1
|
Rodden LN, McIntyre K, Keita M, Wells M, Park C, Profeta V, Waldman A, Rummey C, Balcer LJ, Lynch DR. Retinal hypoplasia and degeneration result in vision loss in Friedreich ataxia. Ann Clin Transl Neurol 2023; 10:1397-1406. [PMID: 37334854 PMCID: PMC10424660 DOI: 10.1002/acn3.51830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE Friedreich ataxia (FRDA) is an inherited condition caused by a GAA triplet repeat (GAA-TR) expansion in the FXN gene. Clinical features of FRDA include ataxia, cardiomyopathy, and in some, vision loss. In this study, we characterize features of vision loss in a large cohort of adults and children with FRDA. METHODS Using optical coherence tomography (OCT), we measured peripapillary retinal nerve fiber layer (RNFL) thickness in 198 people with FRDA, and 77 controls. Sloan letter charts were used to determine visual acuity. RNFL thickness and visual acuity were compared to measures of disease severity obtained from the Friedreich Ataxia Clinical Outcomes Measures Study (FACOMS). RESULTS The majority of patients, including children, had pathologically thin RNFLs (mean = 73 ± 13 μm in FRDA; 98 ± 9 μm in controls) and low-contrast vision deficits early in the disease course. Variability in RNFL thickness in FRDA (range: 36 to 107 μm) was best predicted by disease burden (GAA-TR length X disease duration). Significant deficits in high-contrast visual acuity were apparent in patients with an RNFL thickness of ≤68 μm. RNFL thickness decreased at a rate of -1.2 ± 1.4 μm/year and reached 68 μm at a disease burden of approximately 12,000 GAA years, equivalent to disease duration of 17 years for participants with 700 GAAs. INTERPRETATION These data suggest that both hypoplasia and subsequent degeneration of the RNFL may be responsible for the optic nerve dysfunction in FRDA and support the development of a vision-directed treatment for selected patients early in the disease to prevent RNFL loss from reaching the critical threshold.
Collapse
Affiliation(s)
- Layne N. Rodden
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kellie McIntyre
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Medina Keita
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Mckenzie Wells
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Courtney Park
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Victoria Profeta
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amy Waldman
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Laura J. Balcer
- Departments of Neurology, Population Health and OphthalmologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - David R. Lynch
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Thomas-Black G, Altmann DR, Crook H, Solanky N, Carrasco FP, Battiston M, Grussu F, Yiannakas MC, Kanber B, Jolly JK, Brett J, Downes SM, Moran M, Chan PK, Adewunmi E, Gandini Wheeler-Kingshott CAM, Németh AH, Festenstein R, Bremner F, Giunti P. Multimodal Analysis of the Visual Pathways in Friedreich's Ataxia Reveals Novel Biomarkers. Mov Disord 2023; 38:959-969. [PMID: 36433650 DOI: 10.1002/mds.29277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Optic neuropathy is a near ubiquitous feature of Friedreich's ataxia (FRDA). Previous studies have examined varying aspects of the anterior and posterior visual pathways but none so far have comprehensively evaluated the heterogeneity of degeneration across different areas of the retina, changes to the macula layers and combined these with volumetric MRI studies of the visual cortex and frataxin level. METHODS We investigated 62 genetically confirmed FRDA patients using an integrated approach as part of an observational cohort study. We included measurement of frataxin protein levels, clinical evaluation of visual and neurological function, optical coherence tomography to determine retinal nerve fibre layer thickness and macular layer volume and volumetric brain MRI. RESULTS We demonstrate that frataxin level correlates with peripapillary retinal nerve fibre layer thickness and that retinal sectors differ in their degree of degeneration. We also shown that retinal nerve fibre layer is thinner in FRDA patients than controls and that this thinning is influenced by the AAO and GAA1. Furthermore we show that the ganglion cell and inner plexiform layers are affected in FRDA. Our MRI data indicate that there are borderline correlations between retinal layers and areas of the cortex involved in visual processing. CONCLUSION Our study demonstrates the uneven distribution of the axonopathy in the retinal nerve fibre layer and highlight the relative sparing of the papillomacular bundle and temporal sectors. We show that thinning of the retinal nerve fibre layer is associated with frataxin levels, supporting the use the two biomarkers in future clinical trials design. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gilbert Thomas-Black
- The Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals Foundation NHS Trust, London, UK
| | - Daniel R Altmann
- Medical Statistics Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Harry Crook
- The Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nita Solanky
- The Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ferran Prados Carrasco
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing, UCL, London, UK
- e-Health Centre, Open University of Catalonia, Barcelona, Spain
| | - Marco Battiston
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
| | - Francesco Grussu
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marios C Yiannakas
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
| | - Baris Kanber
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing, UCL, London, UK
| | - Jasleen K Jolly
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| | - Jon Brett
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Marni Moran
- NIHR Clinical Research Network, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ping K Chan
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Emmanuel Adewunmi
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
- Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Andrea H Németh
- NIHR Clinical Research Network, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Richard Festenstein
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Fion Bremner
- National Hospital for Neurology and Neurosurgery, University College London Hospitals Foundation NHS Trust, London, UK
| | - Paola Giunti
- The Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals Foundation NHS Trust, London, UK
| |
Collapse
|
3
|
Mercado-Ayón E, Warren N, Halawani S, Rodden LN, Ngaba L, Dong YN, Chang JC, Fonck C, Mavilio F, Lynch DR, Lin H. Cerebellar Pathology in an Inducible Mouse Model of Friedreich Ataxia. Front Neurosci 2022; 16:819569. [PMID: 35401081 PMCID: PMC8987918 DOI: 10.3389/fnins.2022.819569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by deficiency of the mitochondrial protein frataxin. Lack of frataxin causes neuronal loss in various areas of the CNS and PNS. In particular, cerebellar neuropathology in FRDA patients includes loss of large principal neurons and synaptic terminals in the dentate nucleus (DN), and previous studies have demonstrated early synaptic deficits in the Knockin-Knockout mouse model of FRDA. However, the exact correlation of frataxin deficiency with cerebellar neuropathology remains unclear. Here we report that doxycycline-induced frataxin knockdown in a mouse model of FRDA (FRDAkd) leads to synaptic cerebellar degeneration that can be partially reversed by AAV8-mediated frataxin restoration. Loss of cerebellar Purkinje neurons and large DN principal neurons are observed in the FRDAkd mouse cerebellum. Levels of the climbing fiber-specific glutamatergic synaptic marker VGLUT2 decline starting at 4 weeks after dox induction, whereas levels of the parallel fiber-specific synaptic marker VGLUT1 are reduced by 18-weeks. These findings suggest initial selective degeneration of climbing fiber synapses followed by loss of parallel fiber synapses. The GABAergic synaptic marker GAD65 progressively declined during dox induction in FRDAkd mice, while GAD67 levels remained unaltered, suggesting specific roles for frataxin in maintaining cerebellar synaptic integrity and function during adulthood. Expression of frataxin following AAV8-mediated gene transfer partially restored VGLUT1/2 levels. Taken together, our findings show that frataxin knockdown leads to cerebellar degeneration in the FRDAkd mouse model, suggesting that frataxin helps maintain cerebellar structure and function.
Collapse
Affiliation(s)
- Elizabeth Mercado-Ayón
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan Warren
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sarah Halawani
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Layne N. Rodden
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lucie Ngaba
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yi Na Dong
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Carlos Fonck
- Audentes Therapeutics, San Francisco, CA, United States
| | - Fulvio Mavilio
- Audentes Therapeutics, San Francisco, CA, United States
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - David R. Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hong Lin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Bogdanova-Mihaylova P, Plapp HM, Chen H, Early A, Cassidy L, Walsh RA, Murphy SM. Longitudinal Assessment Using Optical Coherence Tomography in Patients with Friedreich's Ataxia. Tomography 2021; 7:915-931. [PMID: 34941648 PMCID: PMC8706975 DOI: 10.3390/tomography7040076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Ocular abnormalities occur frequently in Friedreich's ataxia (FRDA), although visual symptoms are not always reported. We evaluated a cohort of patients with FRDA to characterise the clinical phenotype and optic nerve findings as detected with optical coherence tomography (OCT). A total of 48 patients from 42 unrelated families were recruited. Mean age at onset was 13.8 years (range 4-40), mean disease duration 19.5 years (range 5-43), mean disease severity as quantified with the Scale for the Assessment and Rating of Ataxia 22/40 (range 4.5-38). All patients displayed variable ataxia and two-thirds had ocular abnormalities. Statistically significant thinning of average retinal nerve fibre layer (RNFL) and thinning in all but the temporal quadrant compared to controls was demonstrated on OCT. Significant RNFL and macular thinning was documented over time in 20 individuals. Disease severity and visual acuity were correlated with RNFL and macular thickness, but no association was found with disease duration. Our results highlight that FDRA is associated with subclinical optic neuropathy. This is the largest longitudinal study of OCT findings in FRDA to date, demonstrating progressive RNFL thickness decline, suggesting that RNFL thickness as measured by OCT has the potential to become a quantifiable biomarker for the evaluation of disease progression in FRDA.
Collapse
Affiliation(s)
- Petya Bogdanova-Mihaylova
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland; (R.A.W.); (S.M.M.)
| | - Helena Maria Plapp
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland; (H.M.P.); (H.C.)
| | - Hongying Chen
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland; (H.M.P.); (H.C.)
| | - Anne Early
- Department of Ophthalmology, Tallaght University Hospital, Dublin 24, Ireland; (A.E.); (L.C.)
| | - Lorraine Cassidy
- Department of Ophthalmology, Tallaght University Hospital, Dublin 24, Ireland; (A.E.); (L.C.)
| | - Richard A. Walsh
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland; (R.A.W.); (S.M.M.)
- Dublin Neurological Institute at the Mater Hospital and University College Dublin, Dublin 7, Ireland
- Academic Unit of Neurology, Trinity College Dublin, Dublin 2, Ireland
| | - Sinéad M. Murphy
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland; (R.A.W.); (S.M.M.)
- Academic Unit of Neurology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
5
|
Neuro-Ophthalmological Findings in Friedreich's Ataxia. J Pers Med 2021; 11:jpm11080708. [PMID: 34442352 PMCID: PMC8398238 DOI: 10.3390/jpm11080708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Friedreich ataxia (FRDA) is a progressive neurodegenerative disease caused by a severe autosomal recessive genetic disorder of the central nervous (CNS) and peripheral nervous system (PNS), affecting children and young adults. Its onset is before 25 years of age, with mean ages of onset and death between 11 and 38 years, respectively. The incidence is 1 in 30,000–50,000 persons. It is caused, in 97% of cases, by a homozygous guanine-adenine-adenine (GAA) trinucleotide mutation in the first intron of the frataxin (FXN) gene on chromosome 9 (9q13–q1.1). The mutation of this gene causes a deficiency of frataxin, which induces an altered inflow of iron into the mitochondria, increasing the nervous system’s vulnerability to oxidative stress. The main clinical signs include spinocerebellar ataxia with sensory loss and disappearance of deep tendon reflexes, cerebellar dysarthria, cardiomyopathy, and scoliosis. Diabetes, hearing loss, and pes cavus may also occur, and although most patients with FRDA do not present with symptomatic visual impairment, 73% present with clinical neuro-ophthalmological alterations such as optic atrophy and altered eye movement, among others. This review provides a brief overview of the main aspects of FRDA and then focuses on the ocular involvement of this pathology and the possible use of retinal biomarkers.
Collapse
|
6
|
Bogdanova-Mihaylova P, Chen H, Plapp HM, Gorman C, Alexander MD, McHugh JC, Moran S, Early A, Cassidy L, Lynch T, Murphy SM, Walsh RA. Neurophysiological and ophthalmological findings of SPG7-related spastic ataxia: a phenotype study in an Irish cohort. J Neurol 2021; 268:3897-3907. [PMID: 33774748 DOI: 10.1007/s00415-021-10507-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mutations in SPG7 are increasingly identified as a common cause of spastic ataxia. We describe a cohort of Irish patients with recessive SPG7-associated phenotype. METHODS Comprehensive phenotyping was performed with documentation of clinical, neurophysiological, optical coherence tomography (OCT) and genetic data from individuals with SPG7 attending two academic neurology units in Dublin, including the National Ataxia Clinic. RESULTS Thirty-two symptomatic individuals from 25 families were identified. Mean age at onset was 39.1 years (range 12-61), mean disease duration 17.8 years (range 5-45), mean disease severity as quantified with the scale for the assessment and rating of ataxia 9/40 (range 3-29). All individuals displayed variable ataxia and spasticity within a spastic-ataxic phenotype, and additional ocular abnormalities. Two had spasmodic dysphonia and three had colour vision deficiency. Brain imaging consistently revealed cerebellar atrophy (n = 29); neurophysiology demonstrated a length-dependent large-fibre axonal neuropathy in 2/27 studied. The commonest variant was c.1529C > T (p.Ala510Val), present in 21 families. Five novel variants were identified. No significant thinning of average retinal nerve fibre layer (RNFL) was demonstrated on OCT (p = 0.61), but temporal quadrant reduction was evident compared to controls (p < 0.05), with significant average and temporal RNFL decline over time. Disease duration, severity and visual acuity were not correlated with RNFL thickness. CONCLUSIONS Our results highlight that recessive SPG7 mutations may account for spastic ataxia with peripheral neuropathy in only a small proportion of patients. RNFL abnormalities with predominant temporal RNFL reduction are common and OCT should be considered part of the routine assessment in spastic ataxia.
Collapse
Affiliation(s)
- Petya Bogdanova-Mihaylova
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland.
| | - Hongying Chen
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Ciara Gorman
- Department of Clinical Neurophysiology, Tallaght University Hospital, Dublin 24, Ireland
| | - Michael D Alexander
- Department of Clinical Neurophysiology, Tallaght University Hospital, Dublin 24, Ireland.,Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - John C McHugh
- Department of Clinical Neurophysiology, Tallaght University Hospital, Dublin 24, Ireland
| | - Sharon Moran
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Anne Early
- Department of Ophthalmology, Tallaght University Hospital, Dublin 24, Ireland
| | - Lorraine Cassidy
- Department of Ophthalmology, Tallaght University Hospital, Dublin 24, Ireland
| | - Timothy Lynch
- Dublin Neurological Institute at the Mater Hospital, University College Dublin, Dublin, Ireland.,Health Affairs, University College Dublin, Dublin, Ireland
| | - Sinéad M Murphy
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland.,Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - Richard A Walsh
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland.,Dublin Neurological Institute at the Mater Hospital, University College Dublin, Dublin, Ireland.,Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Vavla M, Arrigoni F, Toschi N, Peruzzo D, D'Angelo MG, Gandossini S, Russo A, Diella E, Tirelli S, Salati R, Rufini A, Condo I, Testi R, Martinuzzi A. Sensitivity of Neuroimaging Indicators in Monitoring the Effects of Interferon Gamma Treatment in Friedreich's Ataxia. Front Neurosci 2020; 14:872. [PMID: 33162876 PMCID: PMC7583645 DOI: 10.3389/fnins.2020.00872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
The identification of efficient markers of disease progression and response to possibly effective treatments is a key priority for slowly progressive, rare and neurodegenerative diseases, such as Friedreich’s ataxia. Various imaging modalities have documented specific abnormalities in Friedreich’s ataxia that could be tracked to provide useful indicators of efficacy in clinical trials. Advanced MRI imaging (diffusion tensor imaging, DTI; functional MRI, fMRI; and resting-state fMRI, rs-fMRI) and retinal imaging (optical coherence tomography, OCT) were tested longitudinally in a small group of Friedreich’s ataxia patients participating in an open-label clinical trial testing the safety and the efficacy of 6-month treatment with interferon gamma. While the DTI indices documented the slow progression of fractional anisotropy loss, fMRI and rs-fMRI were significantly modified during and after treatment. The fMRI changes significantly correlated with the Scale for the Assessment and Rating of Ataxia, which is used to monitor clinical response. OCT documented the known thickness reduction of the retinal nerve fiber layer thickness, but there was no change over time. This pilot study provides indications for the potential utility of fMRI and rs-fMRI as ancillary measures in clinical trials for Friedreich’s ataxia.
Collapse
Affiliation(s)
- Marinela Vavla
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea Scientific Institute, Bosisio Parini, Italy.,Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Filippo Arrigoni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea Scientific Institute, Bosisio Parini, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata, " Rome, Italy.,Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States
| | - Denis Peruzzo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea Scientific Institute, Bosisio Parini, Italy
| | - Maria Grazia D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea Scientific Institute, Bosisio Parini, Italy
| | - Sandra Gandossini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea Scientific Institute, Bosisio Parini, Italy
| | - Annamaria Russo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea Scientific Institute, Bosisio Parini, Italy
| | - Eleonora Diella
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea Scientific Institute, Bosisio Parini, Italy
| | - Stefania Tirelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea Scientific Institute, Bosisio Parini, Italy
| | - Roberto Salati
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea Scientific Institute, Bosisio Parini, Italy
| | - Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata, " Rome, Italy.,Fratagene Therapeutics, Rome, Italy
| | - Ivano Condo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata, " Rome, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata, " Rome, Italy.,Fratagene Therapeutics, Rome, Italy
| | - Andrea Martinuzzi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea Scientific Institute, Bosisio Parini, Italy
| |
Collapse
|
8
|
Vavla M, Paparella G, Papayannis A, Pascuzzo R, Girardi G, Pellegrini F, Capello G, Prosdocimo G, Martinuzzi A. Optical Coherence Tomography in a Cohort of Genetically Defined Hereditary Spastic Paraplegia: A Brief Research Report. Front Neurol 2019; 10:1193. [PMID: 31824395 PMCID: PMC6884025 DOI: 10.3389/fneur.2019.01193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/28/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction: In-vivo objective documentation of pathological changes in neurodegenerative disease is a major aim to possibly improve our ability to monitor disease progression and response to treatment. Temporal thinning of the retinal nerve fiber layer (RNFL) thickness shown by spectral domain optical coherence tomography (SD-OCT) has been reported in association with the complex forms in hereditary spastic paraplegia (HSP). We performed an assessment of the RNFL thickness in a group of HSP patients, including a longitudinal follow-up in a subgroup. Our aim was to measure and compare the changes and correlate them to clinical progression. Materials and Methods: Twenty-three HSP patients were recruited and studied with the SD-OCT including papillary and macular scan by Spectralis. The clinical severity was assessed using the Spastic Paraplegia Rating Scale. Results: Thinning of the superior, nasal and inferior quadrants bilaterally were observed compared to the normative data in both pure and complicated forms, that were clearly pathological only in a proportion of cases. Thinning correlated with age and disease duration, but not with clinical severity. The longitudinal study (n = 9) showed no significant change compared to the baseline data for the period of observation (mean 10.7 months). Conclusions: RFNL is frequently thinned in HSP with no specific recognizable pattern of quadrants involved and SPG types. The small sample size and the short follow-up time showed no clear progression. Although SD-OCT appraisal of RFNL deserves to be explored in neurodegenerative conditions, it might not be suitable for use as a biomarker in HSP as it appears not to be specific to this condition and can be a feature of aging.
Collapse
Affiliation(s)
- Marinela Vavla
- SOS Neuromotor Unit, Scientific Institute, IRCCS E. Medea, Conegliano, Italy
| | - Gabriella Paparella
- SOS Neuromotor Unit, Scientific Institute, IRCCS E. Medea, Conegliano, Italy
| | | | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giulia Girardi
- SOS Neuromotor Unit, Scientific Institute, IRCCS E. Medea, Conegliano, Italy
| | | | - Gianluca Capello
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gianni Prosdocimo
- Department of Ophthalmology, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Andrea Martinuzzi
- SOS Neuromotor Unit, Scientific Institute, IRCCS E. Medea, Conegliano, Italy
| |
Collapse
|