1
|
Meyer AM, Snider SF, Faria AV, Tippett DC, Saloma R, Turkeltaub PE, Hillis AE, Friedman RB. Cortical and Behavioral Correlates of Alexia in Primary Progressive Aphasia and Alzheimer's Disease. Neuropsychologia 2025; 207:109066. [PMID: 39756511 DOI: 10.1016/j.neuropsychologia.2025.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
The underlying causes of reading impairment in neurodegenerative disease are not well understood. The current study seeks to determine the causes of surface alexia and phonological alexia in primary progressive aphasia (PPA) and typical (amnestic) Alzheimer's disease (AD). Participants included 24 with the logopenic variant (lvPPA), 17 with the nonfluent/agrammatic variant (nfvPPA), 12 with the semantic variant (svPPA), 19 with unclassifiable PPA (uPPA), and 16 with AD. Measures of Surface Alexia and Phonological Alexia were computed by subtracting control-condition word reading accuracy from irregular word reading and pseudoword reading accuracy, respectively. Cases of Surface Alexia were common in svPPA, lvPPA, uPPA, and AD, but not in nfvPPA. At the subgroup level, average Surface Alexia was significantly higher in svPPA, lvPPA, and uPPA, compared to unimpaired age-matched controls. Cases of Phonological Alexia were common in nfvPPA, lvPPA, and uPPA, and average Phonological Alexia was significantly higher in these subgroups, compared to unimpaired age-matched controls. Behavioral regression results indicated that Surface Alexia can be predicted by impairment in the lexical-semantic processing of nouns, suggesting that a lexical-semantic deficit is required for the development of surface alexia, while cortical volume regression results indicated that Surface Alexia can be predicted by reduced volume in the left Superior Temporal Pole, which has been associated with conceptual-semantic processing. Behavioral regression results indicated that Phonological Alexia can be predicted by impairment on Pseudoword Repetition, suggesting that this type of reading difficulty may be due to impaired phonological processing. The cortical volume regression results suggested that Phonological Alexia can be predicted by reduced volume within the left Inferior Temporal Gyrus and the left Angular Gyrus, areas that are associated with lexical-semantic processing and phonological processing, respectively.
Collapse
Affiliation(s)
- Aaron M Meyer
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center.
| | - Sarah F Snider
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| | | | - Donna C Tippett
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University; Department of Neurology, Johns Hopkins University; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University
| | - Ryan Saloma
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| | - Peter E Turkeltaub
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| | | | - Rhonda B Friedman
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| |
Collapse
|
2
|
Bulut T, Hagoort P. Contributions of the left and right thalami to language: A meta-analytic approach. Brain Struct Funct 2024; 229:2149-2166. [PMID: 38625556 PMCID: PMC11611992 DOI: 10.1007/s00429-024-02795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Despite a pervasive cortico-centric view in cognitive neuroscience, subcortical structures including the thalamus have been shown to be increasingly involved in higher cognitive functions. Previous structural and functional imaging studies demonstrated cortico-thalamo-cortical loops which may support various cognitive functions including language. However, large-scale functional connectivity of the thalamus during language tasks has not been examined before. METHODS The present study employed meta-analytic connectivity modeling to identify language-related coactivation patterns of the left and right thalami. The left and right thalami were used as regions of interest to search the BrainMap functional database for neuroimaging experiments with healthy participants reporting language-related activations in each region of interest. Activation likelihood estimation analyses were then carried out on the foci extracted from the identified studies to estimate functional convergence for each thalamus. A functional decoding analysis based on the same database was conducted to characterize thalamic contributions to different language functions. RESULTS The results revealed bilateral frontotemporal and bilateral subcortical (basal ganglia) coactivation patterns for both the left and right thalami, and also right cerebellar coactivations for the left thalamus, during language processing. In light of previous empirical studies and theoretical frameworks, the present connectivity and functional decoding findings suggest that cortico-subcortical-cerebellar-cortical loops modulate and fine-tune information transfer within the bilateral frontotemporal cortices during language processing, especially during production and semantic operations, but also other language (e.g., syntax, phonology) and cognitive operations (e.g., attention, cognitive control). CONCLUSION The current findings show that the language-relevant network extends beyond the classical left perisylvian cortices and spans bilateral cortical, bilateral subcortical (bilateral thalamus, bilateral basal ganglia) and right cerebellar regions.
Collapse
Affiliation(s)
- Talat Bulut
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Department of Speech and Language Therapy, School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Lago S, Zago S, Bambini V, Arcara G. Pre-Stimulus Activity of Left and Right TPJ in Linguistic Predictive Processing: A MEG Study. Brain Sci 2024; 14:1014. [PMID: 39452027 PMCID: PMC11505736 DOI: 10.3390/brainsci14101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The left and right temporoparietal junctions (TPJs) are two brain areas involved in several brain networks, largely studied for their diverse roles, from attentional orientation to theory of mind and, recently, predictive processing. In predictive processing, one crucial concept is prior precision, that is, the reliability of the predictions of incoming stimuli. This has been linked with modulations of alpha power as measured with electrophysiological techniques, but TPJs have seldom been studied in this framework. METHODS The present article investigates, using magnetoencephalography, whether spontaneous oscillations in pre-stimulus alpha power in the left and right TPJs can modulate brain responses during a linguistic task that requires predictive processing in literal and non-literal sentences. RESULTS Overall, results show that pre-stimulus alpha power in the rTPJ was associated with post-stimulus responses only in the left superior temporal gyrus, while lTPJ pre-stimulus alpha power was associated with post-stimulus activity in Broca's area, left middle temporal gyrus, and left superior temporal gyrus. CONCLUSIONS We conclude that both the right and left TPJs have a role in linguistic prediction, involving a network of core language regions, with differences across brain areas and linguistic conditions that can be parsimoniously explained in the context of predictive processing.
Collapse
Affiliation(s)
- Sara Lago
- IRCCS San Camillo Hospital, 30126 Venice, Italy; (S.L.); (S.Z.)
- Padova Neuroscience Center, University of Padua, 35129 Padua, Italy
| | - Sara Zago
- IRCCS San Camillo Hospital, 30126 Venice, Italy; (S.L.); (S.Z.)
| | - Valentina Bambini
- Laboratory of Neurolinguistics and Experimental Pragmatics (NEPLab), Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, 27100 Pavia, Italy;
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, 30126 Venice, Italy; (S.L.); (S.Z.)
- Padova Neuroscience Center, University of Padua, 35129 Padua, Italy
| |
Collapse
|
4
|
Upton E, Doogan C, Fleming V, Leyton PQ, Barbera D, Zeidman P, Hope T, Latham W, Coley-Fisher H, Price C, Crinion J, Leff A. Efficacy of a gamified digital therapy for speech production in people with chronic aphasia (iTalkBetter): behavioural and imaging outcomes of a phase II item-randomised clinical trial. EClinicalMedicine 2024; 70:102483. [PMID: 38685927 PMCID: PMC11056404 DOI: 10.1016/j.eclinm.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 05/02/2024] Open
Abstract
Background Aphasia is among the most debilitating of symptoms affecting stroke survivors. Speech and language therapy (SLT) is effective, but many hours of practice are required to make clinically meaningful gains. One solution to this 'dosage' problem is to automate therapeutic approaches via self-supporting apps so people with aphasia (PWA) can amass practice as it suits them. However, response to therapy is variable and no clinical trial has yet identified the key brain regions required to engage with word-retrieval therapy. Methods Between Sep 7, 2020 and Mar 1, 2022 at University College London in the UK, we carried out a phase II, item-randomised clinical trial in 27 PWA using a novel, self-led app, 'iTalkBetter', which utilises confrontation naming therapy. Unlike previously reported apps, it has a real-time utterance verification system that drives its adaptive therapy algorithm. Therapy items were individually randomised to provide balanced lists of 'trained' and 'untrained' items matched on key psycholinguistic variables and baseline performance. PWA practised with iTalkBetter over a 6-week therapy block. Structural and functional MRI data were collected to identify therapy-related changes in brain states. A repeated-measures design was employed. The trial was registered at ClinicalTrials.gov (NCT04566081). Findings iTalkBetter significantly improved naming ability by 13% for trained items compared with no change for untrained items, an average increase of 29 words (SD = 26) per person; beneficial effects persisted at three months. PWA's propositional speech also significantly improved. iTalkBetter use was associated with brain volume increases in right auditory and left anterior prefrontal cortices. Task-based fMRI identified dose-related activity in the right temporoparietal junction. Interpretation Our findings suggested that iTalkBetter significantly improves PWAs' naming ability on trained items. The effect size is similar to a previous RCT of computerised therapy, but this is the first study to show transfer to a naturalistic speaking task. iTalkBetter usage and dose caused observable changes in brain structure and function to key parts of the surviving language perception, production and control networks. iTalkBetter is being rolled-out as an app for all PWA and anomia: https://www.ucl.ac.uk/icn/research/research-groups/neurotherapeutics/projects/digital-interventions-neuro-rehabilitation-0 so that they can increase their dosage of practice-based SLT. Funding National Institute for Health and Care Research, Wellcome Centre for Human Neuroimaging.
Collapse
Affiliation(s)
- Emily Upton
- UCL Queen Square Institute of Neurology, University College London, UK
- Institute of Cognitive Neuroscience, University College London, UK
- Department of Psychology and Language Sciences, University College London, UK
| | - Catherine Doogan
- UCL Queen Square Institute of Neurology, University College London, UK
- Institute of Cognitive Neuroscience, University College London, UK
- St George’s, University of London, UK
| | - Victoria Fleming
- Department of Psychology and Language Sciences, University College London, UK
| | | | - David Barbera
- Institute of Cognitive Neuroscience, University College London, UK
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, University College London, UK
| | - Tom Hope
- Wellcome Centre for Human Neuroimaging, University College London, UK
- Department of Psychology and Social Science, John Cabot University, Rome, Italy
| | - William Latham
- Department of Computing, Goldsmiths, University of London, UK
| | | | - Cathy Price
- Wellcome Centre for Human Neuroimaging, University College London, UK
| | - Jennifer Crinion
- Institute of Cognitive Neuroscience, University College London, UK
- Department of Psychology and Language Sciences, University College London, UK
| | - Alex Leff
- UCL Queen Square Institute of Neurology, University College London, UK
- Institute of Cognitive Neuroscience, University College London, UK
- University College London Hospitals NHS Trust, UK
| |
Collapse
|
5
|
Zu Z, Choi S, Zhao Y, Gao Y, Li M, Schilling KG, Ding Z, Gore JC. The missing third dimension-Functional correlations of BOLD signals incorporating white matter. SCIENCE ADVANCES 2024; 10:eadi0616. [PMID: 38277462 PMCID: PMC10816695 DOI: 10.1126/sciadv.adi0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Correlations between magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signals from pairs of gray matter areas are used to infer their functional connectivity, but they are unable to describe how white matter is engaged in brain networks. Recently, evidence that BOLD signals in white matter are robustly detectable and are modulated by neural activities has accumulated. We introduce a three-way correlation between BOLD signals from pairs of gray matter volumes (nodes) and white matter bundles (edges) to define the communication connectivity through each white matter bundle. Using MRI images from publicly available databases, we show, for example, that the three-way connectivity is influenced by age. By integrating functional MRI signals from white matter as a third component in network analyses, more comprehensive descriptions of brain function may be obtained.
Collapse
Affiliation(s)
- Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Soyoung Choi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kurt G. Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Sajid N, Gajardo-Vidal A, Ekert JO, Lorca-Puls DL, Hope TMH, Green DW, Friston KJ, Price CJ. Degeneracy in the neurological model of auditory speech repetition. Commun Biol 2023; 6:1161. [PMID: 37957231 PMCID: PMC10643365 DOI: 10.1038/s42003-023-05515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Both classic and contemporary models of auditory word repetition involve at least four left hemisphere regions: primary auditory cortex for processing sounds; pSTS (within Wernicke's area) for processing auditory images of speech; pOp (within Broca's area) for processing motor images of speech; and primary motor cortex for overt speech articulation. Previous functional-MRI (fMRI) studies confirm that auditory repetition activates these regions, in addition to many others. Crucially, however, contemporary models do not specify how regions interact and drive each other during auditory repetition. Here, we used dynamic causal modelling, to test the functional interplay among the four core brain regions during single auditory word and pseudoword repetition. Our analysis is grounded in the principle of degeneracy-i.e., many-to-one structure-function relationships-where multiple neural pathways can execute the same function. Contrary to expectation, we found that, for both word and pseudoword repetition, (i) the effective connectivity between pSTS and pOp was predominantly bidirectional and inhibitory; (ii) activity in the motor cortex could be driven by either pSTS or pOp; and (iii) the latter varied both within and between individuals. These results suggest that different neural pathways can support auditory speech repetition. This degeneracy may explain resilience to functional loss after brain damage.
Collapse
Affiliation(s)
- Noor Sajid
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK.
| | - Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK
- Centro de Investigación en Complejidad Social (CICS), Universidad del Desarrollo, Concepción, Chile
| | - Justyna O Ekert
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK
| | - Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK
- Sección de Neurología, Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK
| | - David W Green
- Experimental Psychology, University College London, London, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK
| |
Collapse
|
7
|
Abujamea AH, Almosa M, Uzair M, Alabdullatif N, Bashir S. Reduced Cortical Complexity in Children with Developmental Delay in Saudi Arabia. Cureus 2023; 15:e48291. [PMID: 38058330 PMCID: PMC10696479 DOI: 10.7759/cureus.48291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
INTRODUCTION Developmental delay (DD) is a neurodevelopmental disorder characterized by delays in multiple domains. The investigation of brain structure in DD has been enhanced by advanced neuroimaging techniques that can identify regional surface deformities. Neuroimaging studies have identified structural brain abnormalities in individuals with DD, but research specific to the Saudi Arabian population is limited. In this study, we examine the neuroanatomical abnormalities in the cortical and subcortical regions of Saudi Arabian children with DD. METHOD A T1-weighted, 1-mm-thick MRI was used to acquire structural brain images of 29 children with DD and age-matched healthy controls. RESULTS Analysis of the MRI data revealed significant differences in several cortical and subcortical structures of gray matter (GM) and white matter (WM) in several brain regions of the DD group. Specifically, significant deformities were observed in the caudate nucleus, globus pallidus, frontal gyrus, pars opercularis, pars orbitalis, cingulate gyrus, and subcallosal gyrus. These findings suggest disrupted neurodevelopment in these regions, which may contribute to the cognitive, motor, and behavioral impairments commonly observed in individuals with DD. CONCLUSIONS The present study provides valuable insights into the neuroanatomical differences in Saudi Arabian children with DD. Our results provide evidence for cortical and subcortical abnormalities in DD. Deformities in the observed regions may contribute to cognitive impairment, emotional dysregulation, mood disorders, and language deficits commonly observed in DD. The structural analysis may enable the identification of neuroanatomical biomarkers to facilitate the early diagnosis or progression of DD. These results suggest that lower cortical complexity in DD children due to alterations in networks may play a critical role in early brain development.
Collapse
Affiliation(s)
- Abdullah H Abujamea
- Department of Radiology and Medical Imaging, King Saud University Medical City, King Saud University, Riyadh, SAU
| | - Mohammed Almosa
- Department of Radiology and Medical Imaging, King Saud University Medical City, King Saud University, Riyadh 12372, Saudi Arabia, Riyadh, SAU
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, PAK
| | | | - Shahid Bashir
- Department of Neuroscience, Neuroscience Center, King Fahad Specialist Hospital, Dammam, SAU
| |
Collapse
|
8
|
Nakatani H, Nakamura Y, Okanoya K. Respective Involvement of the Right Cerebellar Crus I and II in Syntactic and Semantic Processing for Comprehension of Language. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01451-y. [PMID: 35927417 DOI: 10.1007/s12311-022-01451-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The right posterolateral portions of the cerebellum (crus-I/II) are involved in language processing. However, their functional role in language remains unknown. The cerebellum is hypothesized to acquire an internal model that is a functional copy of mental representations in the cerebrum and to contribute to cognitive function. In this research, based on the cerebellar internal model hypothesis, we conducted task-based and resting-state functional magnetic resonance imaging (fMRI) experiments to investigate the role of the cerebellum in the syntactic and semantic aspects of comprehension of sentences. In a syntactic task, participants read sentences with center-embedded hierarchical structures. The hierarchical level-dependent activity was found in the right crus-I as well as Broca's area (p < 0.05, voxel-based small volume correction (SVC)). In a semantic task, the participants read three types of sentences for investigation of sentence-level, phrase-level, and word-level semantic processing. The semantic level-dependent activity was found in the right crus-II as well as in the left anterior temporal lobe and the left angular gyrus (p < 0.05, voxel-based SVC). Moreover, the right crus-I/II showed significant activity when the cognitive load was high. Resting-state fMRI demonstrated intrinsic functional connectivity between the right crus-I/II and language-related regions in the left cerebrum (p < 0.05, voxel-based SVC). These findings suggest that the right crus-I and crus-II are involved, respectively, in the syntactic and semantic aspects of sentence processing. The cerebellum assists processing of language in the cerebrum when the cognitive load is high.
Collapse
Affiliation(s)
- Hironori Nakatani
- School of Information and Telecommunication Engineering, Tokai University, 2-3-23, Minato-ku, TakanawaTokyo, 108-8619, Japan.
- RIKEN Center for Brain Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yuko Nakamura
- The Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, 3-8-1, Meguro-ku, KomabaTokyo, 153-8902, Japan
- Institute for Diversity & Adaptation of Human Mind (UTIDAHM), The University of Tokyo, 3-8-1, Meguro-ku, KomabaTokyo, 153-8902, Japan
| | - Kazuo Okanoya
- RIKEN Center for Brain Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
- The Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, 3-8-1, Meguro-ku, KomabaTokyo, 153-8902, Japan
- Institute for Diversity & Adaptation of Human Mind (UTIDAHM), The University of Tokyo, 3-8-1, Meguro-ku, KomabaTokyo, 153-8902, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- Teikyo University, Advanced Comprehensive Research Organization, 2-21-1, Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| |
Collapse
|
9
|
Bulut T. Meta-analytic connectivity modeling of the left and right inferior frontal gyri. Cortex 2022; 155:107-131. [DOI: 10.1016/j.cortex.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/21/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
|