1
|
Ricklin D. Complement-targeted therapeutics: Are we there yet, or just getting started? Eur J Immunol 2024; 54:e2350816. [PMID: 39263829 PMCID: PMC11628912 DOI: 10.1002/eji.202350816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Therapeutic interventions in the complement system, a key immune-inflammatory mediator and contributor to a broad range of clinical conditions, have long been considered important yet challenging or even unfeasible to achieve. Almost 20 years ago, a spark was lit demonstrating the clinical and commercial viability of complement-targeted therapies. Since then, the field has experienced an impressive expansion of targeted indications and available treatment modalities. Currently, a dozen distinct complement-specific therapeutics covering several intervention points are available in the clinic, benefiting patients suffering from eight disorders, not counting numerous clinical trials and off-label uses. Observing this rapid rise of complement-targeted therapy from obscurity to mainstream with amazement, one might ask whether the peak of this development has now been reached or whether the field will continue marching on to new heights. This review looks at the milestones of complement drug discovery and development achieved so far, surveys the currently approved drug entities and indications, and ventures a glimpse into the future advancements yet to come.
Collapse
Affiliation(s)
- Daniel Ricklin
- Molecular Pharmacy Group, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
2
|
Antoine JC. Antibodies in immune-mediated peripheral neuropathies. Where are we in 2024? Rev Neurol (Paris) 2024; 180:876-887. [PMID: 39322491 DOI: 10.1016/j.neurol.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Over the past 30 years, about 20 antibodies have been identified in immune-mediated neuropathies, recognizing membrane or intracellular proteins or glycolipids of neuron and Schwann cells. This article reviews the different methods used for their detection, what we know about their pathogenic role, how they have helped identify several disorders, and how they are essential for diagnosis. Despite sustained efforts, some immune-mediated disorders still lack identified autoantibodies, notably the classical form of Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. The reasons for this are discussed. The article also tries to determine potential future developments in antibody research, particularly the use of omic approaches and the search for other types of biomarkers beyond diagnostic ones, such as those that can identify patients who will respond to a given treatment.
Collapse
Affiliation(s)
- J-C Antoine
- Service de neurologie, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France; Inserm CNRS, laboratoire SynAtac, MeliS, université Jean-Monnet, Saint-Étienne, France.
| |
Collapse
|
3
|
Steggerda JA, Heeger PS. The Promise of Complement Therapeutics in Solid Organ Transplantation. Transplantation 2024; 108:1882-1894. [PMID: 38361233 DOI: 10.1097/tp.0000000000004927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Transplantation is the ideal therapy for end-stage organ failure, but outcomes for all transplant organs are suboptimal, underscoring the need to develop novel approaches to improve graft survival and function. The complement system, traditionally considered a component of innate immunity, is now known to broadly control inflammation and crucially contribute to induction and function of adaptive T-cell and B-cell immune responses, including those induced by alloantigens. Interest of pharmaceutical industries in complement therapeutics for nontransplant indications and the understanding that the complement system contributes to solid organ transplantation injury through multiple mechanisms raise the possibility that targeting specific complement components could improve transplant outcomes and patient health. Here, we provide an overview of complement biology and review the roles and mechanisms through which the complement system is pathogenically linked to solid organ transplant injury. We then discuss how this knowledge has been translated into novel therapeutic strategies to improve organ transplant outcomes and identify areas for future investigation. Although the clinical application of complement-targeted therapies in transplantation remains in its infancy, the increasing availability of new agents in this arena provides a rich environment for potentially transformative translational transplant research.
Collapse
Affiliation(s)
- Justin A Steggerda
- Division of Abdominal Transplant Surgery, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Peter S Heeger
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
4
|
Bellanti R, Rinaldi S. Guillain-Barré syndrome: a comprehensive review. Eur J Neurol 2024; 31:e16365. [PMID: 38813755 PMCID: PMC11235944 DOI: 10.1111/ene.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Guillain-Barré syndrome (GBS) is a potentially devastating yet treatable disorder. A classically postinfectious, immune-mediated, monophasic polyradiculoneuropathy, it is the leading global cause of acquired neuromuscular paralysis. In most cases, the immunopathological process driving nerve injury is ill-defined. Diagnosis of GBS relies on clinical features, supported by laboratory findings and electrophysiology. Although previously divided into primary demyelinating or axonal variants, this dichotomy is increasingly challenged, and is not endorsed by the recent European Academy of Neurology (EAN)/Peripheral Nerve Society (PNS) guidelines. Intravenous immunoglobulin and plasma exchange remain the primary modalities of treatment, regardless of the electrophysiological subtype. Most patients recover, but approximately one-third require mechanical ventilation, and 5% die. Disease activity and treatment response are currently monitored through interval neurological examination and outcome measures, and the potential role of fluid biomarkers is under ongoing scrutiny. Novel potential therapies for GBS are being explored but none have yet modified clinical practice. This review provides a comprehensive update on the pathological and clinical aspects of GBS for clinicians and scientists.
Collapse
Affiliation(s)
- Roberto Bellanti
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Simon Rinaldi
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
van Doorn PA, Van den Bergh PYK, Hadden RDM, Avau B, Vankrunkelsven P, Attarian S, Blomkwist-Markens PH, Cornblath DR, Goedee HS, Harbo T, Jacobs BC, Kusunoki S, Lehmann HC, Lewis RA, Lunn MP, Nobile-Orazio E, Querol L, Rajabally YA, Umapathi T, Topaloglu HA, Willison HJ. European Academy of Neurology/Peripheral Nerve Society Guideline on diagnosis and treatment of Guillain-Barré syndrome. Eur J Neurol 2023; 30:3646-3674. [PMID: 37814552 DOI: 10.1111/ene.16073] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023]
Abstract
Guillain-Barré syndrome (GBS) is an acute polyradiculoneuropathy. Symptoms may vary greatly in presentation and severity. Besides weakness and sensory disturbances, patients may have cranial nerve involvement, respiratory insufficiency, autonomic dysfunction and pain. To develop an evidence-based guideline for the diagnosis and treatment of GBS, using Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology a Task Force (TF) of the European Academy of Neurology (EAN) and the Peripheral Nerve Society (PNS) constructed 14 Population/Intervention/Comparison/Outcome questions (PICOs) covering diagnosis, treatment and prognosis of GBS, which guided the literature search. Data were extracted and summarised in GRADE Summaries of Findings (for treatment PICOs) or Evidence Tables (for diagnostic and prognostic PICOs). Statements were prepared according to GRADE Evidence-to-Decision (EtD) frameworks. For the six intervention PICOs, evidence-based recommendations are made. For other PICOs, good practice points (GPPs) are formulated. For diagnosis, the principal GPPs are: GBS is more likely if there is a history of recent diarrhoea or respiratory infection; CSF examination is valuable, particularly when the diagnosis is less certain; electrodiagnostic testing is advised to support the diagnosis; testing for anti-ganglioside antibodies is of limited clinical value in most patients with typical motor-sensory GBS, but anti-GQ1b antibody testing should be considered when Miller Fisher syndrome (MFS) is suspected; nodal-paranodal antibodies should be tested when autoimmune nodopathy is suspected; MRI or ultrasound imaging should be considered in atypical cases; and changing the diagnosis to acute-onset chronic inflammatory demyelinating polyradiculoneuropathy (A-CIDP) should be considered if progression continues after 8 weeks from onset, which occurs in around 5% of patients initially diagnosed with GBS. For treatment, the TF recommends intravenous immunoglobulin (IVIg) 0.4 g/kg for 5 days, in patients within 2 weeks (GPP also within 2-4 weeks) after onset of weakness if unable to walk unaided, or a course of plasma exchange (PE) 12-15 L in four to five exchanges over 1-2 weeks, in patients within 4 weeks after onset of weakness if unable to walk unaided. The TF recommends against a second IVIg course in GBS patients with a poor prognosis; recommends against using oral corticosteroids, and weakly recommends against using IV corticosteroids; does not recommend PE followed immediately by IVIg; weakly recommends gabapentinoids, tricyclic antidepressants or carbamazepine for treatment of pain; does not recommend a specific treatment for fatigue. To estimate the prognosis of individual patients, the TF advises using the modified Erasmus GBS outcome score (mEGOS) to assess outcome, and the modified Erasmus GBS Respiratory Insufficiency Score (mEGRIS) to assess the risk of requiring artificial ventilation. Based on the PICOs, available literature and additional discussions, we provide flow charts to assist making clinical decisions on diagnosis, treatment and the need for intensive care unit admission.
Collapse
Affiliation(s)
- Pieter A van Doorn
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Peter Y K Van den Bergh
- Neuromuscular Reference Centre, Department of Neurology, University Hospital Saint-Luc, Brussels, Belgium
| | | | - Bert Avau
- Cochrane Belgium, CEBAM, Leuven, Belgium
- CEBaP, Belgian Red Cross, Mechelen, Belgium
| | - Patrik Vankrunkelsven
- Department of Public Health and Primary Care KU Leuven, Cochrane Belgium, CEBAM, Leuven, Belgium
| | - Shahram Attarian
- Centre de Référence des Maladies Neuromusculaires et de la SLA, APHM, CHU Timone, Marseille, France
| | | | - David R Cornblath
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - H Stephan Goedee
- Department of Neurology, University Medical Center Utrecht, Brain Center UMC Utrecht, Utrecht, The Netherlands
| | - Thomas Harbo
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Bart C Jacobs
- Department of Neurology and Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Susumu Kusunoki
- Department of Neurology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Helmar C Lehmann
- Department of Neurology, Medical Faculty Köln, University Hospital Köln, Cologne, Germany
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael P Lunn
- Department of Neurology and MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Research Institute, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luis Querol
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yusuf A Rajabally
- Neuromuscular Service, Neurology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | | | | | - Hugh J Willison
- Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
6
|
van Doorn PA, Van den Bergh PYK, Hadden RDM, Avau B, Vankrunkelsven P, Attarian S, Blomkwist-Markens PH, Cornblath DR, Goedee HS, Harbo T, Jacobs BC, Kusunoki S, Lehmann HC, Lewis RA, Lunn MP, Nobile-Orazio E, Querol L, Rajabally YA, Umapathi T, Topaloglu HA, Willison HJ. European Academy of Neurology/Peripheral Nerve Society Guideline on diagnosis and treatment of Guillain-Barré syndrome. J Peripher Nerv Syst 2023; 28:535-563. [PMID: 37814551 DOI: 10.1111/jns.12594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023]
Abstract
Guillain-Barré syndrome (GBS) is an acute polyradiculoneuropathy. Symptoms may vary greatly in presentation and severity. Besides weakness and sensory disturbances, patients may have cranial nerve involvement, respiratory insufficiency, autonomic dysfunction and pain. To develop an evidence-based guideline for the diagnosis and treatment of GBS, using Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology, a Task Force (TF) of the European Academy of Neurology (EAN) and the Peripheral Nerve Society (PNS) constructed 14 Population/Intervention/Comparison/Outcome questions (PICOs) covering diagnosis, treatment and prognosis of GBS, which guided the literature search. Data were extracted and summarised in GRADE Summaries of Findings (for treatment PICOs) or Evidence Tables (for diagnostic and prognostic PICOs). Statements were prepared according to GRADE Evidence-to-Decision (EtD) frameworks. For the six intervention PICOs, evidence-based recommendations are made. For other PICOs, good practice points (GPPs) are formulated. For diagnosis, the principal GPPs are: GBS is more likely if there is a history of recent diarrhoea or respiratory infection; CSF examination is valuable, particularly when the diagnosis is less certain; electrodiagnostic testing is advised to support the diagnosis; testing for anti-ganglioside antibodies is of limited clinical value in most patients with typical motor-sensory GBS, but anti-GQ1b antibody testing should be considered when Miller Fisher syndrome (MFS) is suspected; nodal-paranodal antibodies should be tested when autoimmune nodopathy is suspected; MRI or ultrasound imaging should be considered in atypical cases; and changing the diagnosis to acute-onset chronic inflammatory demyelinating polyradiculoneuropathy (A-CIDP) should be considered if progression continues after 8 weeks from onset, which occurs in around 5% of patients initially diagnosed with GBS. For treatment, the TF recommends intravenous immunoglobulin (IVIg) 0.4 g/kg for 5 days, in patients within 2 weeks (GPP also within 2-4 weeks) after onset of weakness if unable to walk unaided, or a course of plasma exchange (PE) 12-15 L in four to five exchanges over 1-2 weeks, in patients within 4 weeks after onset of weakness if unable to walk unaided. The TF recommends against a second IVIg course in GBS patients with a poor prognosis; recommends against using oral corticosteroids, and weakly recommends against using IV corticosteroids; does not recommend PE followed immediately by IVIg; weakly recommends gabapentinoids, tricyclic antidepressants or carbamazepine for treatment of pain; does not recommend a specific treatment for fatigue. To estimate the prognosis of individual patients, the TF advises using the modified Erasmus GBS outcome score (mEGOS) to assess outcome, and the modified Erasmus GBS Respiratory Insufficiency Score (mEGRIS) to assess the risk of requiring artificial ventilation. Based on the PICOs, available literature and additional discussions, we provide flow charts to assist making clinical decisions on diagnosis, treatment and the need for intensive care unit admission.
Collapse
Affiliation(s)
- Pieter A van Doorn
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Peter Y K Van den Bergh
- Neuromuscular Reference Centre, Department of Neurology, University Hospital Saint-Luc, Brussels, Belgium
| | | | - Bert Avau
- Cochrane Belgium, CEBAM, Leuven, Belgium
- CEBaP, Belgian Red Cross, Mechelen, Belgium
| | - Patrik Vankrunkelsven
- Department of Public Health and Primary Care KU Leuven, Cochrane Belgium, CEBAM, Leuven, Belgium
| | - Shahram Attarian
- Centre de Référence des Maladies Neuromusculaires et de la SLA, APHM, CHU Timone, Marseille, France
| | | | - David R Cornblath
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - H Stephan Goedee
- Department of Neurology, University Medical Center Utrecht, Brain Center UMC Utrecht, Utrecht, The Netherlands
| | - Thomas Harbo
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Bart C Jacobs
- Department of Neurology and Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Susumu Kusunoki
- Department of Neurology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Helmar C Lehmann
- Department of Neurology, Medical Faculty Köln, University Hospital Köln, Cologne, Germany
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael P Lunn
- Department of Neurology and MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Research Institute, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luis Querol
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yusuf A Rajabally
- Neuromuscular Service, Neurology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | | | | | - Hugh J Willison
- Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Dziadkowiak E, Nowakowska-Kotas M, Rałowska-Gmoch W, Budrewicz S, Koszewicz M. Molecular, Electrophysiological, and Ultrasonographic Differences in Selected Immune-Mediated Neuropathies with Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24119180. [PMID: 37298132 DOI: 10.3390/ijms24119180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The spectrum of immune-mediated neuropathies is broad and the different subtypes are still being researched. With the numerous subtypes of immune-mediated neuropathies, establishing the appropriate diagnosis in normal clinical practice is challenging. The treatment of these disorders is also troublesome. The authors have undertaken a literature review of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), Guillain-Barre syndrome (GBS) and multifocal motor neuropathy (MMN). The molecular, electrophysiological and ultrasound features of these autoimmune polyneuropathies are analyzed, highlighting the differences in diagnosis and ultimately treatment. The immune dysfunction can lead to damage to the peripheral nervous system. In practice, it is suspected that these disorders are caused by autoimmunity to proteins located in the node of Ranvier or myelin components of peripheral nerves, although disease-associated autoantibodies have not been identified for all disorders. The electrophysiological presence of conduction blocks is another important factor characterizing separate subgroups of treatment-naive motor neuropathies, including multifocal CIDP (synonyms: multifocal demyelinating neuropathy with persistent conduction block), which differs from multifocal motor neuropathy with conduction block (MMN) in both responses to treatment modalities and electrophysiological features. Ultrasound is a reliable method for diagnosing immune-mediated neuropathies, particularly when alternative diagnostic examinations yield inconclusive results. In overall terms, the management of these disorders includes immunotherapy such as corticosteroids, intravenous immunoglobulin or plasma exchange. Improvements in clinical criteria and the development of more disease-specific immunotherapies should expand the therapeutic possibilities for these debilitating diseases.
Collapse
Affiliation(s)
- Edyta Dziadkowiak
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Marta Nowakowska-Kotas
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Wiktoria Rałowska-Gmoch
- Department of Neurology, The St. Jadwiga's Regional Specialist Neuropsychiatric Centre, Wodociągowa 4, 45-221 Opole, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
8
|
Cunningham ME, McGonigal R, Barrie JA, Campbell CI, Yao D, Willison HJ. Axolemmal nanoruptures arising from paranodal membrane injury induce secondary axon degeneration in murine Guillain-Barré syndrome. J Peripher Nerv Syst 2023; 28:17-31. [PMID: 36710500 PMCID: PMC10947354 DOI: 10.1111/jns.12532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
The major determinant of poor outcome in Guillain-Barré syndrome (GBS) is axonal degeneration. Pathways leading to primary axonal injury in the motor axonal variant are well established, whereas mechanisms of secondary axonal injury in acute inflammatory demyelinating polyneuropathy (AIDP) are unknown. We recently developed an autoantibody-and complement-mediated model of murine AIDP, in which prominent injury to glial membranes at the node of Ranvier results in severe disruption to paranodal components. Acutely, axonal integrity was maintained, but over time secondary axonal degeneration occurred. Herein, we describe the differential mechanisms underlying acute glial membrane injury and secondary axonal injury in this model. Ex vivo nerve-muscle explants were injured for either acute or extended periods with an autoantibody-and complement-mediated injury to glial paranodal membranes. This model was used to test several possible mechanisms of axon degeneration including calpain activation, and to monitor live axonal calcium signalling. Glial calpains induced acute disruption of paranodal membrane proteins in the absence of discernible axonal injury. Over time, we observed progressive axonal degeneration which was markedly attenuated by axon-specific calpain inhibition. Injury was unaffected by all other tested methods of protection. Trans-axolemmal diffusion of fluorescent proteins and live calcium imaging studies indirectly demonstrated the presence of nanoruptures in the axon membrane. This study outlines one mechanism by which secondary axonal degeneration arises in the AIDP variant of GBS where acute paranodal loop injury is prominent. The data also support the development of calpain inhibitors to attenuate both primary and secondary axonal degeneration in GBS.
Collapse
Affiliation(s)
| | - Rhona McGonigal
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | | | | | - Denggao Yao
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | | |
Collapse
|