1
|
Di Salvo C, D'Antongiovanni V, Benvenuti L, d'Amati A, Ippolito C, Segnani C, Pierucci C, Bellini G, Annese T, Virgintino D, Colucci R, Antonioli L, Fornai M, Errede M, Bernardini N, Pellegrini C. Lactiplantibacillus plantarum HEAL9 attenuates cognitive impairment and progression of Alzheimer's disease and related bowel symptoms in SAMP8 mice by modulating microbiota-gut-inflammasome-brain axis. Food Funct 2024; 15:10323-10338. [PMID: 39302233 DOI: 10.1039/d4fo02075h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background: Growing evidence highlights the relevance of the microbiota-gut-brain axis in Alzheimer's disease (AD). AD patients display gut dysbiosis, altered intestinal barrier and enteric inflammation that, besides bowel symptoms, can contribute to brain pathology. In this context, the modulation of gut microbiota is emerging as a therapeutical option to halt or slow down central pathology. Herein, we examined the effects of Lactiplantibacillus plantarum HEAL9 in a spontaneous mouse model of AD. Methods: Senescence-accelerated mouse prone 8 (SAMP8) mice and control SAMR1 mice were treated orally with HEAL9 1 × 109 CFU per mouse per day or placebo for two months to evaluate the effects of the probiotic during the earliest stages of AD, before the development of brain pathology. Cognitive impairment, in vivo and in vitro colonic motility, astrocyte and microglia reactive response, brain and colonic amyloid-β1-42 (Aβ1-42) levels, and inflammasome components activation (NLRP3, ASC, caspase-1 and interleukin-1β) were assessed. In addition, gut barrier alterations [circulating lipopolysaccharide-binding protein (LBP) levels] and acidic mucus were evaluated. Results: HEAL9 administration significantly attenuated cognitive impairment and counteracted colonic dysmotility in SAMP8 mice. Moreover, HEAL9 decreased astrogliosis and microgliosis, Aβ1-42 accumulation and inflammasome activation in colon and brain and normalized plasma LBP levels and colonic acidic mucus content. Conclusion: HEAL9 intake alleviated cognitive decline and normalized colonic motility in the prodromal phases of AD via the modulation of microbiota-gut-inflammasome-brain signalling. Thus, dietary supplementation with HEAL9 could be considered as a suitable therapeutical option for the treatment of AD and related intestinal symptoms in the early stages of the disease.
Collapse
Affiliation(s)
- C Di Salvo
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - V D'Antongiovanni
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - L Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A d'Amati
- Human Anatomy and Histology Unit, Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy.
| | - C Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - C Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - C Pierucci
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - G Bellini
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - T Annese
- Human Anatomy and Histology Unit, Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy.
- Department of Medicine and Surgery, University LUM Giuseppe Degennaro, Casamassima, Bari, Italy
| | - D Virgintino
- Human Anatomy and Histology Unit, Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy.
| | - R Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - L Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - M Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - M Errede
- Human Anatomy and Histology Unit, Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy.
| | - N Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - C Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Daniels AJ, McDade E, Llibre-Guerra JJ, Xiong C, Perrin RJ, Ibanez L, Supnet-Bell C, Cruchaga C, Goate A, Renton AE, Benzinger TL, Gordon BA, Hassenstab J, Karch C, Popp B, Levey A, Morris J, Buckles V, Allegri RF, Chrem P, Berman SB, Chhatwal JP, Farlow MR, Fox NC, Day GS, Ikeuchi T, Jucker M, Lee JH, Levin J, Lopera F, Takada L, Sosa AL, Martins R, Mori H, Noble JM, Salloway S, Huey E, Rosa-Neto P, Sánchez-Valle R, Schofield PR, Roh JH, Bateman RJ. 15 Years of Longitudinal Genetic, Clinical, Cognitive, Imaging, and Biochemical Measures in DIAN. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311689. [PMID: 39148846 PMCID: PMC11326320 DOI: 10.1101/2024.08.08.24311689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This manuscript describes and summarizes the Dominantly Inherited Alzheimer Network Observational Study (DIAN Obs), highlighting the wealth of longitudinal data, samples, and results from this human cohort study of brain aging and a rare monogenic form of Alzheimer's disease (AD). DIAN Obs is an international collaborative longitudinal study initiated in 2008 with support from the National Institute on Aging (NIA), designed to obtain comprehensive and uniform data on brain biology and function in individuals at risk for autosomal dominant AD (ADAD). ADAD gene mutations in the amyloid protein precursor (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes are deterministic causes of ADAD, with virtually full penetrance, and a predictable age at symptomatic onset. Data and specimens collected are derived from full clinical assessments, including neurologic and physical examinations, extensive cognitive batteries, structural and functional neuro-imaging, amyloid and tau pathological measures using positron emission tomography (PET), flurordeoxyglucose (FDG) PET, cerebrospinal fluid and blood collection (plasma, serum, and whole blood), extensive genetic and multi-omic analyses, and brain donation upon death. This comprehensive evaluation of the human nervous system is performed longitudinally in both mutation carriers and family non-carriers, providing one of the deepest and broadest evaluations of the human brain across decades and through AD progression. These extensive data sets and samples are available for researchers to address scientific questions on the human brain, aging, and AD.
Collapse
Affiliation(s)
- Alisha J. Daniels
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Eric McDade
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Chengjie Xiong
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Richard J. Perrin
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Laura Ibanez
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Carlos Cruchaga
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alan E. Renton
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Brian A. Gordon
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Jason Hassenstab
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Celeste Karch
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Brent Popp
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Allan Levey
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | - John Morris
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Virginia Buckles
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Patricio Chrem
- Institute of Neurological Research FLENI, Buenos Aires, Argentina
| | | | - Jasmeer P. Chhatwal
- Massachusetts General and Brigham & Women’s Hospitals, Harvard Medical School, Boston MA, USA
| | | | - Nick C. Fox
- UK Dementia Research Institute at University College London, London, United Kingdom
- University College London, London, United Kingdom
| | | | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | - Johannes Levin
- DZNE, German Center for Neurodegenerative Diseases, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Ana Luisa Sosa
- Instituto Nacional de Neurologia y Neurocirugla Innn, Mexico City, Mexico
| | - Ralph Martins
- Edith Cowan University, Western Australia, Australia
| | | | - James M. Noble
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, and GH Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Edward Huey
- Brown University, Butler Hospital, Providence, RI, USA
| | - Pedro Rosa-Neto
- Centre de Recherche de L’hopital Douglas and McGill University, Montreal, Quebec
| | - Raquel Sánchez-Valle
- Hospital Clínic de Barcelona. IDIBAPS. University of Barcelona, Barcelona, Spain
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jee Hoon Roh
- Korea University, Korea University Anam Hospital, Seoul, South Korea
| | | | | |
Collapse
|
3
|
Joseph‐Mathurin N, Feldman RL, Lu R, Shirzadi Z, Toomer C, Saint Clair JR, Ma Y, McKay NS, Strain JF, Kilgore C, Friedrichsen KA, Chen CD, Gordon BA, Chen G, Hornbeck RC, Massoumzadeh P, McCullough AA, Wang Q, Li Y, Wang G, Keefe SJ, Schultz SA, Cruchaga C, Preboske GM, Jack CR, Llibre‐Guerra JJ, Allegri RF, Ances BM, Berman SB, Brooks WS, Cash DM, Day GS, Fox NC, Fulham M, Ghetti B, Johnson KA, Jucker M, Klunk WE, la Fougère C, Levin J, Niimi Y, Oh H, Perrin RJ, Reischl G, Ringman JM, Saykin AJ, Schofield PR, Su Y, Supnet‐Bell C, Vöglein J, Yakushev I, Brickman AM, Morris JC, McDade E, Xiong C, Bateman RJ, Chhatwal JP, Benzinger TLS. Presenilin-1 mutation position influences amyloidosis, small vessel disease, and dementia with disease stage. Alzheimers Dement 2024; 20:2680-2697. [PMID: 38380882 PMCID: PMC11032566 DOI: 10.1002/alz.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. METHODS Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. RESULTS Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. DISCUSSION We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. HIGHLIGHTS Mutation position influences Aβ burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aβ burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.
Collapse
|
4
|
Cannavacciuolo A, Paparella G, Salzillo M, Colella D, Canevelli M, Costa D, Birreci D, Angelini L, Guerra A, Ricciardi L, Bruno G, Berardelli A, Bologna M. Facial emotion expressivity in patients with Parkinson's and Alzheimer's disease. J Neural Transm (Vienna) 2024; 131:31-41. [PMID: 37804428 PMCID: PMC10770202 DOI: 10.1007/s00702-023-02699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/09/2023] [Indexed: 10/09/2023]
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders with some overlapping clinical features. Hypomimia (reduced facial expressivity) is a prominent sign of PD and it is also present in AD. However, no study has experimentally assessed hypomimia in AD and compared facial expressivity between PD and AD patients. We compared facial emotion expressivity in patients with PD, AD, and healthy controls (HCs). Twenty-four PD patients, 24 AD patients and 24 HCs were videotaped during neutral facial expressions and while posing six facial emotions (anger, surprise, disgust, fear, happiness, and sadness). Fifteen raters were asked to evaluate the videos using MDS-UPDRS-III (item 3.2) and to identify the corresponding emotion from a seven-forced-choice response format. We measured the percentage of accuracy, the reaction time (RT), and the confidence level (CL) in the perceived accuracy of the raters' responses. We found the highest MDS-UPDRS 3.2 scores in PD, and higher in AD than HCs. When evaluating the posed expression captures, raters identified a lower percentage of correct answers in the PD and AD groups than HCs. There was no difference in raters' response accuracy between the PD and AD. No difference was observed in RT and CL data between groups. Hypomimia in patients correlated positively with the global MDS-UPDRS-III and negatively with Mini Mental State Examination scores. PD and AD patients have a similar pattern of reduced facial emotion expressivity compared to controls. These findings hold potential pathophysiological and clinical implications.
Collapse
Affiliation(s)
| | - Giulia Paparella
- IRCCS Neuromed Pozzilli (IS), Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Martina Salzillo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Donato Colella
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Marco Canevelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Davide Costa
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Luca Angelini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Andrea Guerra
- Parkinson and Movement Disorder Unit, Study Center on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | - Lucia Ricciardi
- St George's, University of London and St George's University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Neurosciences Research Centre, Cranmer Terrace, London, SW17 0QT, UK
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed Pozzilli (IS), Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Matteo Bologna
- IRCCS Neuromed Pozzilli (IS), Pozzilli, Italy.
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy.
| |
Collapse
|
5
|
Llibre-Guerra JJ, Iaccarino L, Coble D, Edwards L, Li Y, McDade E, Strom A, Gordon B, Mundada N, Schindler SE, Tsoy E, Ma Y, Lu R, Fagan AM, Benzinger TLS, Soleimani-Meigooni D, Aschenbrenner AJ, Miller Z, Wang G, Kramer JH, Hassenstab J, Rosen HJ, Morris JC, Miller BL, Xiong C, Perrin RJ, Allegri R, Chrem P, Surace E, Berman SB, Chhatwal J, Masters CL, Farlow MR, Jucker M, Levin J, Fox NC, Day G, Gorno-Tempini ML, Boxer AL, La Joie R, Rabinovici GD, Bateman R. Longitudinal clinical, cognitive and biomarker profiles in dominantly inherited versus sporadic early-onset Alzheimer's disease. Brain Commun 2023; 5:fcad280. [PMID: 37942088 PMCID: PMC10629466 DOI: 10.1093/braincomms/fcad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD ± 8.5) years versus 54.8 (SD ± 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-ε4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD ± 39.3) pg/ml dominantly inherited versus 296 (SD ± 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles; sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design.
Collapse
Affiliation(s)
| | - Leonardo Iaccarino
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dean Coble
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Lauren Edwards
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yan Li
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Amelia Strom
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Gordon
- Malinckrodt Institute of Radiology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Nidhi Mundada
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Elena Tsoy
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yinjiao Ma
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Ruijin Lu
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Tammie L S Benzinger
- Malinckrodt Institute of Radiology, Washington University in St Louis, St Louis, MO 63108, USA
| | - David Soleimani-Meigooni
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Zachary Miller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guoqiao Wang
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Joel H Kramer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Howard J Rosen
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John C Morris
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Bruce L Miller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
- Department of Pathology and Immunology, Washington University in St Louis, St. Louis, MO 63108, USA
| | - Ricardo Allegri
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Patricio Chrem
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Ezequiel Surace
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin L Masters
- Florey Institute, The University of Melbourne, Melbourne 3052, Australia
| | - Martin R Farlow
- Neuroscience Center, Indiana University School of Medicine at Indianapolis, IN 46202, USA
| | - Mathias Jucker
- DZNE-German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich 80539, Germany
- German Center for Neurodegenerative Diseases, Munich 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| | - Gregory Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 33224, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Renaud La Joie
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gil D Rabinovici
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Randall Bateman
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| |
Collapse
|
6
|
Banerjee G, Collinge J, Fox NC, Lashley T, Mead S, Schott JM, Werring DJ, Ryan NS. Clinical considerations in early-onset cerebral amyloid angiopathy. Brain 2023; 146:3991-4014. [PMID: 37280119 PMCID: PMC10545523 DOI: 10.1093/brain/awad193] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an important cerebral small vessel disease associated with brain haemorrhage and cognitive change. The commonest form, sporadic amyloid-β CAA, usually affects people in mid- to later life. However, early-onset forms, though uncommon, are increasingly recognized and may result from genetic or iatrogenic causes that warrant specific and focused investigation and management. In this review, we firstly describe the causes of early-onset CAA, including monogenic causes of amyloid-β CAA (APP missense mutations and copy number variants; mutations of PSEN1 and PSEN2) and non-amyloid-β CAA (associated with ITM2B, CST3, GSN, PRNP and TTR mutations), and other unusual sporadic and acquired causes including the newly-recognized iatrogenic subtype. We then provide a structured approach for investigating early-onset CAA, and highlight important management considerations. Improving awareness of these unusual forms of CAA amongst healthcare professionals is essential for facilitating their prompt diagnosis, and an understanding of their underlying pathophysiology may have implications for more common, late-onset, forms of the disease.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, London, W1 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| |
Collapse
|
7
|
Vöglein J, Levin J, Höglinger G. [Treatment-Quo vadis neurodegeneration?]. DER NERVENARZT 2023; 94:904-912. [PMID: 37801166 DOI: 10.1007/s00115-023-01544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Hallmarks of neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease are pathological protein aggregation, neuroinflammation, neurodegeneration and progressive symptoms. Due to the limited causal treatment options they represent a big challenge. OBJECTIVE Overview of disease-modifying strategies in neurodegenerative diseases and outlook regarding future treatment development. MATERIAL AND METHODS Literature search regarding treatment development in neurodegenerative diseases and integration of the results. Additionally, consideration of expert opinions. RESULTS The development of biomarkers and genetic parameters for the detection of causal pathologies of neurodegenerative diseases as an indispensable basis for the development of disease-modifying treatment is rapidly advancing. Targets for causal interventions are all steps in the pathophysiological cascade of neurodegenerative diseases. Therapeutic antibodies are most advanced in the development and are able to remove protein deposits from the brain and to reduce the clinical progression in Alzheimer's disease. A combination of biomarkers, genetic characteristics and clinical parameters could enable an individualized treatment. CONCLUSION The future of the treatment of neurodegenerative diseases focuses on disease modification using molecular-based approaches. Targeted interventions against protein aggregation, inflammation and genetic factors as well as a personalized stratification of treatment hold promise for more effective forms of treatment. Although challenges still remain, current research and clinical studies give optimism for the development of disease-modifying treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan Vöglein
- Neurologische Klinik und Poliklinik mit Friedrich-Baur-Institut, LMU Klinikum, Ludwig-Maximilians-Universität (LMU) München, Marchioninistr. 15, 81377, München, Deutschland
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) München, München, Deutschland
| | - Johannes Levin
- Neurologische Klinik und Poliklinik mit Friedrich-Baur-Institut, LMU Klinikum, Ludwig-Maximilians-Universität (LMU) München, Marchioninistr. 15, 81377, München, Deutschland
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) München, München, Deutschland
| | - Günter Höglinger
- Neurologische Klinik und Poliklinik mit Friedrich-Baur-Institut, LMU Klinikum, Ludwig-Maximilians-Universität (LMU) München, Marchioninistr. 15, 81377, München, Deutschland.
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) München, München, Deutschland.
| |
Collapse
|
8
|
Castillo‐Torres SA, Rossi M, Paez‐Maggio M, Capparelli F, Gómez‐Arevalo G, Merello M. Early-Onset Dementia-Parkinsonism with Rapid Development of Motor Fluctuations and Dyskinesia Due to PSEN1 G206V Pathogenic Variant. Mov Disord Clin Pract 2023; 10:335-337. [PMID: 36825052 PMCID: PMC9941923 DOI: 10.1002/mdc3.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Malco Rossi
- Servicio de Movimientos Anormales, Departamento de NeurologíaFleniBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Mauricio Paez‐Maggio
- Servicio de Movimientos Anormales, Departamento de NeurologíaFleniBuenos AiresArgentina
| | | | - Gonzalo Gómez‐Arevalo
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, and CONICETBuenos AiresArgentina
| | - Marcelo Merello
- Servicio de Movimientos Anormales, Departamento de NeurologíaFleniBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
- Faculty of MedicinePontificial Catholic University of ArgentinaBuenos AiresArgentina
| |
Collapse
|
9
|
Vöglein J, Franzmeier N, Morris JC, Dieterich M, McDade E, Simons M, Preische O, Hofmann A, Hassenstab J, Benzinger TL, Fagan A, Noble JM, Berman SB, Graff-Radford NR, Ghetti B, Farlow MR, Chhatwal JP, Salloway S, Xiong C, Karch CM, Cairns N, Perrin RJ, Day G, Martins R, Sanchez-Valle R, Mori H, Shimada H, Ikeuchi T, Suzuki K, Schofield PR, Masters CL, Goate A, Buckles V, Fox NC, Chrem P, Allegri R, Ringman JM, Yakushev I, Laske C, Jucker M, Höglinger G, Bateman RJ, Danek A, Levin J. Pattern and implications of neurological examination findings in autosomal dominant Alzheimer disease. Alzheimers Dement 2023; 19:632-645. [PMID: 35609137 PMCID: PMC9684350 DOI: 10.1002/alz.12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION As knowledge about neurological examination findings in autosomal dominant Alzheimer disease (ADAD) is incomplete, we aimed to determine the frequency and significance of neurological examination findings in ADAD. METHODS Frequencies of neurological examination findings were compared between symptomatic mutation carriers and non mutation carriers from the Dominantly Inherited Alzheimer Network (DIAN) to define AD neurological examination findings. AD neurological examination findings were analyzed regarding frequency, association with and predictive value regarding cognitive decline, and association with brain atrophy in symptomatic mutation carriers. RESULTS AD neurological examination findings included abnormal deep tendon reflexes, gait disturbance, pathological cranial nerve examination findings, tremor, abnormal finger to nose and heel to shin testing, and compromised motor strength. The frequency of AD neurological examination findings was 65.1%. Cross-sectionally, mutation carriers with AD neurological examination findings showed a more than two-fold faster cognitive decline and had greater parieto-temporal atrophy, including hippocampal atrophy. Longitudinally, AD neurological examination findings predicted a significantly greater decline over time. DISCUSSION ADAD features a distinct pattern of neurological examination findings that is useful to estimate prognosis and may inform clinical care and therapeutic trial designs.
Collapse
Affiliation(s)
- Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität München, Germany
| | - John C. Morris
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität München, Germany
| | - Eric McDade
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Oliver Preische
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Anna Hofmann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Jason Hassenstab
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Tammie L. Benzinger
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Anne Fagan
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - James M. Noble
- Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, and Gertrude H. Sergievsky Center, Columbia University Irving Medical Center, 710 West 168 Street Box 176, New York, NY 10032, USA
| | - Sarah B. Berman
- University of Pittsburgh, 3471 Fifth Ave #900, Pittsburgh, PA 15213, USA
| | | | | | - Martin R. Farlow
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jasmeer P. Chhatwal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Stephen Salloway
- Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Celeste M. Karch
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Nigel Cairns
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
- Medical School and Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Richard J. Perrin
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Gregory Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Ralph Martins
- Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027, Australia
| | - Raquel Sanchez-Valle
- Alzheimer’s disease and other cognitive disorders group. Service of Neurology, Hospital Clinic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Hiroshi Mori
- Osaka City University Medical School, Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Hiroyuki Shimada
- Osaka City University Medical School, Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata 951-8585, Japan
| | | | - Peter R. Schofield
- Neuroscience Research Australia, Sydney 2031 Australia
- School of Medical Sciences, University of New South Wales, Sydney 2052 Australia
| | - Colin L. Masters
- Florey Institute, University of Melbourne, Level 5, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, B1065, New York, NY 10029,USA
| | - Virginia Buckles
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Nick C. Fox
- Dementia Research Centre, Institute of Neurology, University College London, Queen Square, London WC1 3BG United Kingdom
| | | | | | - John M. Ringman
- Keck School of Medicine of University of Southern California, Center for the Health Professionals, 1540 Alcazar Street, Suite 209F, Los Angeles, CA 90089, USA
| | - Igor Yakushev
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Randall J. Bateman
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | |
Collapse
|
10
|
Rudenskaya GE, Petukhova MS, Zabnenkova VV, Cherevatova TB, Ryzhkova OP. [Early-onset familial Alzheimer's disease with spastic paraparesis associated with PSEN1 gene]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:120-127. [PMID: 37994898 DOI: 10.17116/jnevro2023123111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
A familial case of a rare autosomal dominant Alzheimer's disease (AD), related to PSEN1 gene (AD3, OMIM 607822), differing from common multifactorial form by earlier onset and, in part of cases, by accompanying neurological signs, spastic paraparesis particularly, is presented. The first sign in a female proband and in her son was paraparesis manifested at the age of 29 and 21 years, respectively. Cognitive disturbances developed soon; the former diagnosis was hereditary spastic paraplegia with cognitive impairment, In the proband examined in 2008 at 33 years old the diagnosis was not established. In the son examined in 2022 at 27 years old whole-exome sequencing detected a novel PSEN1 missense mutation p.Thr421Ala. The mutation was confirmed by Sanger sequencing in him, found out in the proband (who was severely disabled by that time) and excluded in her unaffected mother. Except for different age of onset, AD3 in two patients was similar, though in whole it is variable, also in relatives. The variability and rareness of the disease hampers clinical diagnostics. Massive parallel sequencing is a most reliable diagnostic method.
Collapse
Affiliation(s)
| | - M S Petukhova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - O P Ryzhkova
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
11
|
Willumsen N, Arber C, Lovejoy C, Toombs J, Alatza A, Weston PSJ, Chávez-Gutiérrez L, Hardy J, Zetterberg H, Fox NC, Ryan NS, Lashley T, Wray S. The PSEN1 E280G mutation leads to increased amyloid-β43 production in induced pluripotent stem cell neurons and deposition in brain tissue. Brain Commun 2022; 5:fcac321. [PMID: 36687397 PMCID: PMC9847549 DOI: 10.1093/braincomms/fcac321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Mutations in the presenilin 1 gene, PSEN1, which cause familial Alzheimer's disease alter the processing of amyloid precursor protein, leading to the generation of various amyloid-β peptide species. These species differ in their potential for aggregation. Mutation-specific amyloid-β peptide profiles may thereby influence pathogenicity and clinical heterogeneity. There is particular interest in comparing mutations with typical and atypical clinical presentations, such as E280G. We generated PSEN1 E280G mutation induced pluripotent stem cells from two patients and differentiated them into cortical neurons, along with previously reported PSEN1 M146I, PSEN1 R278I and two control lines. We assessed both the amyloid-β peptide profiles and presenilin 1 protein maturity. We also compared amyloid-β peptide profiles in human post-mortem brain tissue from cases with matched mutations. Amyloid-β ratios significantly differed compared with controls and between different patients, implicating mutation-specific alterations in amyloid-β ratios. Amyloid-β42:40 was increased in the M146I and both E280G lines compared with controls. Amyloid-β42:40 was not increased in the R278I line compared with controls. The amyloid-β43:40 ratio was increased in R278I and both E280G lines compared with controls, but not in M146I cells. Distinct amyloid-β peptide patterns were also observed in human brain tissue from individuals with these mutations, showing some similar patterns to cell line observations. Reduced presenilin 1 maturation was observed in neurons with the PSEN1 R278I and E280G mutations, but not the M146I mutation. These results suggest that mutation location can differentially alter the presenilin 1 protein and affect its autoendoproteolysis and processivity, contributing to the pathological phenotype. Investigating differences in underlying molecular mechanisms of familial Alzheimer's disease may inform our understanding of clinical heterogeneity.
Collapse
Affiliation(s)
- Nanet Willumsen
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Christopher Lovejoy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Jamie Toombs
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- UK Dementia Research Institute, University College London, London WC1E 6AU, UK
| | - Argyro Alatza
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Philip S J Weston
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
| | - Lucia Chávez-Gutiérrez
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Department of Neurology, KU Leuven, 3000 Leuven, Belgium
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- UK Dementia Research Institute, University College London, London WC1E 6AU, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- UK Dementia Research Institute, University College London, London WC1E 6AU, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Nick C Fox
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute, University College London, London WC1E 6AU, UK
| | - Natalie S Ryan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute, University College London, London WC1E 6AU, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| |
Collapse
|
12
|
Levin J, Vöglein J, Quiroz YT, Bateman RJ, Ghisays V, Lopera F, McDade E, Reiman E, Tariot PN, Morris JC. Testing the amyloid cascade hypothesis: Prevention trials in autosomal dominant Alzheimer disease. Alzheimers Dement 2022; 18:2687-2698. [PMID: 35212149 PMCID: PMC9399299 DOI: 10.1002/alz.12624] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The amyloid cascade hypothesis of Alzheimer disease (AD) has been increasingly challenged. Here, we aim to refocus the amyloid cascade hypothesis on its original premise that the accumulation of amyloid beta (Aβ) peptide is the primary and earliest event in AD pathogenesis as based on current evidence, initiating several pathological events and ultimately leading to AD dementia. BACKGROUND An ongoing debate about the validity of the amyloid cascade hypothesis for AD has been triggered by clinical trials with investigational disease-modifying drugs targeting Aβ that have not demonstrated consistent clinically meaningful benefits. UPDATED HYPOTHESIS It is an open question if monotherapy targeting Aβ pathology could be markedly beneficial at a stage when the brain has been irreversibly damaged by a cascade of pathological changes. Interventions in cognitively unimpaired individuals at risk for dementia, during amyloid-only and pre-amyloid stages, are more appropriate for proving or refuting the amyloid hypothesis. Our updated hypothesis states that anti-Aβ investigational therapies are likely to be most efficacious when initiated in the preclinical (asymptomatic) stages of AD and specifically when the disease is driven primarily by amyloid pathology. Given the young age at symptom onset and the deterministic nature of the mutations, autosomal dominant AD (ADAD) mutation carriers represent the ideal population to evaluate the efficacy of putative disease-modifying Aβ therapies. MAJOR CHALLENGES FOR THE HYPOTHESIS Key challenges of the amyloid hypothesis include the recognition that disrupted Aβ homeostasis alone is insufficient to produce the AD pathophysiologic process, poor correlation of Aβ with cognitive impairment, and inconclusive data regarding clinical efficacy of therapies targeting Aβ. Challenges of conducting ADAD research include the rarity of the disease and uncertainty of the generalizability of ADAD findings for the far more common "sporadic" late-onset AD. LINKAGE TO OTHER MAJOR THEORIES The amyloid cascade hypothesis, modified here to pertain to the preclinical stage of AD, still needs to be integrated with the development and effects of tauopathy and other co-pathologies, including neuroinflammation, vascular insults, synucleinopathy, and many others.
Collapse
Affiliation(s)
- Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81541 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jonathan Vöglein
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81541 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Yakeel T. Quiroz
- Harvard Medical School and Massachusetts General Hospital, 39 1 Avenue, Suite 101, Charlestown, MA 02129, USA
- Grupo de Neurociencias, Universidad de Antioquia, Antioquia, Colombia
| | - Randall J. Bateman
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Valentina Ghisays
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - Francisco Lopera
- Grupo de Neurociencias, Universidad de Antioquia, Antioquia, Colombia
| | - Eric McDade
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Eric Reiman
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - Pierre N. Tariot
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - John C. Morris
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| |
Collapse
|
13
|
Peña M, Petrillo K, Bosset M, Fain M, Chou YH, Rapcsak S, Toosizadeh N. Brain function complexity during dual-tasking is associated with cognitive impairment and age. J Neuroimaging 2022; 32:1211-1223. [PMID: 35843726 PMCID: PMC9649845 DOI: 10.1111/jon.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Early diagnosis of cognitive impairment is important because symptoms can be delayed through therapies. Synaptic disconnections are the key characteristics of dementia, and through nonlinear complexity analysis of brain function, it is possible to identify long-range synaptic disconnections in the brain. METHODS We investigated the capability of a novel upper-extremity function (UEF) dual-task paradigm in the functional MRI (fMRI) setting, where the participant flexes and extends their arm while counting, to differentiate between cognitively normal (CN) and those with mild cognitive impairment (MCI). We used multiscale entropy (MSE) complexity analysis of the blood oxygen-level dependent time-series across neural networks and brain regions. Outside of the fMRI, we used the UEF dual-task test, while the elbow kinematics were measured using motion sensors, to record the motor function score. RESULTS Results showed 34% lower MSE values in MCI compared to CN (p<.04 for all regions and networks except cerebellum when counting down by one; effect size = 1.35±0.15) and a negative correlation between MSE values and age (average r2 of 0.30 for counting down by one and 0.36 for counting backward by three). Results also showed an improvement in the logistic regression model sensitivity by 14-24% in predicting the presence of MCI when brain function measure was added to the motor function score (kinematics data). CONCLUSIONS Current findings suggest that combining measures of neural network and motor function, in addition to neuropsychological testing, may provide an accurate tool for assessing early-stage cognitive impairment and age-related decline in cognition.
Collapse
Affiliation(s)
- Miguel Peña
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
| | - Kelsi Petrillo
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
| | - Mark Bosset
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
| | - Mindy Fain
- Arizona Center on Aging, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ
- Division of Geriatrics, General Internal Medicine and Palliative Medicine, Department of Medicine, University of Arizona, Tucson, AZ
| | - Ying-hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ
- Arizona Center on Aging, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ
| | - Steve Rapcsak
- Department of Neurology, University of Arizona, Tucson, AZ
- Banner Alzheimer’s Institute, Tucson, AZ
| | - Nima Toosizadeh
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
- Arizona Center on Aging, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ
- Division of Geriatrics, General Internal Medicine and Palliative Medicine, Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
14
|
Liu Y, Xiao X, Liu H, Liao X, Zhou Y, Weng L, Zhou L, Liu X, Bi XY, Xu T, Zhu Y, Yang Q, Zhang S, Hao X, Zhang W, Wang J, Jiao B, Shen L. Clinical characteristics and genotype-phenotype correlation analysis of familial Alzheimer’s disease patients with pathogenic/likely pathogenic amyloid protein precursor mutations. Front Aging Neurosci 2022; 14:1013295. [PMID: 36313020 PMCID: PMC9616047 DOI: 10.3389/fnagi.2022.1013295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease associated with aging, environmental, and genetic factors. Amyloid protein precursor (APP) is a known pathogenic gene for familial Alzheimer’s disease (FAD), and now more than 70 APP mutations have been reported, but the genotype-phenotype correlation remains unclear. In this study, we collected clinical data from patients carrying APP mutations defined as pathogenic/likely pathogenic according to the American college of medical genetics and genomics (ACMG) guidelines. Then, we reanalyzed the clinical characteristics and identified genotype-phenotype correlations in APP mutations. Our results indicated that the clinical phenotypes of APP mutations are generally consistent with typical AD despite the fact that they show more non-demented symptoms and neurological symptoms. We also performed genotype-phenotype analysis according to the difference in APP processing caused by the mutations, and we found that there were indeed differences in onset age, behavioral and psychological disorders of dementia (BPSD) and myoclonus.
Collapse
Affiliation(s)
- Yingzi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-yun Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyan Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoli Hao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Bin Jiao,
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Lu Shen,
| |
Collapse
|
15
|
Association between Cerebral Coordination Functions and Clinical Outcomes of Alzheimer's Dementia. Brain Sci 2022; 12:brainsci12101370. [PMID: 36291304 PMCID: PMC9599526 DOI: 10.3390/brainsci12101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Alzheimer’s dementia (AD) is a degenerative disease that impairs cognitive function, initially, and then motor or other function, eventually. Motor coordination function impairment usually accompanies cognition impairment but it is seldom examined whether it can reflect the clinical outcomes of AD. Methods: 113 clinically diagnosed AD patients with a mean age of 78.9 ± 6.9 years underwent an annual neuropsychological assessment using the Mini-Mental State Examination (MMSE), the Cognitive Abilities Screening Instrument (CASI), the Sum of Boxes of Clinical Dementia Rating (CDR-SB), and the CDR. The cerebral coordination function was evaluated through correlations among 15 joints with a kinetic depth sensor annually. An intra-individual comparison of both cognitive and motor coordination functions was performed to examine their correlations. Results: The changes in coordination function in the lower limbs can significantly reflect the clinical outcomes, MMSE (p < 0.001), CASI (p = 0.006), CDR (p < 0.001), and CDR-SB (p < 0.001), but the changes in upper limbs can only reflect the clinical outcome in CDR (p < 0.001). Conclusions: The use of a kinetic depth sensor to determine the coordination between joints, especially in lower limbs, can significantly reflect the global functional and cognitive outcomes in AD. Such evaluations could be another biomarker used to evaluate non-cognitive outcomes in AD for clinical and research purposes.
Collapse
|
16
|
Siokas V, Liampas I, Lyketsos CG, Dardiotis E. Association between Motor Signs and Cognitive Performance in Cognitively Unimpaired Older Adults: A Cross-Sectional Study Using the NACC Database. Brain Sci 2022; 12:1365. [PMID: 36291299 PMCID: PMC9599814 DOI: 10.3390/brainsci12101365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Aiming to examine whether specific motor signs are associated with worse performance in specific cognitive domains among cognitively unimpaired (CU) individuals, we performed a cross-sectional analysis of data from the baseline evaluations of older, CU participants from the National Alzheimer's Coordinating Center (NACC) Uniform Data Set. In total, 8149 CU (≥60 years) participants were included. Of these, 905 individuals scored ≥ 2 on at least one of the motor domains of the Unified Parkinson's Disease Rating Scale part III (UPDRSIII). Cognitively impaired individuals, participants with psychiatric disorders and/or under treatment with antipsychotic, anxiolytic, sedative or hypnotic agents were excluded. Nine motor signs were examined: hypophonia, masked facies, resting tremor, action/postural tremor, rigidity, bradykinesia, impaired chair rise, impaired posture/gait and postural instability. Their association with performance on episodic memory, semantic memory, language, attention, processing speed or executive function was assessed using crude and adjusted linear regression models. Individuals with impaired chair rise had worse episodic memory, semantic memory, processing speed and executive function, while those with bradykinesia had worse language, processing speed and executive function. Sensitivity analyses, by excluding participants with cerebrovascular disease or PD, or other Parkinsonism, produced similar results with the exception of the relationship between bradykinesia and language performance.
Collapse
Affiliation(s)
- Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Constantine G. Lyketsos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Effect of Resveratrol Combined with Donepezil Hydrochloride on Inflammatory Factor Level and Cognitive Function Level of Patients with Alzheimer's Disease. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9148650. [PMID: 35368930 PMCID: PMC8975642 DOI: 10.1155/2022/9148650] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023]
Abstract
Objective To explore the effect of resveratrol (RES) combined with donepezil hydrochloride on inflammatory factor level and cognitive function level of patients with Alzheimer's disease (AD). Methods A total of 90 AD patients treated in our hospital from June 2019 to June 2020 were selected as the study objects and divided into the control group (CG) and experimental group (EG) by the randomized and double-blind method, with 45 cases each. Patients in CG received donepezil hydrochloride treatment, and on this basis, those in EG received additional RES treatment, so as to compare the clinical indicators between the two groups. Results Compared with CG after treatment, EG obtained significantly higher good rate, MMSE score, and FIM score (P < 0.05) and obviously lower clinical indicators and ADAS-cog score (P < 0.001), and between CG and EG, no obvious difference in total incidence rate of adverse reactions was observed after treatment (P > 0.05). Conclusion Combining RES with donepezil hydrochloride has significant clinical efficacy in treating AD, which can effectively improve patients' inflammatory factor indicators, promote their cognitive function, and facilitate patient prognosis.
Collapse
|
18
|
Chen Y, Liu P, Xie F, Wang B, Lin Z, Luo W. A heterozygous de novo PSEN1 mutation in a patient with early-onset parkinsonism. Neurol Sci 2021; 43:1405-1409. [PMID: 34843019 DOI: 10.1007/s10072-021-05726-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mutations in presenilin 1 (PSEN1) are the most common known genetic cause of early-onset Alzheimer's disease. Patients with PSEN1 mutations exhibit broad phenotypes. Here, we report clinical, neuroimaging and genetic findings in a patient with a de novo mutation in PSEN1 (c.697A > G, p.M233V) presenting with early-onset parkinsonism as the initial and primary symptom. METHODS We recruited a family with one affected patient with early-onset parkinsonism. The patient underwent comprehensive neurological examination and imaging evaluation. Whole genome sequencing was performed for the proband. RESULTS The patient presented with parkinsonism and mild cognitive impairment. He had a good response to levodopa. Brain MRI evaluation showed atrophy of the bilateral frontotemporal lobe and hippocampus. 18F-fluorodeoxyglucose-positron emission tomography (PET) and 11C-2β-carbomethoxy-3β-(4-fluorophenyl) tropane-PET showed decreased metabolism and dopamine transporter distribution in the bilateral putamen and caudate nucleus. 11C-Pittsburgh compound B -PET showed β-amyloid protein deposition. Genetic analysis identified a heterozygous de novo variant in PSEN1 (c.697A > G, p.M233V). CONCLUSIONS Screening for PSEN1 variations should be considered in patients with levodopa-responsive early-onset parkinsonism.
Collapse
Affiliation(s)
- Yueting Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiru Lin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Wakasugi N, Hanakawa T. It Is Time to Study Overlapping Molecular and Circuit Pathophysiologies in Alzheimer's and Lewy Body Disease Spectra. Front Syst Neurosci 2021; 15:777706. [PMID: 34867224 PMCID: PMC8637125 DOI: 10.3389/fnsys.2021.777706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia due to neurodegeneration and is characterized by extracellular senile plaques composed of amyloid β1 - 42 (Aβ) as well as intracellular neurofibrillary tangles consisting of phosphorylated tau (p-tau). Dementia with Lewy bodies constitutes a continuous spectrum with Parkinson's disease, collectively termed Lewy body disease (LBD). LBD is characterized by intracellular Lewy bodies containing α-synuclein (α-syn). The core clinical features of AD and LBD spectra are distinct, but the two spectra share common cognitive and behavioral symptoms. The accumulation of pathological proteins, which acquire pathogenicity through conformational changes, has long been investigated on a protein-by-protein basis. However, recent evidence suggests that interactions among these molecules may be critical to pathogenesis. For example, Aβ/tau promotes α-syn pathology, and α-syn modulates p-tau pathology. Furthermore, clinical evidence suggests that these interactions may explain the overlapping pathology between AD and LBD in molecular imaging and post-mortem studies. Additionally, a recent hypothesis points to a common mechanism of prion-like progression of these pathological proteins, via neural circuits, in both AD and LBD. This suggests a need for understanding connectomics and their alterations in AD and LBD from both pathological and functional perspectives. In AD, reduced connectivity in the default mode network is considered a hallmark of the disease. In LBD, previous studies have emphasized abnormalities in the basal ganglia and sensorimotor networks; however, these account for movement disorders only. Knowledge about network abnormalities common to AD and LBD is scarce because few previous neuroimaging studies investigated AD and LBD as a comprehensive cohort. In this paper, we review research on the distribution and interactions of pathological proteins in the brain in AD and LBD, after briefly summarizing their clinical and neuropsychological manifestations. We also describe the brain functional and connectivity changes following abnormal protein accumulation in AD and LBD. Finally, we argue for the necessity of neuroimaging studies that examine AD and LBD cases as a continuous spectrum especially from the proteinopathy and neurocircuitopathy viewpoints. The findings from such a unified AD and Parkinson's disease (PD) cohort study should provide a new comprehensive perspective and key data for guiding disease modification therapies targeting the pathological proteins in AD and LBD.
Collapse
Affiliation(s)
- Noritaka Wakasugi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Integrated Neuroanatomy and Neuroimaging, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Rujeedawa T, Carrillo Félez E, Clare ICH, Fortea J, Strydom A, Rebillat AS, Coppus A, Levin J, Zaman SH. The Clinical and Neuropathological Features of Sporadic (Late-Onset) and Genetic Forms of Alzheimer's Disease. J Clin Med 2021; 10:4582. [PMID: 34640600 PMCID: PMC8509365 DOI: 10.3390/jcm10194582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to compare and highlight the clinical and pathological aspects of genetic versus acquired Alzheimer's disease: Down syndrome-associated Alzheimer's disease in (DSAD) and Autosomal Dominant Alzheimer's disease (ADAD) are compared with the late-onset form of the disease (LOAD). DSAD and ADAD present in a younger population and are more likely to manifest with non-amnestic (such as dysexecutive function features) in the prodromal phase or neurological features (such as seizures and paralysis) especially in ADAD. The very large variety of mutations associated with ADAD explains the wider range of phenotypes. In the LOAD, age-associated comorbidities explain many of the phenotypic differences.
Collapse
Affiliation(s)
- Tanzil Rujeedawa
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Eva Carrillo Félez
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Isabel C. H. Clare
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, 08029 Barcelona, Spain
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
- South London and the Maudsley NHS Foundation Trust, The LonDowns Consortium, London SE5 8AZ, UK
| | | | - Antonia Coppus
- Department for Primary and Community Care, Department of Primary and Community Care (149 ELG), Radboud University Nijmegen Medical Center, P.O. Box 9101, 6525 GA Nijmegen, The Netherlands;
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
- German Center for Neurodegenerative Diseases, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Shahid H. Zaman
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| |
Collapse
|
21
|
Lu JY, Sun YM, Yen TC, Zuo CT, Wang J. Multimodal Imaging in a Patient With Alzheimer Disease and Parkinsonism Because of a Presenilin-1 Mutation. Clin Nucl Med 2021; 46:e483-e484. [PMID: 33883498 DOI: 10.1097/rlu.0000000000003674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT A correct clinical diagnosis of motor dysfunction accompanied by cognitive impairment remains challenging. Recent advances in molecular imaging biomarkers hold promise to overcome this issue. A 37-year-old woman presenting with parkinsonism and cognitive impairment underwent both multimodal neuroimaging and genetic testing. Her main findings on PET included diffuse tau accumulation in the cerebral cortex and left putamen, increased cerebellar amyloid deposits, asymmetrically reduced dopamine transporter binding, and mild hypermetabolism in the putamen. Genetic analysis revealed the presence of a presenilin-1 mutation (C.1157T>G). These findings suggested a diagnosis of early-onset autosomal dominant Alzheimer disease accompanied by parkinsonism.
Collapse
Affiliation(s)
| | - Yi-Min Sun
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and the Center for Advanced Molecular Imaging and Translation, Chang Gung University and Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | | | - Jian Wang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Wei Y, Gao J, Xu F, Shi J, Yu C, Gong Q. A network pharmacological approach to investigate the pharmacological effects of CZ2HF decoction on Alzheimer's disease. IBRAIN 2021; 7:153-170. [PMID: 37786799 PMCID: PMC10529192 DOI: 10.1002/j.2769-2795.2021.tb00080.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 10/04/2023]
Abstract
Background Alzheimer's disease (AD) is the most common type of dementia, which brings tremendous burden to the sufferers and society. However, ideal tactics are unavailable for AD. Our previous study has shown that CZ2HF, a Chinese herb preparation, mitigates cognitive impairment in AD rats; whereas, its detailed mechanism has not been elucidated. Methods Public databases were applied to collect and identify the chemical ingredients of eight herbs in CZ2HF. Criteria of absorption, distribution, metabolism, and excretion was used to screen oral bio-availability and drug-likeness. STITCH database and Therapeutic Target Database were applied to decipher the relationship between compounds and genes related to AD. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology term analyses were used to identify the involved signaling pathways. Cytoscape was adopted to establish the networks The molecular docking was used to validate the interactions between the candidate compounds and their potential targets. Results 914 compounds were identified in eight herbal medicines of CZ2HF. Among them, 9 compounds and 28 genes were highly involved in the pathologic process of AD. Furthermore, the mechanism of CZ2HF to AD was based on its anti-inflammatory effects mainly through lipopolysaccharide-mediated signaling pathway and TNF signaling pathway. Core genes in this network were TNF, ICAM1, MMP9 and IL-10. Conclusion This study predicts the active compounds in CZ2HF and uncovers their protein targets using holistic network pharmacology methods. It will provide a insight into the underlying mechanism of CZ2HF to AD from a multi-scale perspective.
Collapse
Affiliation(s)
- Yu Wei
- Department of Pharmacythe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jian‐Mei Gao
- Department of Clinical Pharmacotherapeutics of School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
- Department of PharmacologyKey Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyiGuizhouChina
| | - Fan Xu
- Spemann Graduate School of Biology and MedicineAlbert‐Ludwigs‐University FreiburgFreiburgBaden‐WürttembergGermany
| | - Jing‐Shan Shi
- Department of PharmacologyKey Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyiGuizhouChina
| | - Chang‐Yin Yu
- Department of Neurologythe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Qi‐Hai Gong
- Department of Clinical Pharmacotherapeutics of School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
- Department of PharmacologyKey Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
23
|
Willumsen N, Poole T, Nicholas JM, Fox NC, Ryan NS, Lashley T. Variability in the type and layer distribution of cortical Aβ pathology in familial Alzheimer's disease. Brain Pathol 2021; 32:e13009. [PMID: 34319632 PMCID: PMC9048809 DOI: 10.1111/bpa.13009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
Familial Alzheimer's disease (FAD) is caused by autosomal dominant mutations in the PSEN1, PSEN2 or APP genes, giving rise to considerable clinical and pathological heterogeneity in FAD. Here we investigate variability in clinical data and the type and distribution of Aβ pathologies throughout the cortical layers of different FAD mutation cases. Brain tissue from 20 FAD cases [PSEN1 pre-codon 200 (n = 10), PSEN1 post-codon 200 (n = 6), APP (n = 4)] were investigated. Frontal cortex sections were stained immunohistochemically for Aβ, and Nissl to define the cortical layers. The frequency of different amyloid-beta plaque types was graded for each cortical layer and the severity of cerebral amyloid angiopathy (CAA) was determined in cortical and leptomeningeal blood vessels. Comparisons were made between FAD mutations and APOE4 status, with associations between pathology, clinical and genetic data investigated. In this cohort, possession of an APOE4 allele was associated with increased disease duration but not with age at onset, after adjusting for mutation sub-group and sex. We found Aβ pathology to be heterogeneous between cases although Aβ load was highest in cortical layer 3 for all mutation groups and a higher Aβ load was associated with APOE4. The PSEN1 post-codon 200 group had a higher Aβ load in lower cortical layers, with a small number of this group having increased cotton wool plaque pathology in lower layers. Cotton wool plaque frequency was positively associated with the severity of CAA in the whole cohort and in the PSEN1 post-codon 200 group. Carriers of the same PSEN1 mutation can have differing patterns of Aβ deposition, potentially because of differences in risk factors. Our results highlight possible influences of APOE4 genotype, and PSEN1 mutation type on Aβ deposition, which may have effects on the clinical heterogeneity of FAD.
Collapse
Affiliation(s)
- Nanet Willumsen
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Teresa Poole
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
24
|
Guo Y, Dang G, Hordacre B, Su X, Yan N, Chen S, Ren H, Shi X, Cai M, Zhang S, Lan X. Repetitive Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex Modulates Electroencephalographic Functional Connectivity in Alzheimer's Disease. Front Aging Neurosci 2021; 13:679585. [PMID: 34305567 PMCID: PMC8293898 DOI: 10.3389/fnagi.2021.679585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Increasing evidence demonstrates that repetitive transcranial magnetic stimulation (rTMS) treatment of the dorsolateral prefrontal cortex is beneficial for improving cognitive function in patients with Alzheimer’s disease (AD); however, the underlying mechanism of its therapeutic effect remains unclear. Objectives/Hypothesis: The aim of this study was to investigate the impact of rTMS to the dorsolateral prefrontal cortex on functional connectivity along with treatment response in AD patients with different severity of cognitive impairment. Methods: We conducted a 2-week treatment course of 10-Hz rTMS over the left dorsolateral prefrontal cortex in 23 patients with AD who were split into the mild or moderate cognitive impairment subgroup. Resting state electroencephalography and general cognition was assessed before and after rTMS. Power envelope connectivity was used to calculate functional connectivity at the source level. The functional connectivity of AD patients and 11 cognitively normal individuals was compared. Results: Power envelope connectivity was higher in the delta and theta bands but lower in the beta band in the moderate cognitive impairment group, compared to the cognitively normal controls, at baseline (p < 0.05). The mild cognitive impairment group had no significant abnormities. Montreal Cognitive Assessment scores improved after rTMS in the moderate and mild cognitive impairment groups. Power envelope connectivity in the beta band post-rTMS was increased in the moderate group (p < 0.05) but not in the mild group. No significant changes in the delta and theta band were found after rTMS in both the moderate and mild group. Conclusion: High-frequency rTMS to the dorsolateral prefrontal cortex modulates electroencephalographic functional connectivity while improving cognitive function in patients with AD. Increased beta connectivity may have an important mechanistic role in rTMS therapeutic effects.
Collapse
Affiliation(s)
- Yi Guo
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Ge Dang
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Xiaolin Su
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Nan Yan
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Siyan Chen
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Huixia Ren
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xue Shi
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Min Cai
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Sirui Zhang
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xiaoyong Lan
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
25
|
Hydrogen sulfide is neuroprotective in Alzheimer's disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proc Natl Acad Sci U S A 2021; 118:2017225118. [PMID: 33431651 DOI: 10.1073/pnas.2017225118] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia and neurodegeneration in the elderly, is characterized by deterioration of memory and executive and motor functions. Neuropathologic hallmarks of AD include neurofibrillary tangles (NFTs), paired helical filaments, and amyloid plaques. Mutations in the microtubule-associated protein Tau, a major component of the NFTs, cause its hyperphosphorylation in AD. We have shown that signaling by the gaseous molecule hydrogen sulfide (H2S) is dysregulated during aging. H2S signals via a posttranslational modification termed sulfhydration/persulfidation, which participates in diverse cellular processes. Here we show that cystathionine γ-lyase (CSE), the biosynthetic enzyme for H2S, binds wild type Tau, which enhances its catalytic activity. By contrast, CSE fails to bind Tau P301L, a mutant that is present in the 3xTg-AD mouse model of AD. We further show that CSE is depleted in 3xTg-AD mice as well as in human AD brains, and that H2S prevents hyperphosphorylation of Tau by sulfhydrating its kinase, glycogen synthase kinase 3β (GSK3β). Finally, we demonstrate that sulfhydration is diminished in AD, while administering the H2S donor sodium GYY4137 (NaGYY) to 3xTg-AD mice ameliorates motor and cognitive deficits in AD.
Collapse
|
26
|
Aghakhanyan G, Saur D, Rullmann M, Weise CM, Schroeter ML, Marek K, Jamra RA, Tiepolt S, Strauss M, Scherlach C, Hoffmann KT, Sabri O, Classen J, Barthel H. PET/MRI Delivers Multimodal Brain Signature in Alzheimer's Disease with De Novo PSEN1 Mutation. Curr Alzheimer Res 2021; 18:178-184. [PMID: 33855944 DOI: 10.2174/1567205018666210414111536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/27/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Little is known so far about the brain phenotype and the spatial interplay of different Alzheimer's disease (AD) biomarkers with structural and functional brain connectivity in the early phase of autosomal-dominant AD (ADAD). Multimodal PET/MRI might be suitable to fill this gap. MATERIAL AND METHODS We presented a 31-year-old male patient without a family history of dementia with progressive worsening of memory and motor function. Two separate sessions of 3T PET/MRI acquisitions were arranged with the ß-amyloid tracer [18F]Florbetaben and the secondgeneration tau tracer [18F]PI-2620. Simultaneously acquired MRI consisted of high-resolution 3D T1, diffusion-tensor imaging (DTI), and resting-state fMRI. PET/MRI data were compared with ten age-matched healthy controls. RESULTS Widespread β-amyloid depositions were found in cortical regions, and striatum (Thal stage III) along with tau pathology restricted to the mesial-temporal structures (Braak stage III/IV). Volumetric/shape analysis of subcortical structures revealed atrophy of the hippocampal-amygdala complex. In addition, cortical thinning was detected in the right middle temporal pole. Alterations of multiple DTI indices were noted in the major white matter fiber bundles, together with disruption of default mode and sensory-motor network functional connectivity. Molecular genetic analysis by next-generation sequencing revealed a heterozygote missense pathogenic variant of the PSEN1 (Met233Val). CONCLUSION Multimodal PET/MR imaging is able to deliver, in a one-stop-shop approach, an array of molecular, structural and functional brain information in AD due to de novo pathogenic variant, which can be studied for spatial interplay and might provide a rationale for initiating anti- amyloid/tau therapeutic approaches.
Collapse
Affiliation(s)
| | - Dorothee Saur
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | | | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany
| | - Ken Marek
- Invicro, New Haven, CT, United States
| | - Rami Abou Jamra
- Institute for Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Maria Strauss
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
| | - Cordula Scherlach
- Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
| | | | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
27
|
Ma WH, Chen AF, Xie XY, Huang YS. Sigma ligands as potent inhibitors of Aβ and AβOs in neurons and promising therapeutic agents of Alzheimer's disease. Neuropharmacology 2021; 190:108342. [PMID: 33045243 DOI: 10.1016/j.neuropharm.2020.108342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease and characterized by dementia, memory decline, loss of learning and cognitive disorder. The main pathological features of AD are the deposition of amyloid plaques and the formation of neurofibrillary tangles (NFTs) in the brain. The current anti-AD drugs have shown unsatisfactory therapeutic results. Due to the complications and unclear pathogenesis, AD is still irreversible and incurable. Among several hypotheses proposed by the academic community, the amyloid cascade is widely recognized by scholars and supported by a large amount of evidences. However, controversy over pathogenic factors has also been ongoing. Increasing evidence has shown that amyloid-β (Aβ) and especially amyloid-β oligomers (AβOs) are highly neurotoxic and pathogenic agents that damage neurons, mediate various receptors in the downstream pathways, and ultimately lead to learning and cognitive dysfunction. However, efforts in developing inhibitors of Aβ or amyloid-β precursor protein (APP) have all failed to yield good clinical results. More recently, it has been demonstrated that sigma receptors, including sigma-1 and sigma-2 subtypes, may play critical roles in the regulation of binding and metabolism of AβOs in neuron cells and the pathophysiology of AD. Thus, sigma receptor ligands are being recognized as promising therapeutic agents for treating or ameliorating AD. This article will review the pathophysiology of AD and highlight the sigma ligands that display the capability of preventing or even reversing Aβ- and AβOs-induced neurotoxicity and blocking the signal transduction caused by AβOs.
Collapse
Affiliation(s)
- Wen-Hui Ma
- School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory for Drug Design & Formulation, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China
| | - Ai-Fang Chen
- School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory for Drug Design & Formulation, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China
| | - Xiao-Yang Xie
- School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory for Drug Design & Formulation, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China
| | - Yun-Sheng Huang
- School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory for Drug Design & Formulation, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China.
| |
Collapse
|
28
|
Paparella G, Fasano A, Hallett M, Berardelli A, Bologna M. Emerging concepts on bradykinesia in non-parkinsonian conditions. Eur J Neurol 2021; 28:2403-2422. [PMID: 33793037 DOI: 10.1111/ene.14851] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Bradykinesia is one of the cardinal motor symptoms of Parkinson's disease. However, clinical and experimental studies indicate that bradykinesia may also be observed in various neurological diseases not primarily characterized by parkinsonism. These conditions include hyperkinetic movement disorders, such as dystonia, chorea, and essential tremor. Bradykinesia may also be observed in patients with neurological conditions that are not seen as "movement disorders," including those characterized by the involvement of the cerebellum and corticospinal system, dementia, multiple sclerosis, and psychiatric disorders. METHODS We reviewed clinical reports and experimental studies on bradykinesia in non-parkinsonian conditions and discussed the major findings. RESULTS Bradykinesia is a common motor abnormality in non-parkinsonian conditions. From a pathophysiological standpoint, bradykinesia in neurological conditions not primarily characterized by parkinsonism may be explained by brain network dysfunction. CONCLUSION In addition to the pathophysiological implications, the present paper highlights important terminological issues and the need for a new, more accurate, and more widely used definition of bradykinesia in the context of movement disorders and other neurological conditions.
Collapse
Affiliation(s)
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
Al-Harrasi AM, Iqbal E, Tsamakis K, Lasek J, Gadelrab R, Soysal P, Kohlhoff E, Tsiptsios D, Rizos E, Perera G, Aarsland D, Stewart R, Mueller C. Motor signs in Alzheimer's disease and vascular dementia: Detection through natural language processing, co-morbid features and relationship to adverse outcomes. Exp Gerontol 2021; 146:111223. [PMID: 33450346 DOI: 10.1016/j.exger.2020.111223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Motor signs in patients with dementia are associated with a higher risk of cognitive decline, institutionalisation, death and increased health care costs, but prevalences differ between studies. The aims of this study were to employ a natural language processing pipeline to detect motor signs in a patient cohort in routine care; to explore which other difficulties occur co-morbid to motor signs; and whether these, as a group and individually, predict adverse outcomes. METHODS A cohort of 11,106 patients with dementia in Alzheimer's disease, vascular dementia or a combination was assembled from a large dementia care health records database in Southeast London. A natural language processing algorithm was devised in order to establish the presence of motor signs (bradykinesia, Parkinsonian gait, rigidity, tremor) recorded around the time of dementia diagnosis. We examined the co-morbidity profile of patients with these symptoms and used Cox regression models to analyse associations with survival and hospitalisation, adjusting for twenty-four potential confounders. RESULTS Less than 10% of patients were recorded to display any motor sign, and tremor was most frequently detected. Presence of motor signs was associated with younger age at diagnosis, neuropsychiatric symptoms, poor physical health and higher prescribing of psychotropics. Rigidity was independently associated with a 23% increased mortality risk after adjustment for confounders (p = 0.014). A non-significant trend for a 15% higher risk of hospitalisation was detected in those with a recorded Parkinsonian gait (p = 0.094). CONCLUSIONS With the exception of tremor, motor signs appear to be under-recorded in routine care. They are part of a complex clinical picture and often accompanied by neuropsychiatric and functional difficulties, and thereby associated with adverse outcomes. This underlines the need to establish structured examinations in routine clinical practice via easy-to-use tools.
Collapse
Affiliation(s)
- Ahmed M Al-Harrasi
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK; Sultan Qaboos University Hospital, Muscat, Oman
| | - Ehtesham Iqbal
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Konstantinos Tsamakis
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK; National and Kapodistrian University of Athens, School of Medicine, Second Department of Psychiatry, University General Hospital 'ATTIKON', Athens, Greece
| | - Judista Lasek
- South London and Maudsley NHS Foundation Trust, London, UK
| | | | - Pinar Soysal
- Department of Geriatric Medicine, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Enno Kohlhoff
- Aragon Institute for Health Research (IIS Aragón), Zaragoza, Spain
| | - Dimitrios Tsiptsios
- Neurophysiology Department, Sunderland Royal Hospital, South Tyneside & Sunderland NHS Foundation Trust, Sunderland, UK
| | - Emmanouil Rizos
- National and Kapodistrian University of Athens, School of Medicine, Second Department of Psychiatry, University General Hospital 'ATTIKON', Athens, Greece
| | - Gayan Perera
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Dag Aarsland
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK; South London and Maudsley NHS Foundation Trust, London, UK; Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
| | - Robert Stewart
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Christoph Mueller
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK; South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
30
|
Vöglein J, Kostova I, Arzberger T, Roeber S, Schmitz P, Simons M, Ruf V, Windl O, Herms J, Dieterich M, Danek A, Höglinger GU, Giese A, Levin J. First symptom guides diagnosis and prognosis in neurodegenerative diseases-a retrospective study of autopsy proven cases. Eur J Neurol 2021; 28:1801-1811. [PMID: 33662165 DOI: 10.1111/ene.14800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Clinical diagnostic criteria for neurodegenerative diseases have been framed based on clinical phenomenology. However, systematic knowledge about the first reported clinical symptoms in neurodegenerative diseases is lacking. Therefore, the aim was to determine the prevalence and clinical implications of the first clinical symptom (FS) as assessed by medical history in neuropathologically proven neurodegenerative diseases. METHODS Neuropathological diagnoses from the Neurobiobank Munich, Germany, were matched with clinical records for analyses of the diagnostic and prognostic values of FSs. RESULTS In all, 301 patients with the neuropathological diagnoses Alzheimer disease (AD), progressive supranuclear palsy (PSP), frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD) including the neuropathologically indistinguishable clinical phenotypes Parkinson disease and dementia with Lewy bodies, multiple system atrophy (MSA) and corticobasal degeneration (CBD) were studied. Memory disturbance was the most common FS in AD (34%), FTLD (19%) and LBD (26%), gait disturbance in PSP (35%) and MSA (27%) and aphasia and personality changes in CBD (20%, respectively). In a model adjusting for prevalence in the general population, AD was predicted by memory disturbance in 79.0%, aphasia in 97.2%, personality changes in 96.0% and by cognitive disturbance in 99.0%. Gait disturbance and tremor predicted LBD in 54.6% and 97.3%, coordination disturbance MSA in 59.4% and dysarthria FTLD in 73.0%. Cognitive FSs were associated with longer survival in AD (12.0 vs. 5.3 years; p < 0.001) and FTLD (8.2 vs. 4.1 years; p = 0.005) and motor FSs with shorter survival in PSP (7.2 vs. 9.7; p = 0.048). CONCLUSIONS Assessing FSs in neurodegenerative diseases may be beneficial for accuracy of diagnosis and prognosis and thereby may improve clinical care and precision of study recruitment.
Collapse
Affiliation(s)
- Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Irena Kostova
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Department for Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peer Schmitz
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Otto Windl
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
31
|
Jiang H, Niu F, Zheng Y, Xu Y. CART mitigates oxidative stress and DNA damage in memory deficits of APP/PS1 mice via upregulating β‑amyloid metabolism‑associated enzymes. Mol Med Rep 2021; 23:280. [PMID: 33604684 PMCID: PMC7905330 DOI: 10.3892/mmr.2021.11919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that is primarily characterized by progressive cognitive deficits. The toxicity of amyloid β-protein (Aβ) serves an important role in the progression of AD, resulting in neuronal loss via a number of possible mechanisms, including oxidative stress, mitochondrial dysfunction, energy depletion, apoptosis and neuroinflammation. Previous studies have reported that cocaine amphetamine regulated transcript (CART) treatment improves memory and synaptic structure in APP/PS1 mice. Therefore, the present study aimed to investigate whether CART served a protective role against memory deficits in AD. APP/PS1 mice were treated with CART or PBS. Spatial memory was assessed using the Morris water maze. Oxidative stress and DNA damage were compared among wild-type, APP/PS1 and CART-treated APP/PS1 mice. The mRNA and protein expression levels of Aβ metabolism-associated enzymes, including neprilysin (NEP), insulin-degrading enzyme (IDE), receptor for advanced glycation end products (RAGE) and low-density lipoprotein receptor-related protein 1 (LRP-1), in the hippocampus were measured via reverse transcription-quantitative PCR and western blotting, respectively. CART improved the memory impairment of APP/PS1 mice by reducing oxidative stress, inhibiting DNA damage and protecting against mitochondrial dysfunction in the cerebral cortex and hippocampus. CART also reduced cell senescence and oxidative stress in Aβ1-42-exposed primary cortical neurons in APP/PS1 mice. Moreover, CART promoted Aβ degradation via modulating Aβ metabolism-associated enzymes, including IDE, NEP, LRP-1 and RAGE. Collectively, the present study indicated that CART improved the learning and memory capacity of APP/PS mice, thus may have potential to serve as a novel therapeutic agent for AD.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Neurology, Affiliated Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Fengnan Niu
- Department of Neurology, Affiliated Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yan Zheng
- Departnment of Neurology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
32
|
Lu K, Nicholas JM, Weston PSJ, Stout JC, O’Regan AM, James SN, Buchanan SM, Lane CA, Parker TD, Keuss SE, Keshavan A, Murray-Smith H, Cash DM, Sudre CH, Malone IB, Coath W, Wong A, Richards M, Henley SMD, Fox NC, Schott JM, Crutch SJ. Visuomotor integration deficits are common to familial and sporadic preclinical Alzheimer's disease. Brain Commun 2021; 3:fcab003. [PMID: 33615219 PMCID: PMC7882207 DOI: 10.1093/braincomms/fcab003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022] Open
Abstract
We investigated whether subtle visuomotor deficits were detectable in familial and sporadic preclinical Alzheimer's disease. A circle-tracing task-with direct and indirect visual feedback, and dual-task subtraction-was completed by 31 individuals at 50% risk of familial Alzheimer's disease (19 presymptomatic mutation carriers; 12 non-carriers) and 390 cognitively normal older adults (members of the British 1946 Birth Cohort, all born during the same week; age range at assessment = 69-71 years), who also underwent β-amyloid-PET/MRI to derive amyloid status (positive/negative), whole-brain volume and white matter hyperintensity volume. We compared preclinical Alzheimer's groups against controls cross-sectionally (mutation carriers versus non-carriers; amyloid-positive versus amyloid-negative) on speed and accuracy of circle-tracing and subtraction. Mutation carriers (mean 7 years before expected onset) and amyloid-positive older adults traced disproportionately less accurately than controls when visual feedback was indirect, and were slower at dual-task subtraction. In the older adults, the same pattern of associations was found when considering amyloid burden as a continuous variable (Standardized Uptake Value Ratio). The effect of amyloid was independent of white matter hyperintensity and brain volumes, which themselves were associated with different aspects of performance: greater white matter hyperintensity volume was also associated with disproportionately poorer tracing accuracy when visual feedback was indirect, whereas larger brain volume was associated with faster tracing and faster subtraction. Mutation carriers also showed evidence of poorer tracing accuracy when visual feedback was direct. This study provides the first evidence of visuomotor integration deficits common to familial and sporadic preclinical Alzheimer's disease, which may precede the onset of clinical symptoms by several years.
Collapse
Affiliation(s)
- Kirsty Lu
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Philip S J Weston
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Julie C Stout
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Alison M O’Regan
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, London, WC1E 7HB, UK
| | - Sarah M Buchanan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Christopher A Lane
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Thomas D Parker
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sarah E Keuss
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Ashvini Keshavan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Heidi Murray-Smith
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London, UK
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing at UCL, London, WC1E 7HB, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EU, UK
- Department of Medical Physics, University College London, London, WC1E 7JE, UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - William Coath
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, WC1E 7HB, UK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, London, WC1E 7HB, UK
| | - Susie M D Henley
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sebastian J Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
33
|
Koriath CAM, Kenny J, Ryan NS, Rohrer JD, Schott JM, Houlden H, Fox NC, Tabrizi SJ, Mead S. Genetic testing in dementia - utility and clinical strategies. Nat Rev Neurol 2021; 17:23-36. [PMID: 33168964 DOI: 10.1038/s41582-020-00416-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
Techniques for clinical genetic testing in dementia disorders have advanced rapidly but remain to be more widely implemented in practice. A positive genetic test offers a precise molecular diagnosis, can help members of an affected family to determine personal risk, provides a basis for reproductive choices and can offer options for clinical trials. The likelihood of identifying a specific genetic cause of dementia depends on the clinical condition, the age at onset and family history. Attempts to match phenotypes to single genes are mostly inadvisable owing to clinical overlap between the dementias, genetic heterogeneity, pleiotropy and concurrent mutations. Currently, the appropriate genetic test in most cases of dementia is a next-generation sequencing gene panel, though some conditions necessitate specific types of test such as repeat expansion testing. Whole-exome and whole-genome sequencing are becoming financially feasible but raise or exacerbate complex issues such as variants of uncertain significance, secondary findings and the potential for re-analysis in light of new information. However, the capacity for data analysis and counselling is already restricting the provision of genetic testing. Patients and their relatives need to be given reliable information to enable them to make informed choices about tests, treatments and data sharing; the ability of patients with dementia to make decisions must be considered when providing this information.
Collapse
Affiliation(s)
| | - Joanna Kenny
- South West Thames Regional Genetics Service, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henry Houlden
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK.
| |
Collapse
|
34
|
Song S, Li B, Jia Z, Guo L. Sirtuin 3 mRNA Expression is Downregulated in the Brain Tissues of Alzheimer's Disease Patients: A Bioinformatic and Data Mining Approach. Med Sci Monit 2020; 26:e923547. [PMID: 32747616 PMCID: PMC7427349 DOI: 10.12659/msm.923547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Emerging experimental evidence has shown that sirtuin 3 (SIRT3), which is a class III histone deacetylase, participates in the pathological process of Alzheimer’s disease (AD). However, data mining of current gene expression databases, such as Gene Expression Omnibus (GEO), has not been previously performed to determine whether SIRT3 expression is upregulated or downregulated in the brain tissues of AD patients. Material/Methods Eight RNA expression chip datasets of AD brains in the GEO database were selected, and GEO2R analysis was conducted to identify the differentially expressed genes (DEGs) between the AD and control groups. Furthermore, the SIRT3 mRNA levels between the AD and control groups and their relationships with the DEGs and diagnosis of AD were evaluated. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of both the AD-related DEGs and the SIRT3-related DEGs were conducted. Results The SIRT3 mRNA levels were downregulated in 7 of 8 databases and were related to the diagnosis of AD in 7 databases, with an area under the curve (AUC) of the receiver operating characteristic curve (ROC curve) greater than 50%. Additionally, GO and KEGG analyses showed that SIRT3 downregulation could affect neuroactive ligand-receptor interactions, the MAPK signaling pathway, long-term potentiation, the calcium signaling pathway and axon guidance in AD patients. Conclusions SIRT3 mRNA is downregulated in the brain tissues of AD patients, promoting the progression of AD.
Collapse
Affiliation(s)
- Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Zhen Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
35
|
Bradykinesia in Alzheimer’s disease and its neurophysiological substrates. Clin Neurophysiol 2020; 131:850-858. [DOI: 10.1016/j.clinph.2019.12.413] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/11/2019] [Accepted: 12/29/2019] [Indexed: 01/15/2023]
|
36
|
Santos-Mandujano RA, Ryan NS, Chávez-Gutiérrez L, Sánchez-Torres C, Meraz-Ríos MA. Clinical Association of White Matter Hyperintensities Localization in a Mexican Family with Spastic Paraparesis Carrying the PSEN1 A431E Mutation. J Alzheimers Dis 2020; 73:1075-1083. [DOI: 10.3233/jad-190978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Natalie S. Ryan
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Carmen Sánchez-Torres
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV), CDMX, México
| | - Marco Antonio Meraz-Ríos
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV), CDMX, México
| |
Collapse
|
37
|
Vöglein J, Willem M, Trambauer J, Schönecker S, Dieterich M, Biskup S, Giudici C, Utz K, Oberstein T, Brendel M, Rominger A, Danek A, Steiner H, Haass C, Levin J. Identification of a rare presenilin 1 single amino acid deletion mutation (F175del) with unusual amyloid-β processing effects. Neurobiol Aging 2019; 84:241.e5-241.e11. [DOI: 10.1016/j.neurobiolaging.2019.08.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|
38
|
Levin J. Parkinsonism in genetic and sporadic Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:237-247. [PMID: 31779814 DOI: 10.1016/bs.irn.2019.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer disease (AD) is a neurodegenerative disease characterized by deposition of pathologically aggregated amyloid-β in the extracellular space and pathologically aggregated tau protein in the intracellular space. Mainly affected brain areas are the temporal and the parietal lobe, which cause the classical AD phenotype consisting of increasing forgetfulness and difficulties to orientate. However, AD pathology is not restricted to these brain areas and spreads through the brain as the disease progresses, which can lead to a number of additional symptoms and to atypical presentations. Motor symptoms in AD are the topic of this chapter. Even though motor symptoms are usually not severe and seldomly treated, motor symptoms are quite frequent and can be observed in the majority of AD cases. Motor symptoms are especially frequent in cases with early onset and long disease duration, for example in Apolipoprotein E e4 carriers and in familial early onset AD. In severe cases treatment with pharmacological approaches might be considered. However, treatment strategies largely rely on expert opinions. Due to potential positive impact on prognosis non-pharmacological treatment and exercise might be considered in less advanced cases.
Collapse
Affiliation(s)
- Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|