1
|
Dell’Angelica D, Singh K, Colwell CS, Ghiani CA. Circadian Interventions in Preclinical Models of Huntington's Disease: A Narrative Review. Biomedicines 2024; 12:1777. [PMID: 39200241 PMCID: PMC11351982 DOI: 10.3390/biomedicines12081777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder caused by an autosomal-dominant mutation in the huntingtin gene, which manifests with a triad of motor, cognitive and psychiatric declines. Individuals with HD often present with disturbed sleep/wake cycles, but it is still debated whether altered circadian rhythms are intrinsic to its aetiopathology or a consequence. Conversely, it is well established that sleep/wake disturbances, perhaps acting in concert with other pathophysiological mechanisms, worsen the impact of the disease on cognitive and motor functions and are a burden to the patients and their caretakers. Currently, there is no cure to stop the progression of HD, however, preclinical research is providing cementing evidence that restoring the fluctuation of the circadian rhythms can assist in delaying the onset and slowing progression of HD. Here we highlight the application of circadian-based interventions in preclinical models and provide insights into their potential translation in clinical practice. Interventions aimed at improving sleep/wake cycles' synchronization have shown to improve motor and cognitive deficits in HD models. Therefore, a strong support for their suitability to ameliorate HD symptoms in humans emerges from the literature, albeit with gaps in our knowledge on the underlying mechanisms and possible risks associated with their implementation.
Collapse
Affiliation(s)
- Derek Dell’Angelica
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Karan Singh
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
2
|
Maclachlan KH, Gitareja K, Kang J, Cuddihy A, Cao Y, Hein N, Cullinane C, Ang CS, Brajanovski N, Pearson RB, Khot A, Sanij E, Hannan RD, Poortinga G, Harrison SJ. Targeting the ribosome to treat multiple myeloma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200771. [PMID: 38596309 PMCID: PMC10905045 DOI: 10.1016/j.omton.2024.200771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/11/2024]
Abstract
The high rates of protein synthesis and processing render multiple myeloma (MM) cells vulnerable to perturbations in protein homeostasis. The induction of proteotoxic stress by targeting protein degradation with proteasome inhibitors (PIs) has revolutionized the treatment of MM. However, resistance to PIs is inevitable and represents an ongoing clinical challenge. Our first-in-human study of the selective inhibitor of RNA polymerase I transcription of ribosomal RNA genes, CX-5461, has demonstrated a potential signal for anti-tumor activity in three of six heavily pre-treated MM patients. Here, we show that CX-5461 has potent anti-myeloma activity in PI-resistant MM preclinical models in vitro and in vivo. In addition to inhibiting ribosome biogenesis, CX-5461 causes topoisomerase II trapping and replication-dependent DNA damage, leading to G2/M cell-cycle arrest and apoptotic cell death. Combining CX-5461 with PI does not further enhance the anti-myeloma activity of CX-5461 in vivo. In contrast, CX-5461 shows synergistic interaction with the histone deacetylase inhibitor panobinostat in both the Vk∗MYC and the 5T33-KaLwRij mouse models of MM by targeting ribosome biogenesis and protein synthesis through distinct mechanisms. Our findings thus provide strong evidence to facilitate the clinical development of targeting the ribosome to treat relapsed and refractory MM.
Collapse
Affiliation(s)
- Kylee H. Maclachlan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kezia Gitareja
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine- St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Jian Kang
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine- St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Cuddihy
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Yuxi Cao
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nadine Hein
- The ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carleen Cullinane
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Natalie Brajanovski
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Richard B. Pearson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Amit Khot
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Elaine Sanij
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine- St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Ross D. Hannan
- The ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Gretchen Poortinga
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Simon J. Harrison
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Uzungil V, Luza S, Opazo CM, Mees I, Li S, Ang CS, Williamson NA, Bush AI, Hannan AJ, Renoir T. Phosphoproteomics implicates glutamatergic and dopaminergic signalling in the antidepressant-like properties of the iron chelator deferiprone. Neuropharmacology 2024; 246:109837. [PMID: 38184274 DOI: 10.1016/j.neuropharm.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Current antidepressants have limitations due to insufficient efficacy and delay before improvement in symptoms. Polymorphisms of the serotonin transporter (5-HTT) gene have been linked to depression (when combined with stressful life events) and altered response to selective serotonergic reuptake inhibitors. We have previously revealed the antidepressant-like properties of the iron chelator deferiprone in the 5-HTT knock-out (KO) mouse model of depression. Furthermore, deferiprone was found to alter neural activity in the prefrontal cortex of both wild-type (WT) and 5-HTT KO mice. METHODS In the current study, we examined the molecular effects of acute deferiprone treatment in the prefrontal cortex of both genotypes via phosphoproteomics analysis. RESULTS In WT mice treated with deferiprone, there were 22 differentially expressed phosphosites, with gene ontology analysis implicating cytoskeletal proteins. In 5-HTT KO mice treated with deferiprone, we found 33 differentially expressed phosphosites. Gene ontology analyses revealed phosphoproteins that were predominantly involved in synaptic and glutamatergic signalling. In a drug-naïve cohort (without deferiprone administration), the analysis revealed 21 differentially expressed phosphosites in 5-HTT KO compared to WT mice. We confirmed the deferiprone-induced increase in tyrosine hydroxylase serine 40 residue phosphorylation (pTH-Ser40) (initially revealed in our phosphoproteomics study) by Western blot analysis, with deferiprone increasing pTH-Ser40 expression in WT and 5-HTT KO mice. CONCLUSION As glutamatergic and synaptic signalling are dysfunctional in 5-HTT KO mice (and are the target of fast-acting antidepressant drugs such as ketamine), these molecular effects may underpin deferiprone's antidepressant-like properties. Furthermore, dopaminergic signalling may also be involved in deferiprone's antidepressant-like properties.
Collapse
Affiliation(s)
- Volkan Uzungil
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Sandra Luza
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
| | - Carlos M Opazo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Isaline Mees
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Shanshan Li
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
4
|
Durydivka O, Gazdarica M, Vecerkova K, Radenkovic S, Blahos J. Multiple Sgip1 splice variants inhibit cannabinoid receptor 1 internalization. Gene 2024; 892:147851. [PMID: 37783296 DOI: 10.1016/j.gene.2023.147851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Alternative splicing can often result in the expression of distinct protein isoforms from a single gene, with specific composition and properties. SH3-containing GRB2-like protein 3-interacting protein 1 (Sgip1) is a brain-enriched protein that regulates clathrin-mediated endocytosis and interferes with the internalization of cannabinoid receptor 1. Several research groups have studied the physiological importance of Sgip1, and four Sgip1 protein isoforms have been described to date, while the NCBI Gene database predicts the expression of 20 splice variants from the Sgip1 gene in mice. In this work, we cloned 15 Sgip1 splice variants from the mouse brain, including 11 novel splice variants. The cloned splice variants differed in exon composition within two Sgip1 regions: the membrane phospholipid-binding domain and the proline-rich region. All the Sgip1 splice isoforms had similar stability and comparable ability to inhibit the internalization of cannabinoid receptor 1. None of the isoforms influenced the internalization of the µ-opioid receptor. We confirm the expression of Sgip1 splice variants described in previous studies or predicted in silico. Our data provide a basis for further studies exploring the significance of Sgip1 splicing, and we suggest a new classification of Sgip1 splice variants to unify their nomenclature.
Collapse
Affiliation(s)
- Oleh Durydivka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Matej Gazdarica
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Katerina Vecerkova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Department of Informatics and Chemistry, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| | - Silvia Radenkovic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jaroslav Blahos
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
5
|
Morè L, Privitera L, Cooper DD, Tsogka M, Arthur JSC, Frenguelli BG. MSK1 is required for the beneficial synaptic and cognitive effects of enriched experience across the lifespan. Aging (Albany NY) 2023; 15:6031-6072. [PMID: 37432063 PMCID: PMC10373962 DOI: 10.18632/aging.204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023]
Abstract
Positive experiences, such as social interaction, cognitive training and physical exercise, have been shown to ameliorate some of the harms to cognition associated with ageing. Animal models of positive interventions, commonly known as environmental enrichment, strongly influence neuronal morphology and synaptic function and enhance cognitive performance. While the profound structural and functional benefits of enrichment have been appreciated for decades, little is known as to how the environment influences neurons to respond and adapt to these positive sensory experiences. We show that adult and aged male wild-type mice that underwent a 10-week environmental enrichment protocol demonstrated improved performance in a variety of behavioural tasks, including those testing spatial working and spatial reference memory, and an enhancement in hippocampal LTP. Aged animals in particular benefitted from enrichment, performing spatial memory tasks at levels similar to healthy adult mice. Many of these benefits, including in gene expression, were absent in mice with a mutation in an enzyme, MSK1, which is activated by BDNF, a growth factor implicated in rodent and human cognition. We conclude that enrichment is beneficial across the lifespan and that MSK1 is required for the full extent of these experience-induced improvements of cognitive abilities, synaptic plasticity and gene expression.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Lucia Privitera
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Daniel D. Cooper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Marianthi Tsogka
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
6
|
Sapp E, Boudi A, Reid SJ, Trombetta BA, Kivisäkk P, Taghian T, Arnold SE, Howland D, Gray-Edwards H, Kegel-Gleason KB, DiFiglia M. Levels of Synaptic Proteins in Brain and Neurofilament Light Chain in Cerebrospinal Fluid and Plasma of OVT73 Huntington's Disease Sheep Support a Prodromal Disease State. J Huntingtons Dis 2023; 12:201-213. [PMID: 37661892 DOI: 10.3233/jhd-230590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Synaptic changes occur early in patients with Huntington's disease (HD) and in mouse models of HD. An analysis of synaptic changes in HD transgenic sheep (OVT73) is fitting since they have been shown to have some phenotypes. They also have larger brains, longer lifespan, and greater motor and cognitive capacities more aligned with humans, and can provide abundant biofluids for in vivo monitoring of therapeutic interventions. OBJECTIVE The objective of this study was to determine if there were differences between 5- and 10-year-old OVT73 and wild-type (WT) sheep in levels of synaptic proteins in brain and in neurofilament light chain (NfL) in cerebrospinal fluid (CSF) and plasma. METHODS Mutant huntingtin (mHTT) and other proteins were measured by western blot assay in synaptosomes prepared from caudate, motor, and piriform cortex in 5-year-old and caudate, putamen, motor; and piriform cortex in 10-year-old WT and OVT73 sheep. Levels of NfL, a biomarker for neuronal damage increased in many neurological disorders including HD, were examined in CSF and plasma samples from 10-year-old WT and OVT73 sheep using the Simoa NfL Advantage kit. RESULTS Western blot analysis showed mHTT protein expression in synaptosomes from OVT73 sheep was 23% of endogenous sheep HTT levels at both ages. Significant changes were detected in brain levels of PDE10A, SCN4B, DARPP32, calmodulin, SNAP25, PSD95, VGLUT 1, VAMP1, and Na+/K+-ATPase, which depended on age and brain region. There was no difference in NfL levels in CSF and plasma in OVT73 sheep compared to age-matched WT sheep. CONCLUSIONS These results show that synaptic changes occur in brain of 5- and 10-year-old OVT73 sheep, but levels of NfL in biofluids are unaffected. Altogether, the data support a prodromal disease state in OVT73 sheep that involves the caudate, putamen and cortex.
Collapse
Affiliation(s)
- Ellen Sapp
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Adel Boudi
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Suzanne J Reid
- Centre for Brain Research, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Bianca A Trombetta
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pia Kivisäkk
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Toloo Taghian
- Department of Radiology and Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Steven E Arnold
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Heather Gray-Edwards
- Department of Radiology and Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kimberly B Kegel-Gleason
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marian DiFiglia
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|