1
|
Morkovina O, Manukyan P, Sharapkova A. Picture naming test through the prism of cognitive neuroscience and linguistics: adapting the test for cerebellar tumor survivors-or pouring new wine in old sacks? Front Psychol 2024; 15:1332391. [PMID: 38566942 PMCID: PMC10985186 DOI: 10.3389/fpsyg.2024.1332391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
A picture naming test (PNT) has long been regarded as an integral part of neuropsychological assessment. In current research and clinical practice, it serves a variety of purposes. PNTs are used to assess the severity of speech impairment in aphasia, monitor possible cognitive decline in aging patients with or without age-related neurodegenerative disorders, track language development in children and map eloquent brain areas to be spared during surgery. In research settings, picture naming tests provide an insight into the process of lexical retrieval in monolingual and bilingual speakers. However, while numerous advances have occurred in linguistics and neuroscience since the classic, most widespread PNTs were developed, few of them have found their way into test design. Consequently, despite the popularity of PNTs in clinical and research practice, their relevance and objectivity remain questionable. The present study provides an overview of literature where relevant criticisms and concerns have been expressed over the recent decades. It aims to determine whether there is a significant gap between conventional test design and the current understanding of the mechanisms underlying lexical retrieval by focusing on the parameters that have been experimentally proven to influence picture naming. We discuss here the implications of these findings for improving and facilitating test design within the picture naming paradigm. Subsequently, we highlight the importance of designing specialized tests with a particular target group in mind, so that test variables could be selected for cerebellar tumor survivors.
Collapse
Affiliation(s)
- Olga Morkovina
- Laboratory of Diagnostics and Advancing Cognitive Functions, Research Institute for Brain Development and Peak Performance, RUDN University, Moscow, Russia
- Department of English, Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia
| | - Piruza Manukyan
- Laboratory of Diagnostics and Advancing Cognitive Functions, Research Institute for Brain Development and Peak Performance, RUDN University, Moscow, Russia
| | - Anastasia Sharapkova
- Laboratory of Diagnostics and Advancing Cognitive Functions, Research Institute for Brain Development and Peak Performance, RUDN University, Moscow, Russia
- Department of English Linguistics, Faculty of Philology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Kram L, Ohlerth AK, Ille S, Meyer B, Krieg SM. CompreTAP: Feasibility and reliability of a new language comprehension mapping task via preoperative navigated transcranial magnetic stimulation. Cortex 2024; 171:347-369. [PMID: 38086145 DOI: 10.1016/j.cortex.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 09/25/2023] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Stimulation-based language mapping approaches that are used pre- and intraoperatively employ predominantly overt language tasks requiring sufficient language production abilities. Yet, these production-based setups are often not feasible in brain tumor patients with severe expressive aphasia. This pilot study evaluated the feasibility and reliability of a newly developed language comprehension task with preoperative navigated transcranial magnetic stimulation (nTMS). METHODS Fifteen healthy subjects and six brain tumor patients with severe expressive aphasia unable to perform classic overt naming tasks underwent preoperative nTMS language mapping based on an auditory single-word Comprehension TAsk for Perioperative mapping (CompreTAP). Comprehension was probed by button-press responses to auditory stimuli, hence not requiring overt language responses. Positive comprehension areas were identified when stimulation elicited an incorrect or delayed button press. Error categories, case-wise cortical error rate distribution and inter-rater reliability between two experienced specialists were examined. RESULTS Overall, the new setup showed to be feasible. Comprehension-disruptions induced by nTMS manifested in no responses, delayed or hesitant responses, searching behavior or selection of wrong target items across all patients and controls and could be performed even in patients with severe expressive aphasia. The analysis agreement between both specialists was substantial for classifying comprehension-positive and -negative sites. Extensive left-hemispheric individual cortical comprehension sites were identified for all patients. Apart from one case presenting with transient worsening of aphasic symptoms, pre-existing language deficits did not aggravate if results were used for subsequent surgical planning. CONCLUSION Employing this new comprehension-based nTMS setup allowed to identify language relevant cortical sites in all healthy subjects and severely aphasic patients who were thus far precluded from classic production-based mapping. This pilot study, moreover, provides first indications that the CompreTAP mapping results may support the preservation of residual language function if used for subsequent surgical planning.
Collapse
Affiliation(s)
- Leonie Kram
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Ann-Katrin Ohlerth
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Sebastian Ille
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; TUM Neuroimaging Center, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; TUM Neuroimaging Center, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany.
| |
Collapse
|
3
|
Angileri FF, Raffa G, Curcio A, Granata F, Marzano G, Germanò A. Minimally Invasive Surgery of Deep-Seated Brain Lesions Using Tubular Retractors and Navigated Transcranial Magnetic Stimulation-Based Diffusion Tensor Imaging Tractography Guidance: The Minefield Paradigm. Oper Neurosurg (Hagerstown) 2023; 24:656-664. [PMID: 36805639 DOI: 10.1227/ons.0000000000000652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 12/08/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Surgical treatment of deep-seated brain lesions is a major challenge for neurosurgeons. Recently, tubular retractors have been used to help neurosurgeons in achieving the targeting and resection of deep lesions. OBJECTIVE To describe a novel surgical approach based on the combination of tubular retractors and preoperative mapping by navigated transcranial magnetic stimulation (nTMS) and nTMS-based diffusion tensor imaging (DTI) tractography for the safe resection of deep-seated lesions. METHODS Ten consecutive patients affected by deep-seated brain lesions close to eloquent motor/language/visual pathways underwent preoperative nTMS mapping of motor/language cortical areas and nTMS-based DTI tractography of adjacent eloquent white matter tracts, including optic radiations. The nTMS-based information was used to plan the optimal surgical trajectory and to guide the insertion of tubular retractors within the brain parenchyma without causing injury to the eloquent cortical and subcortical structures. After surgery, all patients underwent a new nTMS-based DTI tractography of fascicles close to the tumor to verify their structural integrity. RESULTS Gross total resection was achieved in 8 cases, subtotal resection in 1 case, and a biopsy in 1 case. No new postoperative deficits were observed, except in 1 case where a visual field defect due to injury to the optic radiations occurred. Postoperative nTMS-based DTI tractography showed the integrity of the subcortical fascicles crossed by tubular retractors trajectory in 9 cases. CONCLUSION The novel strategy combining tubular retractors with functional nTMS-based preoperative mapping enables a safe microsurgical resection of deep-seated lesions through the preservation of eloquent cortical areas and subcortical fascicles, thus reducing the risk of new permanent deficits.
Collapse
Affiliation(s)
- Filippo Flavio Angileri
- Neurosurgery-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giovanni Raffa
- Neurosurgery-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Antonello Curcio
- Neurosurgery-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Francesca Granata
- Neuroradiology-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giuseppina Marzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonino Germanò
- Neurosurgery-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
5
|
Diehl CD, Rosenkranz E, Schwendner M, Mißlbeck M, Sollmann N, Ille S, Meyer B, Combs SE, Krieg SM. Dose Reduction to Motor Structures in Adjuvant Fractionated Stereotactic Radiotherapy of Brain Metastases: nTMS-Derived DTI-Based Motor Fiber Tracking in Treatment Planning. Cancers (Basel) 2022; 15:cancers15010282. [PMID: 36612277 PMCID: PMC9818359 DOI: 10.3390/cancers15010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Resection of brain metastases (BM) close to motor structures is challenging for treatment. Navigated transcranial magnetic stimulation (nTMS) motor mapping, combined with diffusion tensor imaging (DTI)-based fiber tracking (DTI-FTmot.TMS), is a valuable tool in neurosurgery to preserve motor function. This study aimed to assess the practicability of DTI-FTmot.TMS for local adjuvant radiotherapy (RT) planning of BM. Methods: Presurgically generated DTI-FTmot.TMS-based corticospinal tract (CST) reconstructions (FTmot.TMS) of 24 patients with 25 BM resected during later surgery were incorporated into the RT planning system. Completed fractionated stereotactic intensity-modulated RT (IMRT) plans were retrospectively analyzed and adapted to preserve FTmot.TMS. Results: In regular plans, mean dose (Dmean) of complete FTmot.TMS was 5.2 ± 2.4 Gy. Regarding planning risk volume (PRV-FTTMS) portions outside of the planning target volume (PTV) within the 17.5 Gy (50%) isodose line, the DTI-FTmot.TMS Dmean was significantly reduced by 33.0% (range, 5.9−57.6%) from 23.4 ± 3.3 Gy to 15.9 ± 4.7 Gy (p < 0.001). There was no significant decline in the effective treatment dose, with PTV Dmean 35.6 ± 0.9 Gy vs. 36.0 ± 1.2 Gy (p = 0.063) after adaption. Conclusions: The DTI-FTmot.TMS-based CST reconstructions could be implemented in adjuvant IMRT planning of BM. A significant dose reduction regarding motor structures within critical dose levels seems possible.
Collapse
Affiliation(s)
- Christian D. Diehl
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
- Correspondence:
| | - Enrike Rosenkranz
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Maximilian Schwendner
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Martin Mißlbeck
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Sebastian Ille
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
| | - Sandro M. Krieg
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| |
Collapse
|
6
|
Reisch K, Böttcher F, Tuncer MS, Schneider H, Vajkoczy P, Picht T, Fekonja LS. Tractography-based navigated TMS language mapping protocol. Front Oncol 2022; 12:1008442. [PMID: 36568245 PMCID: PMC9780436 DOI: 10.3389/fonc.2022.1008442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction This study explores the feasibility of implementing a tractography-based navigated transcranial magnetic stimulation (nTMS) language mapping protocol targeting cortical terminations of the arcuate fasciculus (AF). We compared the results and distribution of errors from the new protocol to an established perisylvian nTMS protocol that stimulated without any specific targeting over the entire perisylvian cortex. Methods Sixty right-handed patients with language-eloquent brain tumors were examined in this study with one half of the cohort receiving the tractographybased protocol and the other half receiving the perisylvian protocol. Probabilistic tractography using MRtrix3 was performed for patients in the tractography-based group to identify the AF's cortical endpoints. nTMS mappings were performed and resulting language errors were classified into five psycholinguistic groups. Results Tractography and nTMS were successfully performed in all patients. The tractogram-based group showed a significantly higher median overall ER than the perisylvian group (3.8% vs. 2.9% p <.05). The median ER without hesitation errors in the tractogram-based group was also significantly higher than the perisylvian group (2.0% vs. 1.4%, p <.05). The ERs by error type showed no significant differences between protocols except in the no response ER, with a higher median ER in the tractogram-based group (0.4% vs. 0%, p <.05). Analysis of ERs based on the Corina cortical parcellation system showed especially high nTMS ERs over the posterior middle temporal gyrus (pMTG) in the perisylvian protocol and high ERs over the middle and ventral postcentral gyrus (vPoG), the opercular inferior frontal gyrus (opIFG) and the ventral precentral gyrus (vPrG) in the tractography-based protocol. Discussion By considering the white matter anatomy and performing nTMS on the cortical endpoints of the AF, the efficacy of nTMS in disrupting patients' object naming abilities was increased. The newly introduced method showed proof of concept and resulted in AF-specific ERs and noninvasive cortical language maps, which could be applied to additional fiber bundles related to the language network in future nTMS studies.
Collapse
Affiliation(s)
- Klara Reisch
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
| | - Franziska Böttcher
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
| | - Mehmet S. Tuncer
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
| | - Heike Schneider
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
| | - Peter Vajkoczy
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
| | - Thomas Picht
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
| | - Lucius S. Fekonja
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
| |
Collapse
|
7
|
Natalizi F, Piras F, Vecchio D, Spalletta G, Piras F. Preoperative Navigated Transcranial Magnetic Stimulation: New Insight for Brain Tumor-Related Language Mapping. J Pers Med 2022; 12:1589. [PMID: 36294728 PMCID: PMC9604795 DOI: 10.3390/jpm12101589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
Preoperative brain mapping methods are particularly important in modern neuro-oncology when a tumor affects eloquent language areas since damage to parts of the language circuits can cause significant impairments in daily life. This narrative review examines the literature regarding preoperative and intraoperative language mapping using repetitive navigated transcranial magnetic stimulation (rnTMS) with or without direct electrical stimulation (DES) in adult patients with tumors in eloquent language areas. The literature shows that rnTMS is accurate in detecting preexisting language disorders and positive intraoperative mapping regions. In terms of the region extent and clinical outcomes, rnTMS has been shown to be accurate in identifying positive sites to guide resection, reducing surgery duration and craniotomy size and thus improving clinical outcomes. Before incorporating rnTMS into the neurosurgical workflow, the refinement of protocols and a consensus within the neuro-oncology community are required.
Collapse
Affiliation(s)
- Federica Natalizi
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Piras
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Daniela Vecchio
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| |
Collapse
|
8
|
Raffa G, Picht T, Büki A, Germanò A. Editorial: nTMS, Connectivity and Neuromodulation in Brain Tumor Patients. Front Neurol 2022; 13:885773. [PMID: 35463148 PMCID: PMC9019073 DOI: 10.3389/fneur.2022.885773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Giovanni Raffa
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
- *Correspondence: Giovanni Raffa
| | - Thomas Picht
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - András Büki
- Department of Neurosurgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Antonino Germanò
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Diehl C, Rosenkranz E, Mißlbeck M, Schwendner M, Sollmann N, Ille S, Meyer B, Combs S, Bernhardt D, Krieg S. nTMS-derived DTI-based motor fiber tracking in radiotherapy treatment planning of high-grade gliomas for avoidance of motor structures. Radiother Oncol 2022; 171:189-197. [DOI: 10.1016/j.radonc.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
|
10
|
Giampiccolo D, Nunes S, Cattaneo L, Sala F. Functional Approaches to the Surgery of Brain Gliomas. Adv Tech Stand Neurosurg 2022; 45:35-96. [PMID: 35976447 DOI: 10.1007/978-3-030-99166-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the surgery of gliomas, recent years have witnessed unprecedented theoretical and technical development, which extensively increased indication to surgery. On one hand, it has been solidly demonstrated the impact of gross total resection on life expectancy. On the other hand, the paradigm shift from classical cortical localization of brain function towards connectomics caused by the resurgence of awake surgery and the advent of tractography has permitted safer surgeries focused on subcortical white matter tracts preservation and allowed for surgical resections within regions, such as Broca's area or the primary motor cortex, which were previously deemed inoperable. Furthermore, new asleep electrophysiological techniques have been developed whenever awake surgery is not an option, such as operating in situations of poor compliance (including paediatric patients) or pre-existing neurological deficits. One such strategy is the use of intraoperative neurophysiological monitoring (IONM), enabling the identification and preservation of functionally defined, but anatomically ambiguous, cortico-subcortical structures through mapping and monitoring techniques. These advances tie in with novel challenges, specifically risk prediction and the impact of neuroplasticity, the indication for tumour resection beyond visible borders, or supratotal resection, and most of all, a reappraisal of the importance of the right hemisphere from early psychosurgery to mapping and preservation of social behaviour, executive control, and decision making.Here we review current advances and future perspectives in a functional approach to glioma surgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - Sonia Nunes
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
| | - Luigi Cattaneo
- Center for Mind and Brain Sciences (CIMeC) and Center for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy.
| |
Collapse
|
11
|
White matter variability, cognition, and disorders: a systematic review. Brain Struct Funct 2021; 227:529-544. [PMID: 34731328 PMCID: PMC8844174 DOI: 10.1007/s00429-021-02382-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
Inter-individual differences can inform treatment procedures and—if accounted for—have the potential to significantly improve patient outcomes. However, when studying brain anatomy, these inter-individual variations are commonly unaccounted for, despite reports of differences in gross anatomical features, cross-sectional, and connectional anatomy. Brain connections are essential to facilitate functional organization and, when severed, cause impairments or complete loss of function. Hence, the study of cerebral white matter may be an ideal compromise to capture inter-individual variability in structure and function. We reviewed the wealth of studies that associate cognitive functions and clinical symptoms with individual tracts using diffusion tractography. Our systematic review indicates that tractography has proven to be a sensitive method in neurology, psychiatry, and healthy populations to identify variability and its functional correlates. However, the literature may be biased, as the most commonly studied tracts are not necessarily those with the highest sensitivity to cognitive functions and pathologies. Additionally, the hemisphere of the studied tract is often unreported, thus neglecting functional laterality and asymmetries. Finally, we demonstrate that tracts, as we define them, are not correlated with one, but multiple cognitive domains or pathologies. While our systematic review identified some methodological caveats, it also suggests that tract–function correlations might still be a promising tool in identifying biomarkers for precision medicine. They can characterize variations in brain anatomy, differences in functional organization, and predicts resilience and recovery in patients.
Collapse
|
12
|
Ntemou E, Ohlerth AK, Ille S, Krieg SM, Bastiaanse R, Rofes A. Mapping Verb Retrieval With nTMS: The Role of Transitivity. Front Hum Neurosci 2021; 15:719461. [PMID: 34539364 PMCID: PMC8442843 DOI: 10.3389/fnhum.2021.719461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/31/2021] [Indexed: 11/25/2022] Open
Abstract
Navigated Transcranial Magnetic Stimulation (nTMS) is used to understand the cortical organization of language in preparation for the surgical removal of a brain tumor. Action naming with finite verbs can be employed for that purpose, providing additional information to object naming. However, little research has focused on the properties of the verbs that are used in action naming tasks, such as their status as transitive (taking an object; e.g., to read) or intransitive (not taking an object; e.g., to wink). Previous neuroimaging data show higher activation for transitive compared to intransitive verbs in posterior perisylvian regions bilaterally. In the present study, we employed nTMS and production of finite verbs to investigate the cortical underpinnings of transitivity. Twenty neurologically healthy native speakers of German participated in the study. They underwent language mapping in both hemispheres with nTMS. The action naming task with finite verbs consisted of transitive (e.g., The man reads the book) and intransitive verbs (e.g., The woman winks) and was controlled for relevant psycholinguistic variables. Errors were classified in four different error categories (i.e., non-linguistic errors, grammatical errors, lexico-semantic errors and, errors at the sound level) and were analyzed quantitatively. We found more nTMS-positive points in the left hemisphere, particularly in the left parietal lobe for the production of transitive compared to intransitive verbs. These positive points most commonly corresponded to lexico-semantic errors. Our findings are in line with previous aphasia and neuroimaging studies, suggesting that a more widespread network is used for the production of verbs with a larger number of arguments (i.e., transitives). The higher number of lexico-semantic errors with transitive compared to intransitive verbs in the left parietal lobe supports previous claims for the role of left posterior areas in the retrieval of argument structure information.
Collapse
Affiliation(s)
- Effrosyni Ntemou
- International Doctorate in Experimental Approaches to Language and Brain (IDEALAB, Universities of Groningen, Potsdam, Newcastle, Trento and Macquarie University), Sydney, NSW, Australia.,Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, Netherlands
| | - Ann-Katrin Ohlerth
- International Doctorate in Experimental Approaches to Language and Brain (IDEALAB, Universities of Groningen, Potsdam, Newcastle, Trento and Macquarie University), Sydney, NSW, Australia.,Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, Netherlands
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roelien Bastiaanse
- Center for Language and Brain, National Research University Higher School of Economics, Moscow, Russia
| | - Adrià Rofes
- Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, Netherlands
| |
Collapse
|
13
|
Raffa G, Quattropani MC, Marzano G, Curcio A, Rizzo V, Sebestyén G, Tamás V, Büki A, Germanò A. Mapping and Preserving the Visuospatial Network by repetitive nTMS and DTI Tractography in Patients With Right Parietal Lobe Tumors. Front Oncol 2021; 11:677172. [PMID: 34249716 PMCID: PMC8268025 DOI: 10.3389/fonc.2021.677172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The goal of brain tumor surgery is the maximal resection of neoplastic tissue, while preserving the adjacent functional brain tissues. The identification of functional networks involved in complex brain functions, including visuospatial abilities (VSAs), is usually difficult. We report our preliminary experience using a preoperative planning based on the combination of navigated transcranial magnetic stimulation (nTMS) and DTI tractography to provide the preoperative 3D reconstruction of the visuospatial (VS) cortico-subcortical network in patients with right parietal lobe tumors. MATERIAL AND METHODS Patients affected by right parietal lobe tumors underwent mapping of both hemispheres using an nTMS-implemented version of the Hooper Visual Organization Test (HVOT) to identify cortical areas involved in the VS network. DTI tractography was used to compute the subcortical component of the network, consisting of the three branches of the superior longitudinal fasciculus (SLF). The 3D reconstruction of the VS network was used to plan and guide the safest surgical approach to resect the tumor and avoid damage to the network. We retrospectively analyzed the cortical distribution of nTMS-induced errors, and assessed the impact of the planning on surgery by analyzing the extent of tumor resection (EOR) and the occurrence of postoperative VSAs deficits in comparison with a matched historical control group of patients operated without using the nTMS-based preoperative reconstruction of the VS network. RESULTS Twenty patients were enrolled in the study (Group A). The error rate (ER) induced by nTMS was higher in the right vs. the left hemisphere (p=0.02). In the right hemisphere, the ER was higher in the anterior supramarginal gyrus (aSMG) (1.7%), angular gyrus (1.4%) superior parietal lobule (SPL) (1.3%), and dorsal lateral occipital gyrus (dLoG) (1.2%). The reconstruction of the cortico-subcortical VS network was successfully used to plan and guide tumor resection. A gross total resection (GTR) was achieved in 85% of cases. After surgery no new VSAs deficits were observed and a slightly significant improvement of the HVOT score (p=0.02) was documented. The historical control group (Group B) included 20 patients matched for main clinical characteristics with patients in Group A, operated without the support of the nTMS-based planning. A GTR was achieved in 90% of cases, but the postoperative HVOT score resulted to be worsened as compared to the preoperative period (p=0.03). The comparison between groups showed a significantly improved postoperative HVOT score in Group A vs. Group B (p=0.03). CONCLUSIONS The nTMS-implemented HVOT is a feasible approach to map cortical areas involved in VSAs. It can be combined with DTI tractography, thus providing a reconstruction of the VS network that could guide neurosurgeons to preserve the VS network during tumor resection, thus reducing the occurrence of postoperative VSAs deficits as compared to standard asleep surgery.
Collapse
Affiliation(s)
- Giovanni Raffa
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | | | - Giuseppina Marzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonello Curcio
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Division of Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Gabriella Sebestyén
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Tamás
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - András Büki
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Antonino Germanò
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Hazem SR, Awan M, Lavrador JP, Patel S, Wren HM, Lucena O, Semedo C, Irzan H, Melbourne A, Ourselin S, Shapey J, Kailaya-Vasan A, Gullan R, Ashkan K, Bhangoo R, Vergani F. Middle Frontal Gyrus and Area 55b: Perioperative Mapping and Language Outcomes. Front Neurol 2021; 12:646075. [PMID: 33776898 PMCID: PMC7988187 DOI: 10.3389/fneur.2021.646075] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The simplistic approaches to language circuits are continuously challenged by new findings in brain structure and connectivity. The posterior middle frontal gyrus and area 55b (pFMG/area55b), in particular, has gained a renewed interest in the overall language network. Methods: This is a retrospective single-center cohort study of patients who have undergone awake craniotomy for tumor resection. Navigated transcranial magnetic simulation (nTMS), tractography, and intraoperative findings were correlated with language outcomes. Results: Sixty-five awake craniotomies were performed between 2012 and 2020, and 24 patients were included. nTMS elicited 42 positive responses, 76.2% in the inferior frontal gyrus (IFG), and hesitation was the most common error (71.4%). In the pMFG/area55b, there were seven positive errors (five hesitations and two phonemic errors). This area had the highest positive predictive value (43.0%), negative predictive value (98.3%), sensitivity (50.0%), and specificity (99.0%) among all the frontal gyri. Intraoperatively, there were 33 cortical positive responses—two (6.0%) in the superior frontal gyrus (SFG), 15 (45.5%) in the MFG, and 16 (48.5%) in the IFG. A total of 29 subcortical positive responses were elicited−21 in the deep IFG–MFG gyri and eight in the deep SFG–MFG gyri. The most common errors identified were speech arrest at the cortical level (20 responses−13 in the IFG and seven in the MFG) and anomia at the subcortical level (nine patients—eight in the deep IFG–MFG and one in the deep MFG–SFG). Moreover, 83.3% of patients had a transitory deterioration of language after surgery, mainly in the expressive component (p = 0.03). An increased number of gyri with intraoperative positive responses were related with better preoperative (p = 0.037) and worse postoperative (p = 0.029) outcomes. The involvement of the SFG–MFG subcortical area was related with worse language outcomes (p = 0.037). Positive nTMS mapping in the IFG was associated with a better preoperative language outcome (p = 0.017), relating to a better performance in the expressive component, while positive mapping in the MFG was related to a worse preoperative receptive component of language (p = 0.031). Conclusion: This case series suggests that the posterior middle frontal gyrus, including area 55b, is an important integration cortical hub for both dorsal and ventral streams of language.
Collapse
Affiliation(s)
- Sally Rosario Hazem
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Mariam Awan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Jose Pedro Lavrador
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Sabina Patel
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Hilary Margaret Wren
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Oeslle Lucena
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Carla Semedo
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Hassna Irzan
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Jonathan Shapey
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ahilan Kailaya-Vasan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Richard Gullan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
15
|
Zoli M, Talozzi L, Martinoni M, Manners DN, Badaloni F, Testa C, Asioli S, Mitolo M, Bartiromo F, Rochat MJ, Fabbri VP, Sturiale C, Conti A, Lodi R, Mazzatenta D, Tonon C. From Neurosurgical Planning to Histopathological Brain Tumor Characterization: Potentialities of Arcuate Fasciculus Along-Tract Diffusion Tensor Imaging Tractography Measures. Front Neurol 2021; 12:633209. [PMID: 33716935 PMCID: PMC7952864 DOI: 10.3389/fneur.2021.633209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Tractography has been widely adopted to improve brain gliomas' surgical planning and guide their resection. This study aimed to evaluate state-of-the-art of arcuate fasciculus (AF) tractography for surgical planning and explore the role of along-tract analyses in vivo for characterizing tumor histopathology. Methods: High angular resolution diffusion imaging (HARDI) images were acquired for nine patients with tumors located in or near language areas (age: 41 ± 14 years, mean ± standard deviation; five males) and 32 healthy volunteers (age: 39 ± 16 years; 16 males). Phonemic fluency task fMRI was acquired preoperatively for patients. AF tractography was performed using constrained spherical deconvolution diffusivity modeling and probabilistic fiber tracking. Along-tract analyses were performed, dividing the AF into 15 segments along the length of the tract defined using the Laplacian operator. For each AF segment, diffusion tensor imaging (DTI) measures were compared with those obtained in healthy controls (HCs). The hemispheric laterality index (LI) was calculated from language task fMRI activations in the frontal, parietal, and temporal lobe parcellations. Tumors were grouped into low/high grade (LG/HG). Results: Four tumors were LG gliomas (one dysembryoplastic neuroepithelial tumor and three glioma grade II) and five HG gliomas (two grade III and three grade IV). For LG tumors, gross total removal was achieved in all but one case, for HG in two patients. Tractography identified the AF trajectory in all cases. Four along-tract DTI measures potentially discriminated LG and HG tumor patients (false discovery rate < 0.1): the number of abnormal MD and RD segments, median AD, and MD measures. Both a higher number of abnormal AF segments and a higher AD and MD measures were associated with HG tumor patients. Moreover, correlations (unadjusted p < 0.05) were found between the parietal lobe LI and the DTI measures, which discriminated between LG and HG tumor patients. In particular, a more rightward parietal lobe activation (LI < 0) correlated with a higher number of abnormal MD segments (R = −0.732) and RD segments (R = −0.724). Conclusions: AF tractography allows to detect the course of the tract, favoring the safer-as-possible tumor resection. Our preliminary study shows that along-tract DTI metrics can provide useful information for differentiating LG and HG tumors during pre-surgical tumor characterization.
Collapse
Affiliation(s)
- Matteo Zoli
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lia Talozzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Martinoni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Filippo Badaloni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Micaela Mitolo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Magali Jane Rochat
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmelo Sturiale
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alfredo Conti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
16
|
Di Cristofori A, Basso G, de Laurentis C, Mauri I, Sirtori MA, Ferrarese C, Isella V, Giussani C. Perspectives on (A)symmetry of Arcuate Fasciculus. A Short Review About Anatomy, Tractography and TMS for Arcuate Fasciculus Reconstruction in Planning Surgery for Gliomas in Language Areas. Front Neurol 2021; 12:639822. [PMID: 33643213 PMCID: PMC7902861 DOI: 10.3389/fneur.2021.639822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Gliomas are brain tumors that are treated with surgical resection. Prognosis is influenced by the extent of resection and postoperative neurological status. As consequence, given the extreme interindividual and interhemispheric variability of subcortical white matter (WM) surgical planning requires to be patient's tailored. According to the “connectionist model,” there is a huge variability among both cortical areas and subcortical WM in all human beings, and it is known that brain is able to reorganize itself and to adapt to WM lesions. Brain magnetic resonance imaging diffusion tensor imaging (DTI) tractography allows visualization of WM bundles. Nowadays DTI tractography is widely available in the clinical setting for presurgical planning. Arcuate fasciculus (AF) is a long WM bundle that connects the Broca's and Wernicke's regions with a complex anatomical architecture and important role in language functions. Thus, its preservation is important for the postoperative outcome, and DTI tractography is usually performed for planning surgery within the language-dominant hemisphere. High variability among individuals and an asymmetrical pattern has been reported for this WM bundle. However, the functional relevance of AF in the contralateral non-dominant hemisphere in case of tumoral or surgical lesion of the language-dominant AF is unclear. This review focuses on AF anatomy with special attention to its asymmetry in both normal and pathological conditions and how it may be explored with preoperative tools for planning surgery on gliomas in language areas. Based on the findings available in literature, we finally speculate about the potential role of preoperative evaluation of the WM contralateral to the surgical site.
Collapse
Affiliation(s)
| | - Gianpaolo Basso
- Neurosurgery Unit, San Gerardo Hospital, ASST Monza, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neuroradiology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Camilla de Laurentis
- Neurosurgery Unit, San Gerardo Hospital, ASST Monza, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Ilaria Mauri
- Neurology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | | | - Carlo Ferrarese
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Valeria Isella
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Carlo Giussani
- Neurosurgery Unit, San Gerardo Hospital, ASST Monza, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|