the years. Conventional MRI findings confirmed the complete absence of the cerebellum. Analysis of DTI and resting-state fMRI data showed an impairment of the executive-control network, involving areas strongly connected with the cerebellum through the frontopontine fibers. The neuroimaging findings excluded the involvement of the extracerebellar structure. In conclusion, our data support the vascular genesis hypothesis for this rare pathology, consistent with an acquired embryonic cerebellar insult. This case also shows that it is possible to learn to live without the cerebellum over time.
Collapse
|
37
|
Koch C, Massimini M, Boly M, Tononi G. Neural correlates of consciousness: progress and problems. Nat Rev Neurosci 2016; 17:307-21. [DOI: 10.1038/nrn.2016.22] [Citation(s) in RCA: 731] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Brielmaier J. The Woman Born Without a Cerebellum: A Real-Life Case Adapted for Use in an Undergraduate Developmental and Systems Neuroscience Course. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2016; 15:C1-C3. [PMID: 27980478 PMCID: PMC5105972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
In 2014, the case of a 24-year-old woman who had just discovered she was born without a cerebellum made headlines around the world. The details of this case were combined with other published cases of cerebellar agenesis to create an active learning exercise for an undergraduate developmental and systems neuroscience course. By reading an intriguing narrative and answering questions in stages, students work together to apply and extend their knowledge of brain development and cerebellar function. The case can be used to introduce new information in a "flipped classroom" setting or as an interactive exam review.
Collapse
Affiliation(s)
- Jennifer Brielmaier
- Address correspondence to: Dr. Jennifer Brielmaier, Psychology Department, 4400 University Drive, George Mason University, Fairfax, VA 22033.
| |
Collapse
|
39
|
Meola A, Fernandez-Miranda JC. Peduncles Without Cerebellum: The Cerebellar Agenesis. Eur Neurol 2015; 74:162. [PMID: 26452266 DOI: 10.1159/000441055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/13/2015] [Indexed: 11/19/2022]
Affiliation(s)
- Antonio Meola
- Department of Neurological Surgery, University of Pisa, Pisa, Italy
| | | |
Collapse
|
40
|
Machado AS, Darmohray DM, Fayad J, Marques HG, Carey MR. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice. eLife 2015; 4. [PMID: 26433022 PMCID: PMC4630674 DOI: 10.7554/elife.07892] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/02/2015] [Indexed: 01/06/2023] Open
Abstract
The coordination of movement across the body is a fundamental, yet poorly understood aspect of motor control. Mutant mice with cerebellar circuit defects exhibit characteristic impairments in locomotor coordination; however, the fundamental features of this gait ataxia have not been effectively isolated. Here we describe a novel system (LocoMouse) for analyzing limb, head, and tail kinematics of freely walking mice. Analysis of visibly ataxic Purkinje cell degeneration (pcd) mice reveals that while differences in the forward motion of individual paws are fully accounted for by changes in walking speed and body size, more complex 3D trajectories and, especially, inter-limb and whole-body coordination are specifically impaired. Moreover, the coordination deficits in pcd are consistent with a failure to predict and compensate for the consequences of movement across the body. These results isolate specific impairments in whole-body coordination in mice and provide a quantitative framework for understanding cerebellar contributions to coordinated locomotion.
Collapse
Affiliation(s)
- Ana S Machado
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Dana M Darmohray
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - João Fayad
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Hugo G Marques
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Megan R Carey
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
41
|
Demertzi A, Antonopoulos G, Heine L, Voss HU, Crone JS, de Los Angeles C, Bahri MA, Di Perri C, Vanhaudenhuyse A, Charland-Verville V, Kronbichler M, Trinka E, Phillips C, Gomez F, Tshibanda L, Soddu A, Schiff ND, Whitfield-Gabrieli S, Laureys S. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain 2015; 138:2619-31. [PMID: 26117367 DOI: 10.1093/brain/awv169] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/18/2015] [Indexed: 01/28/2023] Open
Affiliation(s)
- Athena Demertzi
- 1 Coma Science Group, GIGA-Research & Cyclotron Research Centre, University and CHU University Hospital of Liège, Liège, Belgium
| | - Georgios Antonopoulos
- 1 Coma Science Group, GIGA-Research & Cyclotron Research Centre, University and CHU University Hospital of Liège, Liège, Belgium
| | - Lizette Heine
- 1 Coma Science Group, GIGA-Research & Cyclotron Research Centre, University and CHU University Hospital of Liège, Liège, Belgium
| | - Henning U Voss
- 2 Department of Radiology and Citigroup Biomedical Imaging Centre, Weill Cornell Medical College, New York, USA
| | - Julia Sophia Crone
- 3 Department of Psychology and Centre for Neurocognitive Research, Salzburg, Austria 4 Neuroscience Institute and Centre for Neurocognitive Research, Christian-Doppler-Klinik, Paracelsus Private Medical University, Salzburg, Austria 5 Department of Neurology, Christian-Doppler-Klinik, Paracelsus Private Medical University, Salzburg, Austria
| | - Carlo de Los Angeles
- 6 Martinos Imaging Centre at McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge MA, USA
| | | | - Carol Di Perri
- 1 Coma Science Group, GIGA-Research & Cyclotron Research Centre, University and CHU University Hospital of Liège, Liège, Belgium
| | - Audrey Vanhaudenhuyse
- 8 Department of Algology and Palliative Care, CHU University Hospital of Liège, Liège, Belgium
| | - Vanessa Charland-Verville
- 1 Coma Science Group, GIGA-Research & Cyclotron Research Centre, University and CHU University Hospital of Liège, Liège, Belgium
| | - Martin Kronbichler
- 3 Department of Psychology and Centre for Neurocognitive Research, Salzburg, Austria 4 Neuroscience Institute and Centre for Neurocognitive Research, Christian-Doppler-Klinik, Paracelsus Private Medical University, Salzburg, Austria
| | - Eugen Trinka
- 5 Department of Neurology, Christian-Doppler-Klinik, Paracelsus Private Medical University, Salzburg, Austria
| | | | - Francisco Gomez
- 9 Computer Science Department, Universidad Central de Colombia, Bogota, Colombia
| | - Luaba Tshibanda
- 10 Department of Radiology, CHU University Hospital of Liège, Liège, Belgium
| | - Andrea Soddu
- 11 Brain and Mind Institute, Department of Physics and Astronomy, Western University, London, Ontario, Canada
| | - Nicholas D Schiff
- 12 Department of Neuroscience, Weill Cornell Graduate School of Medical Sciences, New York, USA 13 Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, USA
| | - Susan Whitfield-Gabrieli
- 6 Martinos Imaging Centre at McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Steven Laureys
- 1 Coma Science Group, GIGA-Research & Cyclotron Research Centre, University and CHU University Hospital of Liège, Liège, Belgium
| |
Collapse
|