1
|
Herlopian A. Networks through the lens of high-frequency oscillations. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1462672. [PMID: 39679263 PMCID: PMC11638840 DOI: 10.3389/fnetp.2024.1462672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/22/2024] [Indexed: 12/17/2024]
Abstract
To date, there is no neurophysiologic or neuroimaging biomarker that can accurately delineate the epileptogenic network. High-frequency oscillations (HFO) have been proposed as biomarkers for epileptogenesis and the epileptogenic network. The pathological HFO have been associated with areas of seizure onset and epileptogenic tissue. Several studies have demonstrated that the resection of areas with high rates of pathological HFO is associated with favorable postoperative outcomes. Recent studies have demonstrated the spatiotemporal organization of HFO into networks and their potential role in defining epileptogenic networks. Our review will present the existing literature on HFO-associated networks, specifically focusing on their role in defining epileptogenic networks and their potential significance in surgical planning.
Collapse
Affiliation(s)
- Aline Herlopian
- Yale Comprehensive Epilepsy Center, Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Zhang Y, Daida A, Liu L, Kuroda N, Ding Y, Oana S, Kanai S, Monsoor T, Duan C, Hussain SA, Qiao JX, Salamon N, Fallah A, Sim MS, Sankar R, Staba RJ, Engel J, Asano E, Roychowdhury V, Nariai H. Self-Supervised Data-Driven Approach Defines Pathological High-Frequency Oscillations in Human. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.10.24310189. [PMID: 39040207 PMCID: PMC11261948 DOI: 10.1101/2024.07.10.24310189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Objective Interictal high-frequency oscillations (HFOs) are a promising neurophysiological biomarker of the epileptogenic zone (EZ). However, objective criteria for distinguishing pathological from physiological HFOs remain elusive, hindering clinical application. We investigated whether the distinct mechanisms underlying pathological and physiological HFOs are encapsulated in their signal morphology in intracranial EEG (iEEG) recordings and whether this mechanism-driven distinction could be simulated by a deep generative model. Methods In a retrospective cohort of 185 epilepsy patients who underwent iEEG monitoring, we analyzed 686,410 HFOs across 18,265 brain contacts. To learn morphological characteristics, each event was transformed into a time-frequency plot and input into a variational autoencoder. We characterized latent space clusters containing morphologically defined putative pathological HFOs (mpHFOs) using interpretability analysis, including latent space disentanglement and time-domain perturbation. Results mpHFOs showed strong associations with expert-defined spikes and were predominantly located within the seizure onset zone (SOZ). Discovered novel pathological features included high power in the gamma (30-80 Hz) and ripple (>80 Hz) bands centered on the event. These characteristics were consistent across multiple variables, including institution, electrode type, and patient demographics. Predicting 12-month postoperative seizure outcomes using the resection ratio of mpHFOs outperformed unclassified HFOs (F1=0.72 vs. 0.68) and matched current clinical standards using SOZ resection (F1=0.74). Combining mpHFO data with demographic and SOZ resection status further improved prediction accuracy (F1=0.83). Interpretation Our data-driven approach yielded a novel, explainable definition of pathological HFOs, which has the potential to further enhance the clinical use of HFOs for EZ delineation.
Collapse
Affiliation(s)
- Yipeng Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lawrence Liu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Naoto Kuroda
- Department of Pediatrics and Neurology, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuanyi Ding
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Shingo Oana
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Sotaro Kanai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Tonmoy Monsoor
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Chenda Duan
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Shaun A Hussain
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Joe X Qiao
- Division of Neuroradiology, Department of Radiology, UCLA Medical Center, David Geffen School of Medicine, Los 6 Angeles, CA, USA
| | - Noriko Salamon
- Division of Neuroradiology, Department of Radiology, UCLA Medical Center, David Geffen School of Medicine, Los 6 Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Myung Shin Sim
- Department of Medicine, Statistics Core, University of California, Los Angeles, CA, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Richard J Staba
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Neurobiology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- The Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Eishi Asano
- Department of Pediatrics and Neurology, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| | - Vwani Roychowdhury
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA, USA
| |
Collapse
|
3
|
Hoogteijling S, Schaft EV, Dirks EHM, Straumann S, Demuru M, van Eijsden P, Gebbink T, Otte WM, Huiskamp GM, van 't Klooster MA, Zijlmans M. Machine learning for (non-)epileptic tissue detection from the intraoperative electrocorticogram. Clin Neurophysiol 2024; 167:14-25. [PMID: 39265288 DOI: 10.1016/j.clinph.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE Clinical visual intraoperative electrocorticography (ioECoG) reading intends to localize epileptic tissue and improve epilepsy surgery outcome. We aimed to understand whether machine learning (ML) could complement ioECoG reading, how subgroups affected performance, and which ioECoG features were most important. METHODS We included 91 ioECoG-guided epilepsy surgery patients with Engel 1A outcome. We allocated 71 training and 20 test set patients. We trained an extra trees classifier (ETC) with 14 spectral features to classify ioECoG channels as covering resected or non-resected tissue. We compared the ETC's performance with clinical ioECoG reading and assessed whether patient subgroups affected performance. Explainable artificial intelligence (xAI) unveiled the most important ioECoG features learnt by the ETC. RESULTS The ETC outperformed clinical reading in five test set patients, was inferior in six, and both were inconclusive in nine. The ETC performed best in the tumor subgroup (area under ROC curve: 0.84 [95%CI 0.79-0.89]). xAI revealed predictors of resected (relative theta, alpha, and fast ripple power) and non-resected tissue (relative beta and gamma power). CONCLUSIONS Combinations of subtle spectral ioECoG changes, imperceptible by the human eye, can aid healthy and pathological tissue discrimination. SIGNIFICANCE ML with spectral ioECoG features can support, rather than replace, clinical ioECoG reading, particularly in tumors.
Collapse
Affiliation(s)
- Sem Hoogteijling
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands; Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Eline V Schaft
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands
| | - Evi H M Dirks
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands; Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Sven Straumann
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands; Department of Anesthesiology, University Hospital Bern, Switzerland
| | - Matteo Demuru
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| | - Pieter van Eijsden
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands
| | - Tineke Gebbink
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| | - Willem M Otte
- Department of Child Neurology, University Medical Center Utrecht, and Utrecht University, Utrecht, The Netherlands
| | - Geertjan M Huiskamp
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands
| | - Maryse A van 't Klooster
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands
| | - Maeike Zijlmans
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands.
| |
Collapse
|
4
|
Wagstyl K, Kobow K, Casillas-Espinosa PM, Cole AJ, Jiménez-Jiménez D, Nariai H, Baulac S, O'Brien T, Henshall DC, Akman O, Sankar R, Galanopoulou AS, Auvin S. WONOEP 2022: Neurotechnology for the diagnosis of epilepsy. Epilepsia 2024; 65:2238-2247. [PMID: 38829313 DOI: 10.1111/epi.18028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Epilepsy's myriad causes and clinical presentations ensure that accurate diagnoses and targeted treatments remain a challenge. Advanced neurotechnologies are needed to better characterize individual patients across multiple modalities and analytical techniques. At the XVIth Workshop on Neurobiology of Epilepsy: Early Onset Epilepsies: Neurobiology and Novel Therapeutic Strategies (WONOEP 2022), the session on "advanced tools" highlighted a range of approaches, from molecular phenotyping of genetic epilepsy models and resected tissue samples to imaging-guided localization of epileptogenic tissue for surgical resection of focal malformations. These tools integrate cutting edge research, clinical data acquisition, and advanced computational methods to leverage the rich information contained within increasingly large datasets. A number of common challenges and opportunities emerged, including the need for multidisciplinary collaboration, multimodal integration, potential ethical challenges, and the multistage path to clinical translation. Despite these challenges, advanced epilepsy neurotechnologies offer the potential to improve our understanding of the underlying causes of epilepsy and our capacity to provide patient-specific treatment.
Collapse
Affiliation(s)
- Konrad Wagstyl
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
- Developmental Neurosciences, UCL Great Ormond Street for Child Health, UCL, London, UK
| | - Katja Kobow
- Institute of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Pablo M Casillas-Espinosa
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Andrew J Cole
- MGH Epilepsy Service, Division of Clinical Neurophysiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diego Jiménez-Jiménez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Medical Center, Los Angeles, California, USA
| | - Stéphanie Baulac
- Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Terence O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - David C Henshall
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ozlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, California, USA
- UCLA Children's Discovery and Innovation Institute, California, Los Angeles, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stéphane Auvin
- Université Paris-Cité, INSERM NeuroDiderot, Paris, France
- Pediatric Neurology Department, APHP, Robert Debré University Hospital, CRMR Epilepsies Rares, EpiCARE member, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
5
|
Lucas A, Revell A, Davis KA. Artificial intelligence in epilepsy - applications and pathways to the clinic. Nat Rev Neurol 2024; 20:319-336. [PMID: 38720105 DOI: 10.1038/s41582-024-00965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 06/06/2024]
Abstract
Artificial intelligence (AI) is rapidly transforming health care, and its applications in epilepsy have increased exponentially over the past decade. Integration of AI into epilepsy management promises to revolutionize the diagnosis and treatment of this complex disorder. However, translation of AI into neurology clinical practice has not yet been successful, emphasizing the need to consider progress to date and assess challenges and limitations of AI. In this Review, we provide an overview of AI applications that have been developed in epilepsy using a variety of data modalities: neuroimaging, electroencephalography, electronic health records, medical devices and multimodal data integration. For each, we consider potential applications, including seizure detection and prediction, seizure lateralization, localization of the seizure-onset zone and assessment for surgical or neurostimulation interventions, and review the performance of AI tools developed to date. We also discuss methodological considerations and challenges that must be addressed to successfully integrate AI into clinical practice. Our goal is to provide an overview of the current state of the field and provide guidance for leveraging AI in future to improve management of epilepsy.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Revell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Zhang Y, Liu L, Ding Y, Chen X, Monsoor T, Daida A, Oana S, Hussain S, Sankar R, Fallah A, Santana-Gomez C, Engel J, Staba RJ, Speier W, Zhang J, Nariai H, Roychowdhury V. PyHFO: lightweight deep learning-powered end-to-end high-frequency oscillations analysis application. J Neural Eng 2024; 21:036023. [PMID: 38722308 PMCID: PMC11135143 DOI: 10.1088/1741-2552/ad4916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Objective. This study aims to develop and validate an end-to-end software platform, PyHFO, that streamlines the application of deep learning (DL) methodologies in detecting neurophysiological biomarkers for epileptogenic zones from EEG recordings.Approach. We introduced PyHFO, which enables time-efficient high-frequency oscillation (HFO) detection algorithms like short-term energy and Montreal Neurological Institute and Hospital detectors. It incorporates DL models for artifact and HFO with spike classification, designed to operate efficiently on standard computer hardware.Main results. The validation of PyHFO was conducted on three separate datasets: the first comprised solely of grid/strip electrodes, the second a combination of grid/strip and depth electrodes, and the third derived from rodent studies, which sampled the neocortex and hippocampus using depth electrodes. PyHFO demonstrated an ability to handle datasets efficiently, with optimization techniques enabling it to achieve speeds up to 50 times faster than traditional HFO detection applications. Users have the flexibility to employ our pre-trained DL model or use their EEG data for custom model training.Significance. PyHFO successfully bridges the computational challenge faced in applying DL techniques to EEG data analysis in epilepsy studies, presenting a feasible solution for both clinical and research settings. By offering a user-friendly and computationally efficient platform, PyHFO paves the way for broader adoption of advanced EEG data analysis tools in clinical practice and fosters potential for large-scale research collaborations.
Collapse
Affiliation(s)
- Yipeng Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, United States of America
| | - Lawrence Liu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, United States of America
| | - Yuanyi Ding
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, United States of America
| | - Xin Chen
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, United States of America
| | - Tonmoy Monsoor
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, United States of America
| | - Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, United States of America
| | - Shingo Oana
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, United States of America
| | - Shaun Hussain
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, United States of America
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, United States of America
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, United States of America
| | - Cesar Santana-Gomez
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA 90095, United States of America
| | - Jerome Engel
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA 90095, United States of America
- Department of Neurobiology, University of California, Los Angeles, CA, United States of America
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States of America
| | - Richard J Staba
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA 90095, United States of America
| | - William Speier
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, United States of America
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Jianguo Zhang
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, United States of America
| | - Vwani Roychowdhury
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, United States of America
| |
Collapse
|
7
|
Jia X, Shen Y, Yang J, Song R, Zhang W, Meng MQH, Liao JC, Xing L. PolypMixNet: Enhancing semi-supervised polyp segmentation with polyp-aware augmentation. Comput Biol Med 2024; 170:108006. [PMID: 38325216 DOI: 10.1016/j.compbiomed.2024.108006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND AI-assisted polyp segmentation in colonoscopy plays a crucial role in enabling prompt diagnosis and treatment of colorectal cancer. However, the lack of sufficient annotated data poses a significant challenge for supervised learning approaches. Existing semi-supervised learning methods also suffer from performance degradation, mainly due to task-specific characteristics, such as class imbalance in polyp segmentation. PURPOSE The purpose of this work is to develop an effective semi-supervised learning framework for accurate polyp segmentation in colonoscopy, addressing limited annotated data and class imbalance challenges. METHODS We proposed PolypMixNet, a semi-supervised framework, for colorectal polyp segmentation, utilizing novel augmentation techniques and a Mean Teacher architecture to improve model performance. PolypMixNet introduces the polyp-aware mixup (PolypMix) algorithm and incorporates dual-level consistency regularization. PolypMix addresses the class imbalance in colonoscopy datasets and enhances the diversity of training data. By performing a polyp-aware mixup on unlabeled samples, it generates mixed images with polyp context along with their artificial labels. A polyp-directed soft pseudo-labeling (PDSPL) mechanism was proposed to generate high-quality pseudo labels and eliminate the dilution of lesion features caused by mixup operations. To ensure consistency in the training phase, we introduce the PolypMix prediction consistency (PMPC) loss and PolypMix attention consistency (PMAC) loss, enforcing consistency at both image and feature levels. Code is available at https://github.com/YChienHung/PolypMix. RESULTS PolypMixNet was evaluated on four public colonoscopy datasets, achieving 88.97% Dice and 88.85% mIoU on the benchmark dataset of Kvasir-SEG. In scenarios where the labeled training data is limited to 15%, PolypMixNet outperforms the state-of-the-art semi-supervised approaches with a 2.88-point improvement in Dice. It also shows the ability to reach performance comparable to the fully supervised counterpart. Additionally, we conducted extensive ablation studies to validate the effectiveness of each module and highlight the superiority of our proposed approach. CONCLUSION PolypMixNet effectively addresses the challenges posed by limited annotated data and unbalanced class distributions in polyp segmentation. By leveraging unlabeled data and incorporating novel augmentation and consistency regularization techniques, our method achieves state-of-the-art performance. We believe that the insights and contributions presented in this work will pave the way for further advancements in semi-supervised polyp segmentation and inspire future research in the medical imaging domain.
Collapse
Affiliation(s)
- Xiao Jia
- School of Control Science and Engineering, Shandong University, Jinan, China.
| | - Yutian Shen
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jianhong Yang
- School of Control Science and Engineering, Shandong University, Jinan, China.
| | - Ran Song
- School of Control Science and Engineering, Shandong University, Jinan, China.
| | - Wei Zhang
- School of Control Science and Engineering, Shandong University, Jinan, China.
| | - Max Q-H Meng
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Joseph C Liao
- Department of Urology, Stanford University, Stanford, 94305, CA, USA; VA Palo Alto Health Care System, Palo Alto, 94304, CA, USA.
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, 94305, CA, USA.
| |
Collapse
|
8
|
Monsoor T, Zhang Y, Daida A, Oana S, Lu Q, Hussain SA, Fallah A, Sankar R, Staba RJ, Speier W, Roychowdhury V, Nariai H. Optimizing detection and deep learning-based classification of pathological high-frequency oscillations in epilepsy. Clin Neurophysiol 2023; 154:129-140. [PMID: 37603979 PMCID: PMC10861270 DOI: 10.1016/j.clinph.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE This study aimed to explore sensitive detection methods for pathological high-frequency oscillations (HFOs) to improve seizure outcomes in epilepsy surgery. METHODS We analyzed interictal HFOs (80-500 Hz) in 15 children with medication-resistant focal epilepsy who underwent chronic intracranial electroencephalogram via subdural grids. The HFOs were assessed using the short-term energy (STE) and Montreal Neurological Institute (MNI) detectors and examined for spike association and time-frequency plot characteristics. A deep learning (DL)-based classification was applied to purify pathological HFOs. Postoperative seizure outcomes were correlated with HFO-resection ratios to determine the optimal HFO detection method. RESULTS The MNI detector identified a higher percentage of pathological HFOs than the STE detector, but some pathological HFOs were detected only by the STE detector. HFOs detected by both detectors had the highest spike association rate. The Union detector, which detects HFOs identified by either the MNI or STE detector, outperformed other detectors in predicting postoperative seizure outcomes using HFO-resection ratios before and after DL-based purification. CONCLUSIONS HFOs detected by standard automated detectors displayed different signal and morphological characteristics. DL-based classification effectively purified pathological HFOs. SIGNIFICANCE Enhancing the detection and classification methods of HFOs will improve their utility in predicting postoperative seizure outcomes.
Collapse
Affiliation(s)
- Tonmoy Monsoor
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Yipeng Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Shingo Oana
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Qiujing Lu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Shaun A Hussain
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA; The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Richard J Staba
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - William Speier
- Department of Bioengineering, University of California, Los Angeles, CA, USA; Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Vwani Roychowdhury
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA; The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Monsoor T, Zhang Y, Daida A, Oana S, Lu Q, Hussain SA, Fallah A, Sankar R, Staba RJ, Speier W, Roychowdhury V, Nariai H. Optimizing Detection and Deep Learning-based Classification of Pathological High-Frequency Oscillations in Epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.13.23288435. [PMID: 37131743 PMCID: PMC10153337 DOI: 10.1101/2023.04.13.23288435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Objective This study aimed to explore sensitive detection methods and deep learning (DL)-based classification for pathological high-frequency oscillations (HFOs). Methods We analyzed interictal HFOs (80-500 Hz) in 15 children with medication-resistant focal epilepsy who underwent resection after chronic intracranial electroencephalogram via subdural grids. The HFOs were assessed using the short-term energy (STE) and Montreal Neurological Institute (MNI) detectors and examined for pathological features based on spike association and time-frequency plot characteristics. A DL-based classification was applied to purify pathological HFOs. Postoperative seizure outcomes were correlated with HFO-resection ratios to determine the optimal HFO detection method. Results The MNI detector identified a higher percentage of pathological HFOs than the STE detector, but some pathological HFOs were detected only by the STE detector. HFOs detected by both detectors exhibited the most pathological features. The Union detector, which detects HFOs identified by either the MNI or STE detector, outperformed other detectors in predicting postoperative seizure outcomes using HFO-resection ratios before and after DL-based purification. Conclusions HFOs detected by standard automated detectors displayed different signal and morphological characteristics. DL-based classification effectively purified pathological HFOs. Significance Enhancing the detection and classification methods of HFOs will improve their utility in predicting postoperative seizure outcomes. HIGHLIGHTS HFOs detected by the MNI detector showed different traits and higher pathological bias than those detected by the STE detectorHFOs detected by both MNI and STE detectors (the Intersection HFOs) were deemed the most pathologicalA deep learning-based classification was able to distill pathological HFOs, regard-less of the initial HFO detection methods.
Collapse
|
10
|
Zhang Y, Chung H, Ngo JP, Monsoor T, Hussain SA, Matsumoto JH, Walshaw PD, Fallah A, Sim MS, Asano E, Sankar R, Staba RJ, Engel J, Speier W, Roychowdhury V, Nariai H. Characterizing physiological high-frequency oscillations using deep learning. J Neural Eng 2022; 19:10.1088/1741-2552/aca4fa. [PMID: 36541546 PMCID: PMC10364130 DOI: 10.1088/1741-2552/aca4fa] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Objective.Intracranially-recorded interictal high-frequency oscillations (HFOs) have been proposed as a promising spatial biomarker of the epileptogenic zone. However, HFOs can also be recorded in the healthy brain regions, which complicates the interpretation of HFOs. The present study aimed to characterize salient features of physiological HFOs using deep learning (DL).Approach.We studied children with neocortical epilepsy who underwent intracranial strip/grid evaluation. Time-series EEG data were transformed into DL training inputs. The eloquent cortex (EC) was defined by functional cortical mapping and used as a DL label. Morphological characteristics of HFOs obtained from EC (ecHFOs) were distilled and interpreted through a novel weakly supervised DL model.Main results.A total of 63 379 interictal intracranially-recorded HFOs from 18 children were analyzed. The ecHFOs had lower amplitude throughout the 80-500 Hz frequency band around the HFO onset and also had a lower signal amplitude in the low frequency band throughout a one-second time window than non-ecHFOs, resembling a bell-shaped template in the time-frequency map. A minority of ecHFOs were HFOs with spikes (22.9%). Such morphological characteristics were confirmed to influence DL model prediction via perturbation analyses. Using the resection ratio (removed HFOs/detected HFOs) of non-ecHFOs, the prediction of postoperative seizure outcomes improved compared to using uncorrected HFOs (area under the ROC curve of 0.82, increased from 0.76).Significance.We characterized salient features of physiological HFOs using a DL algorithm. Our results suggested that this DL-based HFO classification, once trained, might help separate physiological from pathological HFOs, and efficiently guide surgical resection using HFOs.
Collapse
Affiliation(s)
- Yipeng Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Hoyoung Chung
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Jacquline P. Ngo
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Tonmoy Monsoor
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Shaun A. Hussain
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Joyce H. Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Patricia D. Walshaw
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Myung Shin Sim
- Department of Medicine, Statistics Core, University of California, Los Angeles, CA, USA
| | - Eishi Asano
- Department of Pediatrics and Neurology, Children’s Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children’s Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Richard J. Staba
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Neurobiology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- The Brain Research Institute, University of California, Los Angeles, CA, USA
| | - William Speier
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Vwani Roychowdhury
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children’s Discovery and Innovation Institute, Los Angeles, CA, USA
| |
Collapse
|
11
|
Avberšek LK, Repovš G. Deep learning in neuroimaging data analysis: Applications, challenges, and solutions. FRONTIERS IN NEUROIMAGING 2022; 1:981642. [PMID: 37555142 PMCID: PMC10406264 DOI: 10.3389/fnimg.2022.981642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 08/10/2023]
Abstract
Methods for the analysis of neuroimaging data have advanced significantly since the beginning of neuroscience as a scientific discipline. Today, sophisticated statistical procedures allow us to examine complex multivariate patterns, however most of them are still constrained by assuming inherent linearity of neural processes. Here, we discuss a group of machine learning methods, called deep learning, which have drawn much attention in and outside the field of neuroscience in recent years and hold the potential to surpass the mentioned limitations. Firstly, we describe and explain the essential concepts in deep learning: the structure and the computational operations that allow deep models to learn. After that, we move to the most common applications of deep learning in neuroimaging data analysis: prediction of outcome, interpretation of internal representations, generation of synthetic data and segmentation. In the next section we present issues that deep learning poses, which concerns multidimensionality and multimodality of data, overfitting and computational cost, and propose possible solutions. Lastly, we discuss the current reach of DL usage in all the common applications in neuroimaging data analysis, where we consider the promise of multimodality, capability of processing raw data, and advanced visualization strategies. We identify research gaps, such as focusing on a limited number of criterion variables and the lack of a well-defined strategy for choosing architecture and hyperparameters. Furthermore, we talk about the possibility of conducting research with constructs that have been ignored so far or/and moving toward frameworks, such as RDoC, the potential of transfer learning and generation of synthetic data.
Collapse
Affiliation(s)
- Lev Kiar Avberšek
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
12
|
Cometa A, Falasconi A, Biasizzo M, Carpaneto J, Horn A, Mazzoni A, Micera S. Clinical neuroscience and neurotechnology: An amazing symbiosis. iScience 2022; 25:105124. [PMID: 36193050 PMCID: PMC9526189 DOI: 10.1016/j.isci.2022.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the last decades, clinical neuroscience found a novel ally in neurotechnologies, devices able to record and stimulate electrical activity in the nervous system. These technologies improved the ability to diagnose and treat neural disorders. Neurotechnologies are concurrently enabling a deeper understanding of healthy and pathological dynamics of the nervous system through stimulation and recordings during brain implants. On the other hand, clinical neurosciences are not only driving neuroengineering toward the most relevant clinical issues, but are also shaping the neurotechnologies thanks to clinical advancements. For instance, understanding the etiology of a disease informs the location of a therapeutic stimulation, but also the way stimulation patterns should be designed to be more effective/naturalistic. Here, we describe cases of fruitful integration such as Deep Brain Stimulation and cortical interfaces to highlight how this symbiosis between clinical neuroscience and neurotechnology is closer to a novel integrated framework than to a simple interdisciplinary interaction.
Collapse
Affiliation(s)
- Andrea Cometa
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Antonio Falasconi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Biasizzo
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Jacopo Carpaneto
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Translational Neural Engineering Lab, School of Engineering, École Polytechnique Fèdèrale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Liu Z, Wei P, Wang Y, Yang Y, Dai Y, Cao G, Kang G, Shan Y, Liu D, Xie Y. Automatic Detection of High-Frequency Oscillations Based on an End-to-End Bi-Branch Neural Network and Clinical Cross-Validation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:7532241. [PMID: 34992650 PMCID: PMC8727108 DOI: 10.1155/2021/7532241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/28/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022]
Abstract
Accurate identification of high-frequency oscillation (HFO) is an important prerequisite for precise localization of epileptic foci and good prognosis of drug-refractory epilepsy. Exploring a high-performance automatic detection method for HFOs can effectively help clinicians reduce the error rate and reduce manpower. Due to the limited analysis perspective and simple model design, it is difficult to meet the requirements of clinical application by the existing methods. Therefore, an end-to-end bi-branch fusion model is proposed to automatically detect HFOs. With the filtered band-pass signal (signal branch) and time-frequency image (TFpic branch) as the input of the model, two backbone networks for deep feature extraction are established, respectively. Specifically, a hybrid model based on ResNet1d and long short-term memory (LSTM) is designed for signal branch, which can focus on both the features in time and space dimension, while a ResNet2d with a Convolutional Block Attention Module (CBAM) is constructed for TFpic branch, by which more attention is paid to useful information of TF images. Then the outputs of two branches are fused to realize end-to-end automatic identification of HFOs. Our method is verified on 5 patients with intractable epilepsy. In intravalidation, the proposed method obtained high sensitivity of 94.62%, specificity of 92.7%, and F1-score of 93.33%, and in cross-validation, our method achieved high sensitivity of 92.00%, specificity of 88.26%, and F1-score of 89.11% on average. The results show that the proposed method outperforms the existing detection paradigms of either single signal or single time-frequency diagram strategy. In addition, the average kappa coefficient of visual analysis and automatic detection results is 0.795. The method shows strong generalization ability and high degree of consistency with the gold standard meanwhile. Therefore, it has great potential to be a clinical assistant tool.
Collapse
Affiliation(s)
- Zimo Liu
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing 100876, China
| | - Penghu Wei
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yiping Wang
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing 100876, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yang Dai
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Gongpeng Cao
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing 100876, China
| | - Guixia Kang
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing 100876, China
- Beijing Baihui Weikang Technology Co., Ltd., Beijing 100083, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Da Liu
- Beijing Baihui Weikang Technology Co., Ltd., Beijing 100083, China
| | - Yongzhao Xie
- Beijing Baihui Weikang Technology Co., Ltd., Beijing 100083, China
| |
Collapse
|