1
|
Bullock L, Forseth KJ, Woolnough O, Rollo PS, Tandon N. Supplementary motor area in speech initiation: A large-scale intracranial EEG evaluation of stereotyped word articulation. iScience 2025; 28:111531. [PMID: 39807169 PMCID: PMC11729016 DOI: 10.1016/j.isci.2024.111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Speech production engages a distributed network of cortical and subcortical brain regions. The supplementary motor area (SMA) has long been thought to be a key hub in coordinating across these regions to initiate voluntary movements, including speech. We analyzed direct intracranial recordings from 115 patients with epilepsy as they articulated a single word in a subset of trials from a picture-naming task. We aimed to characterize the temporal dynamics of SMA relative to other cortical regions. SMA and preSMA were among the first regions to activate after cue onset, peaked in activity before articulation onset, and were the earliest regions to predict trial-to-trial response time. Neural activity at single electrodes in SMA and preSMA was closely associated with speech initiation; activity began at a highly predictable time after stimulus onset and extended until speech onset for any given trial. Our results support the idea that SMA is a key node in the speech initiation network.
Collapse
Affiliation(s)
- Latané Bullock
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Kiefer J Forseth
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92093, United States of America
| | - Oscar Woolnough
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX 77030, United States of America
| |
Collapse
|
2
|
Chen M, Guo K, Lu K, Meng K, Lu J, Pang Y, Zhang L, Hu Y, Yu R, Zhang R. Localizing the seizure onset zone and predicting the surgery outcomes in patients with drug-resistant epilepsy: A new approach based on the causal network. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 258:108483. [PMID: 39536406 DOI: 10.1016/j.cmpb.2024.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Accurate localization of the seizure onset zone (SOZ) is crucial for surgical treatment in patients with drug-resistant epilepsy (DRE). However, clinical identification of SOZ often relies on physician experience and has a certain subjectivity. Therefore, it is emergent to develop quantitative computational tools to assist clinicians in identifying SOZ. METHODS We conduct a retrospective study on intracranial electroencephalography (iEEG) data from 46 patients with DRE. The interactions between different brain regions are quantified by using the phase transfer entropy (PTE), based on which the causal influence index (CII) is proposed to quantify the degree of influence of nodes on the network. Subsequently, the features extracted by the CII are used to construct a random forest classification model, which the performance in identifying SOZ and the generalizability are validated in patients with successful surgeries. Then, based on the CII features of the clinically labeled SOZ, a logistic regression prediction model is constructed to predict the probability of surgical success. The statistical analysis between patients with successful and failed surgery is conducted with the Mann-Whitney U test. Finally, the consistency between the predicted SOZ and the clinically labeled SOZ is verified across different Engel classes. RESULTS The classification model combining the low-frequency and high-frequency features can achieve an accuracy of 82.18% (sensitivity: 85.01%, specificity: 79.69%) and an area under curve (AUC) of 0.90 in identifying SOZ. Furthermore, the model exhibits strong generalizability in identifying SOZ in patients with MRI lesional and non-lesional, as well as those implanted with electrocorticography (ECOG) and stereotactic EEG (SEEG) electrodes. Moreover, the prediction model could achieve an average accuracy of 79.8% and an AUC of 0.84. Of note, the prediction of surgical success probability is significant between patients with successful and failed surgeries (P<0.001). Correspondingly, the highest consistency between model-predicted SOZ and clinically labeled SOZ can be observed in patients with successful surgeries, but this consistency gradually decreases with increasing Engel classes. CONCLUSIONS These results demonstrate that the CII may be a potential biomarker for identifying the SOZ in patients with DRE, which may provide a new perspective for the treatment of epilepsy.
Collapse
Affiliation(s)
- Mingming Chen
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Kunlin Guo
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Kai Lu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Kunying Meng
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Junfeng Lu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yajing Pang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Lipeng Zhang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yuxia Hu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Renping Yu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Rui Zhang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
3
|
Song RR, Sharma A, Sarmey N, Harasimchuk S, Bulacio J, Rammo R, Bingaman W, Serletis D. A Multivariate Approach to Quantifying Risk Factors Impacting Stereotactic Robotic-Guided Stereoelectroencephalography. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01342. [PMID: 39329517 DOI: 10.1227/ons.0000000000001383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Stereoelectroencephalography (SEEG) is an important method for invasive monitoring to establish surgical candidacy in approximately half of refractory epilepsy patients. Identifying factors affecting lead placement can mitigate potential surgical risks. This study applies multivariate analyses to identify perioperative factors affecting stereotactic electrode placement. METHODS We collected registration and accuracy data for consecutive patients undergoing SEEG implantation between May 2022 and November 2023. Stereotactic robotic guidance, using intraoperative imaging and a novel frame-based fiducial, was used for planning and SEEG implantation. Entry-point (EE), target-point (TE), and angular errors were measured, and statistical univariate and multivariate linear regression analyses were performed. RESULTS Twenty-seven refractory epilepsy patients (aged 15-57 years) undergoing SEEG were reviewed. Sixteen patients had unilateral implantation (10 left-sided, 6 right-sided); 11 patients underwent bilateral implantation. The mean number of electrodes per patient was 18 (SD = 3) with an average registration mean error of 0.768 mm (SD = 0.108). Overall, 486 electrodes were reviewed. Univariate analysis showed significant correlations of lead error with skull thickness (EE: P = .003; TE: P = .012); entry angle (EE: P < .001; TE: P < .001; angular error: P = .030); lead length (TE: P = .020); and order of electrode implantation (EE: P = .003; TE: P = .001). Three multiple linear regression models were used. All models featured predictors of implantation region (157 temporal, 241 frontal, 79 parietal, 9 occipital); skull thickness (mean = 5.80 mm, SD = 2.97 mm); order (range: 1-23); and entry angle in degrees (mean = 75.47, SD = 11.66). EE and TE error models additionally incorporated lead length (mean = 44.08 mm, SD = 13.90 mm) as a predictor. Implantation region and entry angle were significant predictors of error (P ≤ .05). CONCLUSION Our study identified 2 primary predictors of SEEG lead error, region of implantation and entry angle, with nonsignificant contributions from lead length or order of electrode placement. Future considerations for SEEG may consider varying regional approaches and angles for more optimal accuracy in lead placement.
Collapse
Affiliation(s)
- Ryan R Song
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Akshay Sharma
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Nehaw Sarmey
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Stephen Harasimchuk
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Juan Bulacio
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Richard Rammo
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William Bingaman
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Demitre Serletis
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Karimi-Rouzbahani H, McGonigal A. Generalisability of epileptiform patterns across time and patients. Sci Rep 2024; 14:6293. [PMID: 38491096 PMCID: PMC10942983 DOI: 10.1038/s41598-024-56990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
The complexity of localising the epileptogenic zone (EZ) contributes to surgical resection failures in achieving seizure freedom. The distinct patterns of epileptiform activity during interictal and ictal phases, varying across patients, often lead to suboptimal localisation using electroencephalography (EEG) features. We posed two key questions: whether neural signals reflecting epileptogenicity generalise from interictal to ictal time windows within each patient, and whether epileptiform patterns generalise across patients. Utilising an intracranial EEG dataset from 55 patients, we extracted a large battery of simple to complex features from stereo-EEG (SEEG) and electrocorticographic (ECoG) neural signals during interictal and ictal windows. Our features (n = 34) quantified many aspects of the signals including statistical moments, complexities, frequency-domain and cross-channel network attributes. Decision tree classifiers were then trained and tested on distinct time windows and patients to evaluate the generalisability of epileptogenic patterns across time and patients, respectively. Evidence strongly supported generalisability from interictal to ictal time windows across patients, particularly in signal power and high-frequency network-based features. Consistent patterns of epileptogenicity were observed across time windows within most patients, and signal features of epileptogenic regions generalised across patients, with higher generalisability in the ictal window. Signal complexity features were particularly contributory in cross-patient generalisation across patients. These findings offer insights into generalisable features of epileptic neural activity across time and patients, with implications for future automated approaches to supplement other EZ localisation methods.
Collapse
Affiliation(s)
- Hamid Karimi-Rouzbahani
- Neurosciences Centre, Mater Hospital, South Brisbane, 4101, Australia.
- Mater Research Institute, University of Queensland, South Brisbane, 4101, Australia.
- Queensland Brain Institute, University of Queensland, St Lucia, 4072, Australia.
| | - Aileen McGonigal
- Neurosciences Centre, Mater Hospital, South Brisbane, 4101, Australia
- Mater Research Institute, University of Queensland, South Brisbane, 4101, Australia
- Queensland Brain Institute, University of Queensland, St Lucia, 4072, Australia
| |
Collapse
|
5
|
Bröhl T, Rings T, Pukropski J, von Wrede R, Lehnertz K. The time-evolving epileptic brain network: concepts, definitions, accomplishments, perspectives. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 3:1338864. [PMID: 38293249 PMCID: PMC10825060 DOI: 10.3389/fnetp.2023.1338864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Epilepsy is now considered a network disease that affects the brain across multiple levels of spatial and temporal scales. The paradigm shift from an epileptic focus-a discrete cortical area from which seizures originate-to a widespread epileptic network-spanning lobes and hemispheres-considerably advanced our understanding of epilepsy and continues to influence both research and clinical treatment of this multi-faceted high-impact neurological disorder. The epileptic network, however, is not static but evolves in time which requires novel approaches for an in-depth characterization. In this review, we discuss conceptual basics of network theory and critically examine state-of-the-art recording techniques and analysis tools used to assess and characterize a time-evolving human epileptic brain network. We give an account on current shortcomings and highlight potential developments towards an improved clinical management of epilepsy.
Collapse
Affiliation(s)
- Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Jan Pukropski
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Bou Assi E, Schindler K, de Bézenac C, Denison T, Desai S, Keller SS, Lemoine É, Rahimi A, Shoaran M, Rummel C. From basic sciences and engineering to epileptology: A translational approach. Epilepsia 2023; 64 Suppl 3:S72-S84. [PMID: 36861368 DOI: 10.1111/epi.17566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/03/2023]
Abstract
Collaborative efforts between basic scientists, engineers, and clinicians are enabling translational epileptology. In this article, we summarize the recent advances presented at the International Conference for Technology and Analysis of Seizures (ICTALS 2022): (1) novel developments of structural magnetic resonance imaging; (2) latest electroencephalography signal-processing applications; (3) big data for the development of clinical tools; (4) the emerging field of hyperdimensional computing; (5) the new generation of artificial intelligence (AI)-enabled neuroprostheses; and (6) the use of collaborative platforms to facilitate epilepsy research translation. We highlight the promise of AI reported in recent investigations and the need for multicenter data-sharing initiatives.
Collapse
Affiliation(s)
- Elie Bou Assi
- Department of Neuroscience, Université de Montréal, Montréal, Canada
- Centre de Recherche du CHUM (CRCHUM), Montréal, Canada
| | - Kaspar Schindler
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, Bern University, Bern, Switzerland
| | - Christophe de Bézenac
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
| | | | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Émile Lemoine
- Centre de Recherche du CHUM (CRCHUM), Montréal, Canada
- Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Canada
| | | | - Mahsa Shoaran
- Institute of Electrical and Micro Engineering, Neuro-X Institute, EPFL, Lausanne, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Novitskaya Y, Dümpelmann M, Schulze-Bonhage A. Physiological and pathological neuronal connectivity in the living human brain based on intracranial EEG signals: the current state of research. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1297345. [PMID: 38107334 PMCID: PMC10723837 DOI: 10.3389/fnetp.2023.1297345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Over the past decades, studies of human brain networks have received growing attention as the assessment and modelling of connectivity in the brain is a topic of high impact with potential application in the understanding of human brain organization under both physiological as well as various pathological conditions. Under specific diagnostic settings, human neuronal signal can be obtained from intracranial EEG (iEEG) recording in epilepsy patients that allows gaining insight into the functional organisation of living human brain. There are two approaches to assess brain connectivity in the iEEG-based signal: evaluation of spontaneous neuronal oscillations during ongoing physiological and pathological brain activity, and analysis of the electrophysiological cortico-cortical neuronal responses, evoked by single pulse electrical stimulation (SPES). Both methods have their own advantages and limitations. The paper outlines available methodological approaches and provides an overview of current findings in studies of physiological and pathological human brain networks, based on intracranial EEG recordings.
Collapse
Affiliation(s)
- Yulia Novitskaya
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Dümpelmann
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Dallmer-Zerbe I, Jiruska P, Hlinka J. Personalized dynamic network models of the human brain as a future tool for planning and optimizing epilepsy therapy. Epilepsia 2023; 64:2221-2238. [PMID: 37340565 DOI: 10.1111/epi.17690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Epilepsy is a common neurological disorder, with one third of patients not responding to currently available antiepileptic drugs. The proportion of pharmacoresistant epilepsies has remained unchanged for many decades. To cure epilepsy and control seizures requires a paradigm shift in the development of new approaches to epilepsy diagnosis and treatment. Contemporary medicine has benefited from the exponential growth of computational modeling, and the application of network dynamics theory to understanding and treating human brain disorders. In epilepsy, the introduction of these approaches has led to personalized epileptic network modeling that can explore the patient's seizure genesis and predict the functional impact of resection on its individual network's propensity to seize. The application of the dynamic systems approach to neurostimulation therapy of epilepsy allows designing stimulation strategies that consider the patient's seizure dynamics and long-term fluctuations in the stability of their epileptic networks. In this article, we review, in a nontechnical fashion suitable for a broad neuroscientific audience, recent progress in personalized dynamic brain network modeling that is shaping the future approach to the diagnosis and treatment of epilepsy.
Collapse
Affiliation(s)
- Isa Dallmer-Zerbe
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
9
|
Pattnaik AR, Ghosn NJ, Ong IZ, Revell AY, Ojemann WKS, Scheid BH, Georgostathi G, Bernabei JM, Conrad EC, Sinha SR, Davis KA, Sinha N, Litt B. The seizure severity score: a quantitative tool for comparing seizures and their response to therapy. J Neural Eng 2023; 20:10.1088/1741-2552/aceca1. [PMID: 37531949 PMCID: PMC11250994 DOI: 10.1088/1741-2552/aceca1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Objective.Epilepsy is a neurological disorder characterized by recurrent seizures which vary widely in severity, from clinically silent to prolonged convulsions. Measuring severity is crucial for guiding therapy, particularly when complete control is not possible. Seizure diaries, the current standard for guiding therapy, are insensitive to the duration of events or the propagation of seizure activity across the brain. We present a quantitative seizure severity score that incorporates electroencephalography (EEG) and clinical data and demonstrate how it can guide epilepsy therapies.Approach.We collected intracranial EEG and clinical semiology data from 54 epilepsy patients who had 256 seizures during invasive, in-hospital presurgical evaluation. We applied an absolute slope algorithm to EEG recordings to identify seizing channels. From this data, we developed a seizure severity score that combines seizure duration, spread, and semiology using non-negative matrix factorization. For validation, we assessed its correlation with independent measures of epilepsy burden: seizure types, epilepsy duration, a pharmacokinetic model of medication load, and response to epilepsy surgery. We investigated the association between the seizure severity score and preictal network features.Main results.The seizure severity score augmented clinical classification by objectively delineating seizure duration and spread from recordings in available electrodes. Lower preictal medication loads were associated with higher seizure severity scores (p= 0.018, 97.5% confidence interval = [-1.242, -0.116]) and lower pre-surgical severity was associated with better surgical outcome (p= 0.042). In 85% of patients with multiple seizure types, greater preictal change from baseline was associated with higher severity.Significance.We present a quantitative measure of seizure severity that includes EEG and clinical features, validated on gold standard in-patient recordings. We provide a framework for extending our tool's utility to ambulatory EEG devices, for linking it to seizure semiology measured by wearable sensors, and as a tool to advance data-driven epilepsy care.
Collapse
Affiliation(s)
- Akash R Pattnaik
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Nina J Ghosn
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Ian Z Ong
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Andrew Y Revell
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - William K S Ojemann
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Brittany H Scheid
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Georgia Georgostathi
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - John M Bernabei
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Erin C Conrad
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Saurabh R Sinha
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Nishant Sinha
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- These authors contributed equally to this work
| | - Brian Litt
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- These authors contributed equally to this work
| |
Collapse
|
10
|
Rijal S, Corona L, Perry MS, Tamilia E, Madsen JR, Stone SSD, Bolton J, Pearl PL, Papadelis C. Functional connectivity discriminates epileptogenic states and predicts surgical outcome in children with drug resistant epilepsy. Sci Rep 2023; 13:9622. [PMID: 37316544 PMCID: PMC10267141 DOI: 10.1038/s41598-023-36551-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Normal brain functioning emerges from a complex interplay among regions forming networks. In epilepsy, these networks are disrupted causing seizures. Highly connected nodes in these networks are epilepsy surgery targets. Here, we assess whether functional connectivity (FC) using intracranial electroencephalography can quantify brain regions epileptogenicity and predict surgical outcome in children with drug resistant epilepsy (DRE). We computed FC between electrodes on different states (i.e. interictal without spikes, interictal with spikes, pre-ictal, ictal, and post-ictal) and frequency bands. We then estimated the electrodes' nodal strength. We compared nodal strength between states, inside and outside resection for good- (n = 22, Engel I) and poor-outcome (n = 9, Engel II-IV) patients, respectively, and tested their utility to predict the epileptogenic zone and outcome. We observed a hierarchical epileptogenic organization among states for nodal strength: lower FC during interictal and pre-ictal states followed by higher FC during ictal and post-ictal states (p < 0.05). We further observed higher FC inside resection (p < 0.05) for good-outcome patients on different states and bands, and no differences for poor-outcome patients. Resection of nodes with high FC was predictive of outcome (positive and negative predictive values: 47-100%). Our findings suggest that FC can discriminate epileptogenic states and predict outcome in patients with DRE.
Collapse
Affiliation(s)
- Sakar Rijal
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St., Fort Worth, TX, 76104, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Ludovica Corona
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St., Fort Worth, TX, 76104, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St., Fort Worth, TX, 76104, USA
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Scellig S D Stone
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey Bolton
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Christos Papadelis
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St., Fort Worth, TX, 76104, USA.
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA.
- School of Medicine, Texas Christian University, Fort Worth, TX, 76129, USA.
| |
Collapse
|
11
|
Bernabei JM, Li A, Revell AY, Smith RJ, Gunnarsdottir KM, Ong IZ, Davis KA, Sinha N, Sarma S, Litt B. Quantitative approaches to guide epilepsy surgery from intracranial EEG. Brain 2023; 146:2248-2258. [PMID: 36623936 PMCID: PMC10232272 DOI: 10.1093/brain/awad007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Over the past 10 years, the drive to improve outcomes from epilepsy surgery has stimulated widespread interest in methods to quantitatively guide epilepsy surgery from intracranial EEG (iEEG). Many patients fail to achieve seizure freedom, in part due to the challenges in subjective iEEG interpretation. To address this clinical need, quantitative iEEG analytics have been developed using a variety of approaches, spanning studies of seizures, interictal periods, and their transitions, and encompass a range of techniques including electrographic signal analysis, dynamical systems modeling, machine learning and graph theory. Unfortunately, many methods fail to generalize to new data and are sensitive to differences in pathology and electrode placement. Here, we critically review selected literature on computational methods of identifying the epileptogenic zone from iEEG. We highlight shared methodological challenges common to many studies in this field and propose ways that they can be addressed. One fundamental common pitfall is a lack of open-source, high-quality data, which we specifically address by sharing a centralized high-quality, well-annotated, multicentre dataset consisting of >100 patients to support larger and more rigorous studies. Ultimately, we provide a road map to help these tools reach clinical trials and hope to improve the lives of future patients.
Collapse
Affiliation(s)
- John M Bernabei
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Li
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Andrew Y Revell
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel J Smith
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Neuroengineering Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristin M Gunnarsdottir
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ian Z Ong
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn A Davis
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nishant Sinha
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sridevi Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brian Litt
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Cornblath EJ, Lucas A, Armstrong C, Greenblatt AS, Stein JM, Hadar PN, Raghupathi R, Marsh E, Litt B, Davis KA, Conrad EC. Quantifying trial-by-trial variability during cortico-cortical evoked potential mapping of epileptogenic tissue. Epilepsia 2023; 64:1021-1034. [PMID: 36728906 PMCID: PMC10480141 DOI: 10.1111/epi.17528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Measuring cortico-cortical evoked potentials (CCEPs) is a promising tool for mapping epileptic networks, but it is not known how variability in brain state and stimulation technique might impact the use of CCEPs for epilepsy localization. We test the hypotheses that (1) CCEPs demonstrate systematic variability across trials and (2) CCEP amplitudes depend on the timing of stimulation with respect to endogenous, low-frequency oscillations. METHODS We studied 11 patients who underwent CCEP mapping after stereo-electroencephalography electrode implantation for surgical evaluation of drug-resistant epilepsy. Evoked potentials were measured from all electrodes after each pulse of a 30 s, 1 Hz bipolar stimulation train. We quantified monotonic trends, phase dependence, and standard deviation (SD) of N1 (15-50 ms post-stimulation) and N2 (50-300 ms post-stimulation) amplitudes across the 30 stimulation trials for each patient. We used linear regression to quantify the relationship between measures of CCEP variability and the clinical seizure-onset zone (SOZ) or interictal spike rates. RESULTS We found that N1 and N2 waveforms exhibited both positive and negative monotonic trends in amplitude across trials. SOZ electrodes and electrodes with high interictal spike rates had lower N1 and N2 amplitudes with higher SD across trials. Monotonic trends of N1 and N2 amplitude were more positive when stimulating from an area with higher interictal spike rate. We also found intermittent synchronization of trial-level N1 amplitude with low-frequency phase in the hippocampus, which did not localize the SOZ. SIGNIFICANCE These findings suggest that standard approaches for CCEP mapping, which involve computing a trial-averaged response over a .2-1 Hz stimulation train, may be masking inter-trial variability that localizes to epileptogenic tissue. We also found that CCEP N1 amplitudes synchronize with ongoing low-frequency oscillations in the hippocampus. Further targeted experiments are needed to determine whether phase-locked stimulation could have a role in localizing epileptogenic tissue.
Collapse
Affiliation(s)
- Eli J. Cornblath
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alfredo Lucas
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, School of Engineering & Applied Science, Philadelphia, Pennsylvania, USA
| | - Caren Armstrong
- Pediatric Epilepsy Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adam S. Greenblatt
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joel M. Stein
- Department of Radiology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter N. Hadar
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ramya Raghupathi
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric Marsh
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Pediatric Epilepsy Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Litt
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kathryn A. Davis
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Erin C. Conrad
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Owen TW, Schroeder GM, Janiukstyte V, Hall GR, McEvoy A, Miserocchi A, de Tisi J, Duncan JS, Rugg‐Gunn F, Wang Y, Taylor PN. MEG abnormalities and mechanisms of surgical failure in neocortical epilepsy. Epilepsia 2023; 64:692-704. [PMID: 36617392 PMCID: PMC10952279 DOI: 10.1111/epi.17503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Epilepsy surgery fails to achieve seizure freedom in 30%-40% of cases. It is not fully understood why some surgeries are unsuccessful. By comparing interictal magnetoencephalography (MEG) band power from patient data to normative maps, which describe healthy spatial and population variability, we identify patient-specific abnormalities relating to surgical failure. We propose three mechanisms contributing to poor surgical outcome: (1) not resecting the epileptogenic abnormalities (mislocalization), (2) failing to remove all epileptogenic abnormalities (partial resection), and (3) insufficiently impacting the overall cortical abnormality. Herein we develop markers of these mechanisms, validating them against patient outcomes. METHODS Resting-state MEG recordings were acquired for 70 healthy controls and 32 patients with refractory neocortical epilepsy. Relative band-power spatial maps were computed using source-localized recordings. Patient and region-specific band-power abnormalities were estimated as the maximum absolute z-score across five frequency bands using healthy data as a baseline. Resected regions were identified using postoperative magnetic resonance imaging (MRI). We hypothesized that our mechanistically interpretable markers would discriminate patients with and without postoperative seizure freedom. RESULTS Our markers discriminated surgical outcome groups (abnormalities not targeted: area under the curve [AUC] = 0.80, p = .003; partial resection of epileptogenic zone: AUC = 0.68, p = .053; and insufficient cortical abnormality impact: AUC = 0.64, p = .096). Furthermore, 95% of those patients who were not seizure-free had markers of surgical failure for at least one of the three proposed mechanisms. In contrast, of those patients without markers for any mechanism, 80% were ultimately seizure-free. SIGNIFICANCE The mapping of abnormalities across the brain is important for a wide range of neurological conditions. Here we have demonstrated that interictal MEG band-power mapping has merit for the localization of pathology and improving our mechanistic understanding of epilepsy. Our markers for mechanisms of surgical failure could be used in the future to construct predictive models of surgical outcome, aiding clinical teams during patient pre-surgical evaluations.
Collapse
Affiliation(s)
- Thomas W. Owen
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Gabrielle M. Schroeder
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Vytene Janiukstyte
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Gerard R. Hall
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | | | | | | | | | | | - Yujiang Wang
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Peter N. Taylor
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
14
|
Conrad EC, Bernabei JM, Sinha N, Ghosn NJ, Stein JM, Shinohara RT, Litt B. Addressing spatial bias in intracranial EEG functional connectivity analyses for epilepsy surgical planning. J Neural Eng 2022; 19:056019. [PMID: 36084621 PMCID: PMC9590099 DOI: 10.1088/1741-2552/ac90ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023]
Abstract
Objective.To determine the effect of epilepsy on intracranial electroencephalography (EEG) functional connectivity, and the ability of functional connectivity to localize the seizure onset zone (SOZ), controlling for spatial biases.Approach.We analyzed intracranial EEG data from patients with drug-resistant epilepsy admitted for pre-surgical planning. We calculated intracranial EEG functional networks and determined whether changes in functional connectivity lateralized the SOZ using a spatial subsampling method to control for spatial bias. We developed a 'spatial null model' to localize the SOZ electrode using only spatial sampling information, ignoring EEG data. We compared the performance of this spatial null model against models incorporating EEG functional connectivity and interictal spike rates.Main results.About 110 patients were included in the study, although the number of patients differed across analyses. Controlling for spatial sampling, the average connectivity was lower in the SOZ region relative to the same anatomic region in the contralateral hemisphere. A model using intra-hemispheric connectivity accurately lateralized the SOZ (average accuracy 75.5%). A spatial null model incorporating spatial sampling information alone achieved moderate accuracy in classifying SOZ electrodes (mean AUC = 0.70, 95% CI 0.63-0.77). A model incorporating intracranial EEG functional connectivity and spike rate data further outperformed this spatial null model (AUC 0.78,p= 0.002 compared to spatial null model). However, a model incorporating functional connectivity without spike rate data did not significantly outperform the null model (AUC 0.72,p= 0.38).Significance.Intracranial EEG functional connectivity is reduced in the SOZ region, and interictal data predict SOZ electrode localization and laterality, however a predictive model incorporating functional connectivity without interictal spike rates did not significantly outperform a spatial null model. We propose constructing a spatial null model to provide an estimate of the pre-implant hypothesis of the SOZ, and to serve as a benchmark for further machine learning algorithms in order to avoid overestimating model performance because of electrode sampling alone.
Collapse
Affiliation(s)
- Erin C Conrad
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - John M Bernabei
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Nishant Sinha
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Nina J Ghosn
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA, United States of America
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Brian Litt
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
15
|
Bernabei JM, Sinha N, Arnold TC, Conrad E, Ong I, Pattnaik AR, Stein JM, Shinohara RT, Lucas TH, Bassett DS, Davis KA, Litt B. Normative intracranial EEG maps epileptogenic tissues in focal epilepsy. Brain 2022; 145:1949-1961. [PMID: 35640886 PMCID: PMC9630716 DOI: 10.1093/brain/awab480] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/14/2021] [Accepted: 11/26/2021] [Indexed: 07/25/2023] Open
Abstract
Planning surgery for patients with medically refractory epilepsy often requires recording seizures using intracranial EEG. Quantitative measures derived from interictal intracranial EEG yield potentially appealing biomarkers to guide these surgical procedures; however, their utility is limited by the sparsity of electrode implantation as well as the normal confounds of spatiotemporally varying neural activity and connectivity. We propose that comparing intracranial EEG recordings to a normative atlas of intracranial EEG activity and connectivity can reliably map abnormal regions, identify targets for invasive treatment and increase our understanding of human epilepsy. Merging data from the Penn Epilepsy Center and a public database from the Montreal Neurological Institute, we aggregated interictal intracranial EEG retrospectively across 166 subjects comprising >5000 channels. For each channel, we calculated the normalized spectral power and coherence in each canonical frequency band. We constructed an intracranial EEG atlas by mapping the distribution of each feature across the brain and tested the atlas against data from novel patients by generating a z-score for each channel. We demonstrate that for seizure onset zones within the mesial temporal lobe, measures of connectivity abnormality provide greater distinguishing value than univariate measures of abnormal neural activity. We also find that patients with a longer diagnosis of epilepsy have greater abnormalities in connectivity. By integrating measures of both single-channel activity and inter-regional functional connectivity, we find a better accuracy in predicting the seizure onset zones versus normal brain (area under the curve = 0.77) compared with either group of features alone. We propose that aggregating normative intracranial EEG data across epilepsy centres into a normative atlas provides a rigorous, quantitative method to map epileptic networks and guide invasive therapy. We publicly share our data, infrastructure and methods, and propose an international framework for leveraging big data in surgical planning for refractory epilepsy.
Collapse
Affiliation(s)
- John M Bernabei
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Nishant Sinha
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - T Campbell Arnold
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Erin Conrad
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ian Ong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Akash R Pattnaik
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy H Lucas
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Brian Litt
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Anderson DN, Charlebois CM, Smith EH, Arain AM, Davis TS, Rolston JD. Probabilistic comparison of gray and white matter coverage between depth and surface intracranial electrodes in epilepsy. Sci Rep 2021; 11:24155. [PMID: 34921176 PMCID: PMC8683494 DOI: 10.1038/s41598-021-03414-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
In this study, we quantified the coverage of gray and white matter during intracranial electroencephalography in a cohort of epilepsy patients with surface and depth electrodes. We included 65 patients with strip electrodes (n = 12), strip and grid electrodes (n = 24), strip, grid, and depth electrodes (n = 7), or depth electrodes only (n = 22). Patient-specific imaging was used to generate probabilistic gray and white matter maps and atlas segmentations. Gray and white matter coverage was quantified using spherical volumes centered on electrode centroids, with radii ranging from 1 to 15 mm, along with detailed finite element models of local electric fields. Gray matter coverage was highly dependent on the chosen radius of influence (RoI). Using a 2.5 mm RoI, depth electrodes covered more gray matter than surface electrodes; however, surface electrodes covered more gray matter at RoI larger than 4 mm. White matter coverage and amygdala and hippocampal coverage was greatest for depth electrodes at all RoIs. This study provides the first probabilistic analysis to quantify coverage for different intracranial recording configurations. Depth electrodes offer increased coverage of gray matter over other recording strategies if the desired signals are local, while subdural grids and strips sample more gray matter if the desired signals are diffuse.
Collapse
Affiliation(s)
- Daria Nesterovich Anderson
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA. .,Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA.
| | - Chantel M Charlebois
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Elliot H Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Amir M Arain
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Tyler S Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - John D Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA. .,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|