1
|
Barbeau EB, Badhwar A, Kousaie S, Bellec P, Descoteaux M, Klein D, Petrides M. Dissection of the Temporofrontal Extreme Capsule Fasciculus Using Diffusion MRI Tractography and Association with Lexical Retrieval. eNeuro 2024; 11:ENEURO.0363-23.2023. [PMID: 38164578 PMCID: PMC10849018 DOI: 10.1523/eneuro.0363-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/06/2023] [Indexed: 01/03/2024] Open
Abstract
The well-known arcuate fasciculus that connects the posterior superior temporal region with the language production region in the ventrolateral frontal cortex constitutes the classic peri-Sylvian dorsal stream of language. A second temporofrontal white matter tract connects ventrally the anterior to intermediate lateral temporal cortex with frontal areas via the extreme capsule. This temporofrontal extreme capsule fasciculus (TFexcF) constitutes the ventral stream of language processing. The precise origin, course, and termination of this pathway has been examined in invasive tract tracing studies in macaque monkeys, but there have been no standard protocols for its reconstruction in the human brain using diffusion imaging tractography. Here we provide a protocol for the dissection of the TFexcF in vivo in the human brain using diffusion magnetic resonance imaging (MRI) tractography which provides a solid basis for exploring its functional role. A key finding of the current dissection protocol is the demonstration that the TFexcF is left hemisphere lateralized. Furthermore, using the present dissection protocol, we demonstrate that the TFexcF is related to lexical retrieval scores measured with the category fluency test, in contrast to the classical arcuate fasciculus (the dorsal language pathway) that was also dissected and was related to sentence repetition.
Collapse
Affiliation(s)
- E B Barbeau
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Center for Research on Brain, Language and Music (CRBLM), Montreal, Quebec H3G 2A8, Canada
| | - A Badhwar
- Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal, Montreal, Québec H3C 3J7, Canada
- Institut de génie biomédical, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, Québec H3C 3J7, Canada
| | - S Kousaie
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - P Bellec
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, Québec H3C 3J7, Canada
- Département de Psychologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - M Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - D Klein
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Center for Research on Brain, Language and Music (CRBLM), Montreal, Quebec H3G 2A8, Canada
- Departments of Neurology and Neurosurgery
| | - M Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Center for Research on Brain, Language and Music (CRBLM), Montreal, Quebec H3G 2A8, Canada
- Departments of Neurology and Neurosurgery
- Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| |
Collapse
|
2
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
3
|
Weiller C, Glauche V, Rijntjes M. The ventral pathway and the extreme capsule: Pierre Marie was right. Brain 2022; 145:e57-e58. [PMID: 35298592 DOI: 10.1093/brain/awac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Faculty, University Hospital, University of Freiburg i.Br., Germany
| | - Volkmar Glauche
- Department of Neurology and Clinical Neuroscience, Medical Faculty, University Hospital, University of Freiburg i.Br., Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Faculty, University Hospital, University of Freiburg i.Br., Germany
| |
Collapse
|
4
|
Giampiccolo D, Duffau H. Controversy over the temporal cortical terminations of the left arcuate fasciculus: a reappraisal. Brain 2022; 145:1242-1256. [PMID: 35142842 DOI: 10.1093/brain/awac057] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/19/2021] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
The arcuate fasciculus has been considered a major dorsal fronto-temporal white matter pathway linking frontal language production regions with auditory perception in the superior temporal gyrus, the so-called Wernicke's area. In line with this tradition, both historical and contemporary models of language function have assigned primacy to superior temporal projections of the arcuate fasciculus. However, classical anatomical descriptions and emerging behavioural data are at odds with this assumption. On one hand, fronto-temporal projections to Wernicke's area may not be unique to the arcuate fasciculus. On the other hand, dorsal stream language deficits have been reported also for damage to middle, inferior and basal temporal gyri which may be linked to arcuate disconnection. These findings point to a reappraisal of arcuate projections in the temporal lobe. Here, we review anatomical and functional evidence regarding the temporal cortical terminations of the left arcuate fasciculus by incorporating dissection and tractography findings with stimulation data using cortico-cortical evoked potentials and direct electrical stimulation mapping in awake patients. Firstly, we discuss the fibers of the arcuate fasciculus projecting to the superior temporal gyrus and the functional rostro-caudal gradient in this region where both phonological encoding and auditory-motor transformation may be performed. Caudal regions within the temporoparietal junction may be involved in articulation and associated with temporoparietal projections of the third branch of the superior longitudinal fasciculus, while more rostral regions may support encoding of acoustic phonetic features, supported by arcuate fibres. We then move to examine clinical data showing that multimodal phonological encoding is facilitated by projections of the arcuate fasciculus to superior, but also middle, inferior and basal temporal regions. Hence, we discuss how projections of the arcuate fasciculus may contribute to acoustic (middle-posterior superior and middle temporal gyri), visual (posterior inferior temporal/fusiform gyri comprising the visual word form area) and lexical (anterior-middle inferior temporal/fusiform gyri in the basal temporal language area) information in the temporal lobe to be processed, encoded and translated into a dorsal phonological route to the frontal lobe. Finally, we point out surgical implications for this model in terms of the prediction and avoidance of neurological deficit.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy.,Institute of Neuroscience, Cleveland Clinic London, Grosvenor Place, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Genomics of Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
5
|
Dressing A, Kaller CP, Martin M, Nitschke K, Kuemmerer D, Beume LA, Schmidt CSM, Musso M, Urbach H, Rijntjes M, Weiller C. Anatomical correlates of recovery in apraxia: A longitudinal lesion-mapping study in stroke patients. Cortex 2021; 142:104-121. [PMID: 34265734 DOI: 10.1016/j.cortex.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study investigates the clinical course of recovery of apraxia after left-hemisphere stroke and the underlying neuroanatomical correlates for persisting or recovering deficits in relation to the major processing streams in the network for motor cognition. METHODS 90 patients were examined during the acute (4.74 ± 2.73 days) and chronic (14.3 ± 15.39 months) stage after left-hemisphere stroke for deficits in meaningless imitation, as well as production and conceptual errors in tool use pantomime. Lesion correlates for persisting or recovering deficits were analyzed with an extension of the non-parametric Brunner-Munzel rank-order test for multi-factorial designs (two-way repeated-measures ANOVA) using acute images. RESULTS Meaningless imitation and tool use production deficits persisted into the chronic stage. Conceptual errors in tool use pantomime showed an almost complete recovery. Imitation errors persisted after occipitotemporal and superior temporal lesions in the dorso-dorsal stream. Chronic pantomime production errors were related to the supramarginal gyrus, the key structure of the ventro-dorsal stream. More anterior lesions in the ventro-dorsal stream (ventral premotor cortex) were additionally associated with poor recovery of production errors in pantomime. Conceptual errors in pantomime after temporal and supramarginal gyrus lesions persisted into the chronic stage. However, they resolved completely when related to angular gyrus or insular lesions. CONCLUSION The diverging courses of recovery in different apraxia tasks can be related to different mechanisms. Critical lesions to key structures of the network or entrance areas of the processing streams lead to persisting deficits in the corresponding tasks. Contrary, lesions located outside the core network but inducing a temporary network dysfunction allow good recovery e.g., of conceptual errors in pantomime. The identification of lesion correlates for different long-term recovery patterns in apraxia might also allow early clinical prediction of the course of recovery.
Collapse
Affiliation(s)
- Andrea Dressing
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany.
| | - Christoph P Kaller
- Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany; Dept. of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Martin
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Kai Nitschke
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dorothee Kuemmerer
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena-A Beume
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte S M Schmidt
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mariacristina Musso
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Dept. of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| |
Collapse
|