1
|
Yang Y, Chang W, Ding J, Xu H, Wu X, Ma L, Xu Y. Effects of different modalities of transcranial magnetic stimulation on post-stroke cognitive impairment: a network meta-analysis. Neurol Sci 2024; 45:4399-4416. [PMID: 38600332 DOI: 10.1007/s10072-024-07504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE The study aimed to evaluate, using a network meta-analysis, the effects of different transcranial magnetic stimulation (TMS) modalities on improving cognitive function after stroke. METHODS Computer searches of the Cochrane Library, PubMed, Web of Science, Embass, Google Scholar, CNKI, and Wanfang databases were conducted to collect randomized controlled clinical studies on the use of TMS to improve cognitive function in stroke patients, published from the time of database construction to November 2023. RESULTS A total of 29 studies and 2123 patients were included, comprising five interventions: high-frequency rTMS (HF-rTMS), low-frequency rTMS (LF-rTMS), intermittent theta rhythm stimulation (iTBS), sham stimulation (SS), and conventional rehabilitation therapy (CRT). A reticulated meta-analysis showed that the rankings of different TMS intervention modalities in terms of the Montreal Cognitive Assessment (MoCA) scores, Mini-Mental State Examination scores (MMSE), and Modified Barthel Index (MBI) scores were: HF-rTMS > LF-rTMS > iTBS > SS > CRT; the rankings of different TMS intervention modalities in terms of the event-related potential P300. amplitude scores were HF-rTMS > LF-rTMS > iTBS > CRT > SS; the rankings of different TMS intervention modalities in terms of the P300 latency scores were: iTBS > HF-rTMS > LF-rTMS > SS > CRT. Subgroup analyses of secondary outcome indicators showed that HF-rTMS significantly improved Rivermead Behavior Memory Test scores and Functional Independence Measurement-Cognitive scores. CONCLUSIONS High-frequency TMS stimulation has a better overall effect on improving cognitive functions and activities of daily living, such as attention and memory in stroke patients.
Collapse
Affiliation(s)
- Yulin Yang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wanpeng Chang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiangtao Ding
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hongli Xu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Wu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lihong Ma
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yanwen Xu
- Ergonomics and Vocational Rehabilitation Lab, College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Rehabilitation Medicine, Wuxi , 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
2
|
Abdullah NAH, Sainik NQAV, Esa E, Muhamad Hendri NA, Ahmad Rusmili MR, Hodgson WC, Shaikh MF, Othman I. Neuroprotective effect of phospholipase A 2 from Malaysian Naja sumatrana venom against H 2O 2-induced cell damage and apoptosis. Front Pharmacol 2022; 13:935418. [PMID: 36313292 PMCID: PMC9614335 DOI: 10.3389/fphar.2022.935418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/22/2022] [Indexed: 10/23/2023] Open
Abstract
Oxidative stress is one of the factors involved in the pathogenesis of several neurodegenerative diseases. It has been reported that a secretory phospholipase A2 known as A2-EPTX-NSm1a has lower cytotoxicity in neuronal cells compared to its crude Naja sumatrana venom. In this study, A2-EPTX-NSm1a was tested for its neuroprotective activity on human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons against oxidative stress induced by hydrogen peroxide (H2O2). H2O2 treatment alone increased the caspase-3 and caspase-8 activities, whereas pre-treatment with A2-EPTX-NSm1a reduced the activity of these apoptosis-associated proteins. Moreover, A2-EPTX-NSm1a protects the morphology and ultrastructure of differentiated SH-SY5Y cells in the presence of H2O2. Oxidative stress increased the number of small mitochondria. Further evaluation showed the size of mitochondria with a length below 0.25 µm in oxidative stress conditions is higher than the control group, suggesting mitochondria fragmentation. Pre-treatment with A2-EPTX-NSm1a attenuated the number of mitochondria in cells with H2O2 Furthermore, A2-EPTX-NSm1a altered the expression of several neuroprotein biomarkers of GDNF, IL-8, MCP-1, TIMP-1, and TNF-R1 in cells under oxidative stress induced by H2O2. These findings indicate that anti-apoptosis with mitochondria-related protection, anti-inflammatory effect, and promote expression of important markers for cell survival may underlie the neuroprotective effect of A2-EPTX-NSm1a in cholinergic rich human cells under oxidative stress, a vital role in the neuronal disorder.
Collapse
Affiliation(s)
- Nur Atiqah Haizum Abdullah
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Faculty of Medicine, Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Qisya Afifah Veronica Sainik
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health Malaysia, Shah Alam, Malaysia
| | - Ezalia Esa
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health Malaysia, Shah Alam, Malaysia
| | - Nur Afrina Muhamad Hendri
- Department of Electron Microscopy, Institute for Medical Research, National Institutes of Health Malaysia, Shah Alam, Malaysia
| | | | - Wayne C. Hodgson
- Department of Pharmacology, Monash Venom Group, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
3
|
Kristinsson S, Busby N, Rorden C, Newman-Norlund R, den Ouden DB, Magnusdottir S, Hjaltason H, Thors H, Hillis AE, Kjartansson O, Bonilha L, Fridriksson J. Brain age predicts long-term recovery in post-stroke aphasia. Brain Commun 2022; 4:fcac252. [PMID: 36267328 PMCID: PMC9576153 DOI: 10.1093/braincomms/fcac252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The association between age and language recovery in stroke remains unclear. Here, we used neuroimaging data to estimate brain age, a measure of structural integrity, and examined the extent to which brain age at stroke onset is associated with (i) cross-sectional language performance, and (ii) longitudinal recovery of language function, beyond chronological age alone. A total of 49 participants (age: 65.2 ± 12.2 years, 25 female) underwent routine clinical neuroimaging (T1) and a bedside evaluation of language performance (Bedside Evaluation Screening Test-2) at onset of left hemisphere stroke. Brain age was estimated from enantiomorphically reconstructed brain scans using a machine learning algorithm trained on a large sample of healthy adults. A subsample of 30 participants returned for follow-up language assessments at least 2 years after stroke onset. To account for variability in age at stroke, we calculated proportional brain age difference, i.e. the proportional difference between brain age and chronological age. Multiple regression models were constructed to test the effects of proportional brain age difference on language outcomes. Lesion volume and chronological age were included as covariates in all models. Accelerated brain age compared with age was associated with worse overall aphasia severity (F(1, 48) = 5.65, P = 0.022), naming (F(1, 48) = 5.13, P = 0.028), and speech repetition (F(1, 48) = 8.49, P = 0.006) at stroke onset. Follow-up assessments were carried out ≥2 years after onset; decelerated brain age relative to age was significantly associated with reduced overall aphasia severity (F(1, 26) = 5.45, P = 0.028) and marginally failed to reach statistical significance for auditory comprehension (F(1, 26) = 2.87, P = 0.103). Proportional brain age difference was not found to be associated with changes in naming (F(1, 26) = 0.23, P = 0.880) and speech repetition (F(1, 26) = 0.00, P = 0.978). Chronological age was only associated with naming performance at stroke onset (F(1, 48) = 4.18, P = 0.047). These results indicate that brain age as estimated based on routine clinical brain scans may be a strong biomarker for language function and recovery after stroke.
Collapse
Affiliation(s)
- Sigfus Kristinsson
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
| | - Natalie Busby
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Rorden
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Roger Newman-Norlund
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk B den Ouden
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Communication Sciences and Disorders, Columbia, SC 29208, USA
| | | | - Haukur Hjaltason
- Department of Medicine, University of Iceland, Reykjavik 00107, Iceland
- Department of Neurology, Landspitali University Hospital, Reykjavik 00101, Iceland
| | - Helga Thors
- Department of Medicine, University of Iceland, Reykjavik 00107, Iceland
| | - Argye E Hillis
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MA 21218, USA
| | - Olafur Kjartansson
- Department of Neurology, Landspitali University Hospital, Reykjavik 00101, Iceland
| | - Leonardo Bonilha
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Julius Fridriksson
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Communication Sciences and Disorders, Columbia, SC 29208, USA
| |
Collapse
|
4
|
Ng KP, Qian X, Ng KK, Ji F, Rosa-Neto P, Gauthier S, Kandiah N, Zhou JH. Stage-dependent differential influence of metabolic and structural networks on memory across Alzheimer's disease continuum. eLife 2022; 11:e77745. [PMID: 36053063 PMCID: PMC9477498 DOI: 10.7554/elife.77745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Large-scale neuronal network breakdown underlies memory impairment in Alzheimer's disease (AD). However, the differential trajectories of the relationships between network organisation and memory across pathology and cognitive stages in AD remain elusive. We determined whether and how the influences of individual-level structural and metabolic covariance network integrity on memory varied with amyloid pathology across clinical stages without assuming a constant relationship. Methods Seven hundred and eight participants from the Alzheimer's Disease Neuroimaging Initiative were studied. Individual-level structural and metabolic covariance scores in higher-level cognitive and hippocampal networks were derived from magnetic resonance imaging and [18F] fluorodeoxyglucose positron emission tomography using seed-based partial least square analyses. The non-linear associations between network scores and memory across cognitive stages in each pathology group were examined using sparse varying coefficient modelling. Results We showed that the associations of memory with structural and metabolic networks in the hippocampal and default mode regions exhibited pathology-dependent differential trajectories across cognitive stages using sparse varying coefficient modelling. In amyloid pathology group, there was an early influence of hippocampal structural network deterioration on memory impairment in the preclinical stage, and a biphasic influence of the angular gyrus-seeded default mode metabolic network on memory in both preclinical and dementia stages. In non-amyloid pathology groups, in contrast, the trajectory of the hippocampus-memory association was opposite and weaker overall, while no metabolism covariance networks were related to memory. Key findings were replicated in a larger cohort of 1280 participants. Conclusions Our findings highlight potential windows of early intervention targeting network breakdown at the preclinical AD stage. Funding Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). We also acknowledge the funding support from the Duke NUS/Khoo Bridge Funding Award (KBrFA/2019-0020) and NMRC Open Fund Large Collaborative Grant (OFLCG09May0035).
Collapse
Affiliation(s)
- Kok Pin Ng
- Department of Neurology, National Neuroscience InstituteSingaporeSingapore
- Duke-NUS Medical SchoolSingaporeSingapore
- Lee Kong Chian School of Medicine, Nanyang Technological University SingaporeSingaporeSingapore
| | - Xing Qian
- Centre for Sleep and Cognition and Centre for Translational MR Research,Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition and Centre for Translational MR Research,Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Fang Ji
- Centre for Sleep and Cognition and Centre for Translational MR Research,Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, and Departments of Neurology, Neurosurgery, Psychiatry, Pharmacology and Therapeutics, McGill UniversityMontrealCanada
- Montreal Neurological Institute, McGill UniversityMontrealCanada
| | - Serge Gauthier
- Department of Neurology & Neurosurgery, McGill UniversityMontrealCanada
| | - Nagaendran Kandiah
- Lee Kong Chian School of Medicine, Nanyang Technological University SingaporeSingaporeSingapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition and Centre for Translational MR Research,Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of Electrical and Computer Engineering, National University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering Programme (ISEP), National University of SingaporeSingaporeSingapore
| | | |
Collapse
|
5
|
Syeda W, Ermine CM, Khilf MS, Wright D, Brait VH, Nithianantharajah J, Kolbe S, Johnston LA, Thompson LH, Brodtmann A. Long-term structural brain changes in adult rats after mild ischaemic stroke. Brain Commun 2022; 4:fcac185. [PMID: 35898722 PMCID: PMC9309495 DOI: 10.1093/braincomms/fcac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/09/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Preclinical studies of remote degeneration have largely focused on brain changes over the first few days or weeks after stroke. Accumulating evidence suggests that neurodegeneration occurs in other brain regions remote to the site of infarction for months and even years following ischaemic stroke. Brain atrophy appears to be driven by both axonal degeneration and widespread brain inflammation. The evolution and duration of these changes are increasingly being described in human studies, using advanced brain imaging techniques. Here, we sought to investigate long-term structural brain changes in a model of mild focal ischaemic stroke following injection of endothlin-1 in adult Long–Evans rats (n = 14) compared with sham animals (n = 10), over a clinically relevant time-frame of 48 weeks. Serial structural and diffusion-weighted MRI data were used to assess dynamic volume and white matter trajectories. We observed dynamic regional brain volume changes over the 48 weeks, reflecting both normal changes with age in sham animals and neurodegeneration in regions connected to the infarct following ischaemia. Ipsilesional cortical volume loss peaked at 24 weeks but was less prominent at 36 and 48 weeks. We found significantly reduced fractional anisotropy in both ipsi- and contralesional motor cortex and cingulum bundle regions of infarcted rats (P < 0.05) from 4 to 36 weeks, suggesting ongoing white matter degeneration in tracts connected to but distant from the stroke. We conclude that there is evidence of significant cortical atrophy and white matter degeneration up to 48 weeks following infarct, consistent with enduring, pervasive stroke-related degeneration.
Collapse
Affiliation(s)
- Warda Syeda
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne , Parkville, Victoria , Australia
| | - Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Mohamed Salah Khilf
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - David Wright
- Department of Neuroscience, Monash University , Clayton , Australia
| | - Vanessa H Brait
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Scott Kolbe
- Department of Neuroscience, Monash University , Clayton , Australia
| | - Leigh A Johnston
- The Melbourne Brain Centre Imaging Unit, The University of Melbourne , Parkville, Victoria , Australia
- Department of Biomedical Engineering, The University of Melbourne , Parkville, Victoria , Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| |
Collapse
|
6
|
Brodtmann A, Werden E, Khlif MS, Bird LJ, Egorova N, Veldsman M, Pardoe H, Jackson G, Bradshaw J, Darby D, Cumming T, Churilov L, Donnan G. Neurodegeneration Over 3 Years Following Ischaemic Stroke: Findings From the Cognition and Neocortical Volume After Stroke Study. Front Neurol 2021; 12:754204. [PMID: 34744989 PMCID: PMC8570373 DOI: 10.3389/fneur.2021.754204] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Stroke survivors are at high risk of dementia, associated with increasing age and vascular burden and with pre-existing cognitive impairment, older age. Brain atrophy patterns are recognised as signatures of neurodegenerative conditions, but the natural history of brain atrophy after stroke remains poorly described. We sought to determine whether stroke survivors who were cognitively normal at time of stroke had greater total brain (TBV) and hippocampal volume (HV) loss over 3 years than controls. We examined whether stroke survivors who were cognitively impaired (CI) at 3 months following their stroke had greater brain volume loss than cognitively normal (CN) stroke participants over the next 3 years. Methods: Cognition And Neocortical Volume After Stroke (CANVAS) study is a multi-centre cohort study of first-ever or recurrent adult ischaemic stroke participants compared to age- and sex-matched community controls. Participants were followed with MRI and cognitive assessments over 3 years and were free of a history of cognitive impairment or decline at inclusion. Our primary outcome measure was TBV change between 3 months and 3 years; secondary outcomes were TBV and HV change comparing CI and CN participants. We investigated associations between group status and brain volume change using a baseline-volume adjusted linear regression model with robust standard error. Results: Ninety-three stroke (26 women, 66.7 ± 12 years) and 39 control participants (15 women, 68.7 ± 7 years) were available at 3 years. TBV loss in stroke patients was greater than controls: stroke mean (M) = 20.3 cm3 ± SD 14.8 cm3; controls M = 14.2 cm3 ± SD 13.2 cm3; [adjusted mean difference 7.88 95%CI (2.84, 12.91) p-value = 0.002]. TBV decline was greater in those stroke participants who were cognitively impaired (M = 30.7 cm3; SD = 14.2 cm3) at 3 months (M = 19.6 cm3; SD = 13.8 cm3); [adjusted mean difference 10.42; 95%CI (3.04, 17.80), p-value = 0.006]. No statistically significant differences in HV change were observed. Conclusions: Ischaemic stroke survivors exhibit greater neurodegeneration compared to stroke-free controls. Brain atrophy is greater in stroke participants who were cognitively impaired early after their stroke. Early cognitive impairment was associated greater subsequent atrophy, reflecting the combined impacts of stroke and vascular brain burden. Atrophy rates could serve as a useful biomarker for trials testing interventions to reduce post-stroke secondary neurodegeneration. Clinical Trail Registration:http://www.clinicaltrials.gov, identifier: NCT02205424.
Collapse
Affiliation(s)
- Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, Florey Institute and University of Melbourne, Parkville, VIC, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Mohamed Salah Khlif
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Laura J Bird
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Natalia Egorova
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, Florey Institute and University of Melbourne, Parkville, VIC, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Michele Veldsman
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Heath Pardoe
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Graeme Jackson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer Bradshaw
- Department of Clinical Neuropsychology, Austin Health, Heidelberg, VIC, Australia
| | - David Darby
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, Florey Institute and University of Melbourne, Parkville, VIC, Australia
| | - Toby Cumming
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Leonid Churilov
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Geoffrey Donnan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Brodtmann A, Hillis A. Functional Connectivity to Predict Poststroke Cognition: Networking Not Working? Neurology 2021; 96:355-356. [PMID: 33408152 DOI: 10.1212/wnl.0000000000011501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 11/15/2022] Open
Affiliation(s)
- Amy Brodtmann
- From The Florey Institute of Neuroscience and Mental Health (A.B.), University of Melbourne, Australia; and Center of Excellence in Stroke Detection and Diagnosis (A.H.), Johns Hopkins University, Baltimore, MD.
| | - Argye Hillis
- From The Florey Institute of Neuroscience and Mental Health (A.B.), University of Melbourne, Australia; and Center of Excellence in Stroke Detection and Diagnosis (A.H.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
8
|
Brodtmann A, Khlif MS, Bird LJ, Cumming T, Werden E. Hippocampal Volume and Amyloid PET Status Three Years After Ischemic Stroke: A Pilot Study. J Alzheimers Dis 2021; 80:527-532. [PMID: 33554919 DOI: 10.3233/jad-201525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hippocampal atrophy is seen in many neurodegenerative disorders and may be a cardinal feature of vascular neurodegeneration. We examined hippocampal volume (HV) in a group of ischemic stroke survivors with amyloid 18F-NAV4694 PET imaging three years after stroke. We compared HV between the amyloid-positive (n = 4) and amyloid-negative (n = 29) groups, and associations with co-morbidities using Charlson Comorbidity Indices and multi-way ANOVA. Amyloid status was not associated with verbal or visual delayed free recall memory indices or cognitive impairment. We found no association between amyloid status and HV in this group of ischemic stroke survivors.
Collapse
Affiliation(s)
- Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, Austin Health, Heidelberg, VIC, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia.,Eastern Cognitive Disorders Clinic, Box Hill Hospital, Monash University, Box Hill, VIC, Australia
| | - Mohamed Salah Khlif
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Laura J Bird
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Toby Cumming
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|