1
|
Suker S, Mihov Y, Wolf A, Mueller SV, Hasler G. Behavioral Response to Catecholamine Depletion in Individuals With Schizophrenia and Healthy Volunteers. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad023. [PMID: 39145346 PMCID: PMC11207692 DOI: 10.1093/schizbullopen/sgad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Dysfunction of the dopamine system is the leading neurobiological hypothesis of schizophrenia. In this study, we tested this hypothesis in the context of aberrance salience theory of delusions using catecholamine depletion. We hypothesized that acute dopamine depletion improves both positive symptoms and salience attribution in individuals with schizophrenia. Study Design Catecholamine depletion was achieved by oral administration of alpha-methyl-para-tyrosine (AMPT) in 15 individuals with schizophrenia and 15 healthy volunteers. The study design consisted of a randomized, double-blind, placebo-controlled crossover, single-site experimental trial. The main outcome measures were the Scale for the Assessment of Positive Symptoms and the Salience Attribution Test. Study Results Catecholamine depletion transiently reduced specific psychotic symptoms in symptomatic individuals with schizophrenia, namely delusions and positive formal thought disorder (interaction treatment-by-timepoint, P = .013 and P = .010, respectively). We also found trends for catecholamine depletion to increase relevant bias and adaptive salience in participants with schizophrenia while decreasing them in healthy controls (interaction group-by-treatment, P = .060 and P = .089, respectively). Exploratory analyses revealed that in participants with schizophrenia, higher relevant bias at 3 hours after the end of AMPT treatment corresponded to lower delusional symptoms (Spearman's rho = -0.761, P = .001). Conclusions This study suggests that the relationship between dopamine hyperactivity and delusional symptoms in schizophrenia is mediated by impaired attribution of salience to reward-predicting stimuli.
Collapse
Affiliation(s)
- Samir Suker
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
| | - Yoan Mihov
- Unit of Psychiatry Research, University of Fribourg, Fribourg, Switzerland
| | - Andreas Wolf
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
| | | | - Gregor Hasler
- Unit of Psychiatry Research, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Avram M, Brandl F, Knolle F, Cabello J, Leucht C, Scherr M, Mustafa M, Koutsouleris N, Leucht S, Ziegler S, Sorg C. Aberrant striatal dopamine links topographically with cortico-thalamic dysconnectivity in schizophrenia. Brain 2020; 143:3495-3505. [PMID: 33155047 DOI: 10.1093/brain/awaa296] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Aberrant dopamine function in the dorsal striatum and aberrant intrinsic functional connectivity (iFC) between distinct cortical networks and thalamic nuclei are among the most consistent large-scale brain imaging findings in schizophrenia. A pathophysiological link between these two alterations is suggested by theoretical models based on striatal dopamine's topographic modulation of cortico-thalamic connectivity within cortico-basal-ganglia-thalamic circuits. We hypothesized that aberrant striatal dopamine links topographically with aberrant cortico-thalamic iFC, i.e. aberrant associative striatum dopamine is associated with aberrant iFC between the salience network and thalamus, and aberrant sensorimotor striatum dopamine with aberrant iFC between the auditory-sensorimotor network and thalamus. Nineteen patients with schizophrenia during remission of psychotic symptoms and 19 age- and sex-comparable control subjects underwent simultaneous fluorodihydroxyphenyl-l-alanine PET (18F-DOPA-PET) and resting state functional MRI (rs-fMRI). The influx constant kicer based on 18F-DOPA-PET was used to measure striatal dopamine synthesis capacity; correlation coefficients between rs-fMRI time series of cortical networks and thalamic regions of interest were used to measure iFC. In the salience network-centred system, patients had reduced associative striatum dopamine synthesis capacity, which correlated positively with decreased salience network-mediodorsal-thalamus iFC. This correlation was present in both patients and healthy controls. In the auditory-sensorimotor network-centred system, patients had reduced sensorimotor striatum dopamine synthesis capacity, which correlated positively with increased auditory-sensorimotor network-ventrolateral-thalamus iFC. This correlation was present in patients only. Results demonstrate that reduced striatal dopamine synthesis capacity links topographically with cortico-thalamic intrinsic dysconnectivity in schizophrenia. Data suggest that aberrant striatal dopamine and cortico-thalamic dysconnectivity are pathophysiologically related within dopamine-modulated cortico-basal ganglia-thalamic circuits in schizophrenia.
Collapse
Affiliation(s)
- Mihai Avram
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Felix Brandl
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Franziska Knolle
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jorge Cabello
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Claudia Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Martin Scherr
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Mona Mustafa
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry, University Hospital, LMU Munich, Munich, 81377, Germany.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AB, UK
| | - Stefan Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Psychosis studies, King's College London, UK
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| |
Collapse
|
3
|
Cumming P, Abi-Dargham A, Gründer G. Molecular imaging of schizophrenia: Neurochemical findings in a heterogeneous and evolving disorder. Behav Brain Res 2020; 398:113004. [PMID: 33197459 DOI: 10.1016/j.bbr.2020.113004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
The past four decades have seen enormous efforts placed on a search for molecular markers of schizophrenia using positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this narrative review, we cast a broad net to define and summarize what researchers have learned about schizophrenia from molecular imaging studies. Some PET studies of brain energy metabolism with the glucose analogue FDGhave have shown a hypofrontality defect in patients with schizophrenia, but more generally indicate a loss of metabolic coherence between different brain regions. An early finding of significantly increased striatal trapping of the dopamine synthesis tracer FDOPA has survived a meta-analysis of many replications, but the increase is not pathognomonic of the disorder, since one half of patients have entirely normal dopamine synthesis capacity. Similarly, competition SPECT studies show greater basal and amphetamine-evoked dopamine occupancy at post-synaptic dopamine D2/3 receptors in patients with schizophrenia, but the difference is likewise not pathognomonic. We thus propose that molecular imaging studies of brain dopamine indicate neurochemical heterogeneity within the diagnostic entity of schizophrenia. Occupancy studies have established the relevant target engagement by antipsychotic medications at dopamine D2/3 receptors in living brain. There is evidence for elevated frontal cortical dopamine D1 receptors, especially in relation to cognitive deficits in schizophrenia. There is a general lack of consistent findings of abnormalities in serotonin markers, but some evidence for decreased levels of nicotinic receptors in patients. There are sparse and somewhat inconsistent findings of reduced binding of muscarinic, glutamate, and opioid receptors ligands, inconsistent findings of microglial activation, and very recently, evidence of globally reduced levels of synaptic proteins in brain of patients. One study reports a decline in histone acetylase binding that is confined to the dorsolateral prefrontal cortex. In most contexts, the phase of the disease and effects of past or present medication can obscure or confound PET and SPECT findings in schizophrenia.
Collapse
Affiliation(s)
- Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia.
| | - Anissa Abi-Dargham
- Stony Brook University, Renaissance School of Medicine, Stony Brook, New York, USA
| | - Gerhard Gründer
- Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|