1
|
Khezri MR, Pashaei MR, Ghasemnejad-Berenji M, Ghasemnejad-Berenji H. Sitagliptin exhibits protective effects against methotrexate-induced testicular toxicity: The involvement of oxidative stress-related factors. Reprod Toxicol 2024; 129:108672. [PMID: 39043351 DOI: 10.1016/j.reprotox.2024.108672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Methotrexate (MTX) is widely prescribed to treat different malignancies as well as autoimmune diseases. However, it causes a range of side effects in different organs such as testis. This study aims to clarify the role of dipeptidyl peptidase 4 (DPP4) in MTX-induced testicular damage via pathways involved in oxidative stress and evaluates the protective effects of sitagliptin as a DPP4 inhibitor. Twenty-four animals randomly allocated into four groups including: (I) control, (II) MTX (20 mg/kg, i.p.), (III) sitagliptin (20 mg/kg, i.p., for four consecutive days), and MTX + sitagliptin in which received chemicals resembling group II and III. Histopathological examinations conducted to assess the structural changes in testes of different experimental groups. Also, ELISA method employed to investigate the levels of DPP4, AKT, p-AKT, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). In addition, the total malondialdehyde (MDA) content and the activity of superoxide dismutase (SOD) were assessed. The results indicated that MTX administration was accompanied with testicular damage, which reversed by sitagliptin treatment. The biochemical observations demonstrated that MTX markedly increased the levels of DPP4, decreased p-AKT/AKT ratio followed by a marked decrement in Nrf2 and HO-1 levels. Also, it was observed that MTX decreased the activity of SOD and increased total MDA content in testicular specimen. However, sitagliptin treatment diminished mentioned alterations effectively. Altogether, our findings supported the possible role of DPP4 in MTX-induced testicular toxicity along with the potential protective features of sitagliptin via suppressing of the histopathological and biochemical alterations induced by MTX.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran; Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Liu C, Khairullina L, Qin Y, Zhang Y, Xiao Z. Adipose stem cell exosomes promote mitochondrial autophagy through the PI3K/AKT/mTOR pathway to alleviate keloids. Stem Cell Res Ther 2024; 15:305. [PMID: 39278919 PMCID: PMC11403874 DOI: 10.1186/s13287-024-03928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Fibrosis with unrelieved chronic inflammation is an important pathological change in keloids. Mitochondrial autophagy plays a crucial role in reducing inflammation and inhibiting fibrosis. Adipose stem cell-derived exosomes, a product of adipose stem cell paracrine secretion, have pharmacological effects, such as anti-inflammatory and antiapoptotic effects, and mediate autophagy. Therefore, this study aims to investigate the function and mechanism of adipose stem cell exosomes in the treatment of keloids. METHOD We isolated adipose stem cell exosomes under normoxic and hypoxic condition to detect their effects on keloid fibroblast proliferation, migration, and collagen synthesis. Meanwhile, 740YPDGFR (PI3K/AKT activator) was applied to detect the changes in autophagic flow levels and mitochondrial morphology and function in keloid fibroblasts. We constructed a human keloid mouse model by transplanting human keloid tissues into six-week-old (20-22 g; female) BALB/c nude mice, meanwhile, we applied adipose stem cell exosomes to treat the mouse model and observed the retention and effect of ADSC exosomes in vivo. RESULTS ADSC exosomes can inhibit the PI3K/AKT/mTOR signaling pathway. The exosomes of ADSCs decreased the inflammatory level of KFs, enhanced the interaction between P62 and LC3, and restored the mitochondrial membrane potential. In the human keloid mouse model, ADSC exosomes can exist stably, promote mitochondrial autophagy in keloid tissue, improve mitochondrial morphology, reduce inflammatory reaction and fibrosis. Meanwhile, At the same time, the exosomes derived from hypoxic adipose stem cells have played a more effective role in both in vitro and in vivo experiments. CONCLUSIONS Adipose stem cell exosomes inhibited the PI3K/AKT/mTOR pathway, activated mitochondrial autophagy, and alleviated keloid scars.
Collapse
Affiliation(s)
- Chang Liu
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Liliia Khairullina
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Youyou Qin
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yingbo Zhang
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zhibo Xiao
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
3
|
Kim HJ, Kim YH. Comprehensive Insights into Keloid Pathogenesis and Advanced Therapeutic Strategies. Int J Mol Sci 2024; 25:8776. [PMID: 39201463 PMCID: PMC11354446 DOI: 10.3390/ijms25168776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Keloid scars, characterized by abnormal fibroproliferation and excessive extracellular matrix (ECM) production that extends beyond the original wound, often cause pruritus, pain, and hyperpigmentation, significantly impacting the quality of life. Keloid pathogenesis is multifactorial, involving genetic predisposition, immune response dysregulation, and aberrant wound-healing processes. Central molecular pathways such as TGF-β/Smad and JAK/STAT are important in keloid formation by sustaining fibroblast activation and ECM deposition. Conventional treatments, including surgical excision, radiation, laser therapies, and intralesional injections, yield variable success but are limited by high recurrence rates and potential adverse effects. Emerging therapies targeting specific immune pathways, small molecule inhibitors, RNA interference, and mesenchymal stem cells show promise in disrupting the underlying mechanisms of keloid pathogenesis, potentially offering more effective and lasting treatment outcomes. Despite advancements, further research is essential to fully elucidate the precise mechanisms of keloid formation and to develop targeted therapies. Ongoing clinical trials and research efforts are vital for translating these scientific insights into practical treatments that can markedly enhance the quality of life for individuals affected by keloid scars.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Chen S, Zhang W, Xia Z, Xie J, Li Z, Liu Z, Yu N, Wang X. MicroRNAs Associated with Keloids Identified by Microarray Analysis and In Vitro Experiments. Mol Biotechnol 2024:10.1007/s12033-024-01058-0. [PMID: 38393632 DOI: 10.1007/s12033-024-01058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024]
Abstract
MicroRNAs (miRNAs) play a crucial role in gene regulation and the development of keloid. This research aimed to identify and verify miRNAs associated with keloids by microarray analysis and in vitro experiments, shedding light on seeking for potential therapeutic molecular targets. In this study, the weighted gene co-expression network analysis was performed based on the GSE113620. The key miRNA module most relevant to the keloid was further screened to identify hub miRNAs, and then hub miRNAs was verified by the microarray analysis and qRT-PCR experiments. Additionally, targeted genes of hub miRNAs were predicted and verified. Gene ontology (GO) analysis and KEGG enrichment analysis were also conducted. Five miRNA modules were divided, and the blue module exhibited the highest correlation with keloids. Then, hsa-miR-127-3p, hsa-miR-214-3p, hsa-miR-155-5p, hsa-miR-409-5p, and hsa-miR-542-5p were identified as the hub miRNAs. Subsequently, the microarray analysis and qRT-PCR results demonstrated that the expression of five miRNAs were upregulated in keloid tissues. The GO analysis revealed that the target genes of these miRNAs were mainly enriched in biological processes including gene transcription, protein phosphorylation and the MAPK (mitogen-activated protein kinase) cascade, and the KEGG pathway enrichment analysis showed that the PI3K-AKT signaling pathway were significantly enriched. In conclusion, these five miRNAs (hsa-miR-127-3p, hsa-miR-155-5p, hsa-miR-214-3p, hsa-miR-409-5p, and hsa-miR-542-5p) play vital roles in the pathogenesis of keloid and might be potential therapeutic targets. These miRNAs might regulate genes enriched in gene transcription, protein phosphorylation, the MAPK cascade, and the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Sichao Chen
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenchao Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zenan Xia
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangmiao Xie
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijin Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of International Medical Service, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiaojun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Li C, Xie R, Zhang S, Yun J, Zhong A, Cen Y, Chen J. Metabolism, fibrosis, and apoptosis: The effect of lipids and their derivatives on keloid formation. Int Wound J 2024; 21:e14733. [PMID: 38339798 PMCID: PMC10858330 DOI: 10.1111/iwj.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Keloids, pathological scars resulting from skin trauma, have traditionally posed significant clinical management challenges due to their persistence and high recurrence rates. Our research elucidates the pivotal roles of lipids and their derivatives in keloid development, driven by underlying mechanisms of abnormal cell proliferation, apoptosis, and extracellular matrix deposition. Key findings suggest that abnormalities in arachidonic acid (AA) synthesis and non-essential fatty acid synthesis are integral to keloid formation. Further, a complex interplay exists between lipid derivatives, notably butyric acid (BA), prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), and the regulation of hyperfibrosis. Additionally, combinations of docosahexaenoic acid (DHA) with BA and 15-deoxy-Δ12,14-Prostaglandin J2 have exhibited pronounced cytotoxic effects. Among sphingolipids, ceramide (Cer) displayed limited pro-apoptotic effects in keloid fibroblasts (KFBs), whereas sphingosine 1-phosphate (S1P) was found to promote keloid hyperfibrosis, with its analogue, FTY720, demonstrating contrasting benefits. Both Vitamin D and hexadecylphosphorylcholine (HePC) showed potential antifibrotic and antiproliferative properties, suggesting their utility in keloid management. While keloids remain a prevalent concern in clinical practice, this study underscores the promising potential of targeting specific lipid molecules for the advancement of keloid therapeutic strategies.
Collapse
Affiliation(s)
- Chen‐yu Li
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Ru‐xin Xie
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Shi‐wei Zhang
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Jiao Yun
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Ai Zhong
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Ying Cen
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Jun‐jie Chen
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
6
|
Lv D, Xu Z, Cheng P, Hu Z, Dong Y, Rong Y, Xu H, Wang Z, Cao X, Deng W, Tang B. S-Nitrosylation-mediated coupling of DJ-1 with PTEN induces PI3K/AKT/mTOR pathway-dependent keloid formation. BURNS & TRAUMA 2023; 11:tkad024. [PMID: 38116467 PMCID: PMC10729783 DOI: 10.1093/burnst/tkad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/15/2023] [Accepted: 04/03/2023] [Indexed: 12/21/2023]
Abstract
Background Keloids are aberrant dermal wound healing characterized by invasive growth, extracellular matrix deposition, cytokine overexpression and easy recurrence. Many factors have been implicated as pathological causes of keloids, particularly hyperactive inflammation, tension alignment and genetic predisposition. S-Nitrosylation (SNO), a unique form of protein modification, is associated with the local inflammatory response but its function in excessive fibrosis and keloid formation remains unknown. We aimed to discover the association between protein SNO and keloid formation. Methods Normal and keloid fibroblasts were isolated from collected normal skin and keloid tissues. The obtained fibroblasts were cultured in DMEM supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The effects of DJ-1 on cell proliferation, apoptosis, migration and invasion, and on the expression of proteins were assayed. TurboID-based proximity labelling and liquid chromatography-mass spectrometry were conducted to explore the potential targets of DJ-1. Biotin-switch assays and transnitrosylation reactions were used to detect protein SNO. Quantitative data were compared by two-tailed Student's t test. Results We found that DJ-1 served as an essential positive modulator to facilitate keloid cell proliferation, migration and invasion. A higher S-nitrosylated DJ-1 (SNO-DJ-1) level was observed in keloids, and the effect of DJ-1 on keloids was dependent on SNO of the Cys106 residue of the DJ-1 protein. SNO-DJ-1 was found to increase the level of phosphatase and tensin homolog (PTEN) S-nitrosylated at its Cys136 residue via transnitrosylation in keloids, thus diminishing the phosphatase activity of PTEN and activating the PI3K/AKT/mTOR pathway. Furthermore, Cys106-mutant DJ-1 is refractory to SNO and abrogates DJ-1-PTEN coupling and the SNO of the PTEN protein, thus repressing the PI3K/AKT/mTOR pathway and alleviating keloid formation. Importantly, the biological effect of DJ-1 in keloids is dependent on the SNO-DJ-1/SNO-PTEN/PI3K/AKT/mTOR axis. Conclusions For the first time, this study demonstrated the effect of transnitrosylation from DJ-1 to PTEN on promoting keloid formation via the PI3K/AKT/mTOR signaling pathway, suggesting that SNO of DJ-1 may be a novel therapeutic target for keloid treatment.
Collapse
Affiliation(s)
- Dongming Lv
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Zhongye Xu
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Pu Cheng
- Department of General Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, China
| | - Zhicheng Hu
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Yunxian Dong
- Department of Plastic Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, 466 Xingang Middle Road, Guangzhou, China
| | - Yanchao Rong
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Hailin Xu
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Zhiyong Wang
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Xiaoling Cao
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Bing Tang
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| |
Collapse
|
7
|
Li Z, Zhang W, Zhang H. Hsa_circ_0000129 knockdown attenuates proliferation and migration in keloid fibroblasts by targeting miR-485-3p/SGMS2 pathway. Burns 2023; 49:2007-2017. [PMID: 37407394 DOI: 10.1016/j.burns.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Aberrant biofunction of circular RNAs (circRNAs) is potently implicated in keloid formation. However, their roles have been underinvestigated. Recent evidence has demonstrated the pro-tumor role of circ_0000129 in cancers, and yet its role in keloid remains elusive. METHODS RT-qPCR analysis and or western blotting of miR-485-3p, circ_0000129, and SGMS2 in keloid tissues and keloid fibroblasts was implemented. CCK8, EdU, scratch wound healing, and Transwell migration assays were perfomed to determine the keloid fibroblast proliferation and migration. Luciferase reporter and RIP assays were adopted to analyze the interaction among circ_0000129, miR-485-3p and SGMS2. RESULTS In keloid tissues and keloid fibroblasts, circ_0000129 and SGMS2 were amplified, although miR-485-3p expression was downregulated. Furthermore, siRNAs-targeting endogenous circ_0000129 resulted in proliferation and migration defect of keloid fibroblasts. MiR-485-3p was simultaneously recognized by circ_0000129 and SGMS2 3'UTR. Rescued functional assays also illustrated that miR-485-3p loss was beneficial to the proliferation and migration of keloid fibroblasts, and these promoting changes were nullified by accompanied silence circ_0000129 or SGMS2. CONCLUSION Circ_0000129 sponges miR-485-3p and releases expression of SGMS2 from the miR-485-3p suppression, promoting migration and proliferation of keloid fibroblasts, suggesting targeting circ_0000129/miR-485-3p/SGMS2 might be a promising strategy against keloid fibroblasts. AVAILABILITY OF DATA AND MATERIAL All data generated or analyzed during this study are included in this article.
Collapse
Affiliation(s)
- Zi Li
- Department of Orthopedics & Plastic Surgery, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China
| | - Wenhui Zhang
- Department of Plastic & Cosmetic Surgery, Tongji Medical College Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Heting Zhang
- Department of Plastic Surgery, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
| |
Collapse
|
8
|
Li J, Jiang Y, Zhai X. Circ_0008450 regulates keloid-derived fibroblast proliferation, migration, invasion and apoptosis with increased IGFBP5 through sponging miR-1224-5p. Burns 2023; 49:1392-1402. [PMID: 36918335 DOI: 10.1016/j.burns.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Keloids (KD) are benign fibroproliferative tumors and circular RNAs (circRNAs) may participate in KD progression. At present, whether circ_0008450 regulates keloid-derived fibroblast phenotypes remains unclear. This study aimed to explore the functions of circ_0008450 in keloid (KD)-derived fibroblast phenotypes and the underlying mechanism. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay was performed to determine the expression of circ_0008450, miR-1224-5p, insulin like growth factor binding protein 5 (IGFBP5) and extracellular matrix (ECM)-related markers. 5-Ethynyl-2'-deoxyuridine (EdU) assay was conducted to assess cell proliferation ability. Flow cytometry analysis was used to analyze cell cycle and cell apoptosis. Scratch assay and transwell assay were utilized to examine cell migration and invasion. Mechanism assays were executed to verify the relations of circ_0008450, miR-1224-5p and IGFBP5. RESULTS Circ_0008450 was highly expressed in KD tissues and KD-derived fibroblasts. Circ_0008450 silencing inhibited KD-derived fibroblast proliferation, cell cycle, and motility and promoted apoptosis. The effect of circ_0008450 knockdown on KD-derived fibroblast processes was ameliorated by miR-1224-5p downregulation. IGFBP5 was a target gene of miR-1224-5p. IGFBP5 upregulation abated miR-1224-5p-mediated effects on KD-derived fibroblast processes. CONCLUSION Circ_0008450 promoted KD-derived fibroblast proliferation, migration, and invasion and repressed apoptosis via sponging miR-1224-5p and elevating IGFBP5.
Collapse
Affiliation(s)
- Jian Li
- Department of Plastic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang City 453100, Henan, China
| | - Yang Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang City 453100, Henan, China
| | - Xiaomei Zhai
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City 450052, Henan, China.
| |
Collapse
|
9
|
Pejchinovski I, Turkkan S, Pejchinovski M. Recent Advances of Proteomics in Management of Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2648. [PMID: 37627907 PMCID: PMC10453063 DOI: 10.3390/diagnostics13162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Kidney Injury (AKI) is currently recognized as a life-threatening disease, leading to an exponential increase in morbidity and mortality worldwide. At present, AKI is characterized by a significant increase in serum creatinine (SCr) levels, typically followed by a sudden drop in glomerulus filtration rate (GFR). Changes in urine output are usually associated with the renal inability to excrete urea and other nitrogenous waste products, causing extracellular volume and electrolyte imbalances. Several molecular mechanisms were proposed to be affiliated with AKI development and progression, ultimately involving renal epithelium tubular cell-cycle arrest, inflammation, mitochondrial dysfunction, the inability to recover and regenerate proximal tubules, and impaired endothelial function. Diagnosis and prognosis using state-of-the-art clinical markers are often late and provide poor outcomes at disease onset. Inappropriate clinical assessment is a strong disease contributor, actively driving progression towards end stage renal disease (ESRD). Proteins, as the main functional and structural unit of the cell, provide the opportunity to monitor the disease on a molecular level. Changes in the proteomic profiles are pivotal for the expression of molecular pathways and disease pathogenesis. Introduction of highly-sensitive and innovative technology enabled the discovery of novel biomarkers for improved risk stratification, better and more cost-effective medical care for the ill patients and advanced personalized medicine. In line with those strategies, this review provides and discusses the latest findings of proteomic-based biomarkers and their prospective clinical application for AKI management.
Collapse
Affiliation(s)
- Ilinka Pejchinovski
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Sibel Turkkan
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Martin Pejchinovski
- Department of Analytical Instruments Group, Thermo Fisher Scientific, 82110 Germering, Germany
| |
Collapse
|
10
|
Guo C, Liang L, Zheng J, Xie Y, Qiu X, Tan G, Huang J, Wang L. UCHL1 aggravates skin fibrosis through an IGF-1-induced Akt/mTOR/HIF-1α pathway in keloid. FASEB J 2023; 37:e23015. [PMID: 37256780 DOI: 10.1096/fj.202300153rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Keloid is a heterogeneous disease featured by the excessive production of extracellular matrix. It is a great challenge for both clinicians and patients regarding the exaggerated and uncontrolled outgrowth and the therapeutic resistance of the disease. In this study, we verified that UCHL1 was drastically upregulated in keloid fibroblasts. UCHL1 had no effects on cell proliferation and migration, but instead promoted collagen I and α-SMA expression that was inhibited by silencing UCHL1 gene and by adding in LDN-57444, a pharmacological inhibitor for UCHL1 activity as well. The pathological process was mediated by IGF-1 promoted Akt/mTOR/HIF-1α signaling pathway because inhibition of any of them could reduce the expression of collagen I and α-SMA driven by UCHL1 in fibroblasts. Also, we found that UCHL1 expression in keloid fibroblasts was promoted by M2 macrophages via TGF-β1. These findings extend our understanding of the pathogenesis of keloid and provide potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Chipeng Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Liang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingbin Zheng
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Xie
- Department of Dermatology, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xiaonan Qiu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guozhen Tan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingang Huang
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangchun Wang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Pu X, Cao X, Liu H, Huang W, Zhang L, Jiang T. Isorhamnetin attenuates the proliferation, invasion, migration and fibrosis of keloid fibroblasts by targeting S1PR1. Exp Ther Med 2023; 26:310. [PMID: 37273758 PMCID: PMC10236135 DOI: 10.3892/etm.2023.12009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Isorhamnetin (IH) is a type of flavonoid with multiple biological activities, including cardioprotective, antitumor, anti-inflammatory and antioxidant activities. However, the role and potential mechanism of IH in keloids are still not completely understood. The aim of the present study was to explore how IH affects keloid progression. In the present study, cell proliferation was evaluated using the Cell Counting Kit-8 assay and immunofluorescence. Wound healing and Transwell assays were performed to assess cell migration and invasion, respectively. The expression levels of fibrosis-related proteins were measured using western blot analysis and immunofluorescence. In addition, the binding between IH and sphingosine-1-phosphate receptor-1 (S1PR1) was analyzed using the TargetNet database, and molecular docking was performed using Zinc, PubChem, AutoDockTools 1.5.6 and Discovery Studio 4.5 software. The expression levels of proteins in the PI3K/AKT pathway were detected by western blot analysis. The results showed that IH inhibited the proliferation, invasion, migration and fibrosis of keloid fibroblasts. The binding of IH and S1PR1 was verified and molecular docking was performed. Notably, IH significantly suppressed the expression levels of S1PR1, phosphorylated (p)-PI3K and p-AKT. Furthermore, the silencing of S1PR1 suppressed the cell proliferation, migration, invasion and fibrosis of keloid fibroblasts, as well as the expression of the PI3K/AKT pathway proteins. Conversely, S1PR1 upregulation reversed the inhibitory effects of IH on keloid fibroblast proliferation, migration, invasion and fibrosis. In conclusion, the results revealed that IH suppressed the proliferation, migration, invasion and fibrosis of keloid fibroblasts by targeting the S1PR1/PI3K/AKT pathway, suggesting that IH may be a promising drug for the treatment of keloids.
Collapse
Affiliation(s)
- Xiaoshu Pu
- Department of Burn and Plastic Surgery, Nanchong Central Hospital, Nanchong, Sichuan 637000, P.R. China
| | - Xiaolei Cao
- General Surgery Department, The People's Hospital of Shunqing District, Nanchong Central Hospital, Nanchong, Sichuan 637000, P.R. China
| | - Hongyan Liu
- Department of Burn and Plastic Surgery, Nanchong Central Hospital, Nanchong, Sichuan 637000, P.R. China
| | - Wenlian Huang
- Department of Critical Care Medicine, Nanchong Central Hospital, Nanchong, Sichuan 637000, P.R. China
| | - Lanfang Zhang
- Department of Burn and Plastic Surgery, Nanchong Central Hospital, Nanchong, Sichuan 637000, P.R. China
| | - Ting Jiang
- Department of Burn and Plastic Surgery, Nanchong Central Hospital, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
12
|
Long Non-Coding RNA uc003jox.1 Promotes Keloid Fibroblast Proliferation and Invasion Through Activating the PI3K/AKT Signaling Pathway. J Craniofac Surg 2023; 34:556-560. [PMID: 36730437 DOI: 10.1097/scs.0000000000009122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/05/2022] [Indexed: 02/04/2023] Open
Abstract
The pathogenesis of keloids is complex and unclear, and the treatment of this condition remains challenging. The long non-coding RNA uc003jox.1 is highly expressed in keloid tissues compared with in normal skin tissues. We assessed the role of uc003jox.1 in keloid fibroblasts and its underlying mechanism, focusing on the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway. Keloid fibroblasts were transfected with a small interfering RNA targeting uc003jox.1. Colony formation, transwell, and flow cytometry assays were conducted to evaluate the proliferation, invasion, and apoptosis of keloid fibroblasts, respectively. The interaction between uc003jox.1 and the PI3K/AKT pathway was explored by using polymerase chain reaction and western blotting. Knockdown of uc003jox.1 markedly suppressed keloid fibroblast proliferation, clone-forming activity, and invasion, as well as promoted apoptosis. Silencing of uc003jox.1 decreased the phosphorylation levels of PI3K, AKT, and mammalian target of rapamycin and increased both the mRNA and protein expression levels of phosphatase and tensin homolog. Our in vitro results suggest that the long non-coding RNA uc003jox.1 can be used as a biomarker for keloid fibroblasts and that its expression is closely related to the proliferation and invasion of keloid fibroblasts through the PI3K/AKT/mammalian target of rapamycin pathway. Thus, uc003jox.1 shows potential as a treatment target for keloids.
Collapse
|
13
|
Ma Y, Liu Z, Miao L, Jiang X, Ruan H, Xuan R, Xu S. Mechanisms underlying pathological scarring by fibroblasts during wound healing. Int Wound J 2023. [PMID: 36726192 DOI: 10.1111/iwj.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Pathological scarring is an abnormal outcome of wound healing, which often manifests as excessive proliferation and transdifferentiation of fibroblasts (FBs), and excessive deposition of the extracellular matrix. FBs are the most important effector cells involved in wound healing and scar formation. The factors that promote pathological scar formation often act on the proliferation and function of FB. In this study, we describe the factors that lead to abnormal FB formation in pathological scarring in terms of the microenvironment, signalling pathways, epigenetics, and autophagy. These findings suggest that understanding the causes of abnormal FB formation may aid in the development of precise and effective preventive and treatment strategies for pathological scarring that are associated with improved quality of life of patients.
Collapse
Affiliation(s)
- Yizhao Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Zhifang Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - LinLin Miao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Xinyu Jiang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Hongyu Ruan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Houthuijzen JM, de Bruijn R, van der Burg E, Drenth AP, Wientjens E, Filipovic T, Bullock E, Brambillasca CS, Pulver EM, Nieuwland M, de Rink I, van Diepen F, Klarenbeek S, Kerkhoven R, Brunton VG, Scheele CLGJ, Boelens MC, Jonkers J. CD26-negative and CD26-positive tissue-resident fibroblasts contribute to functionally distinct CAF subpopulations in breast cancer. Nat Commun 2023; 14:183. [PMID: 36635273 PMCID: PMC9837080 DOI: 10.1038/s41467-023-35793-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are abundantly present in the microenvironment of virtually all tumors and strongly impact tumor progression. Despite increasing insight into their function and heterogeneity, little is known regarding the origin of CAFs. Understanding the origin of CAF heterogeneity is needed to develop successful CAF-based targeted therapies. Through various transplantation studies in mice, we show that CAFs in both invasive lobular breast cancer and triple-negative breast cancer originate from mammary tissue-resident normal fibroblasts (NFs). Single-cell transcriptomics, in vivo and in vitro studies reveal the transition of CD26+ and CD26- NF populations into inflammatory CAFs (iCAFs) and myofibroblastic CAFs (myCAFs), respectively. Functional co-culture experiments show that CD26+ NFs transition into pro-tumorigenic iCAFs which recruit myeloid cells in a CXCL12-dependent manner and enhance tumor cell invasion via matrix-metalloproteinase (MMP) activity. Together, our data suggest that CD26+ and CD26- NFs transform into distinct CAF subpopulations in mouse models of breast cancer.
Collapse
Affiliation(s)
- Julia M Houthuijzen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Roebi de Bruijn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ellen Wientjens
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tamara Filipovic
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Esme Bullock
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Chiara S Brambillasca
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emilia M Pulver
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank van Diepen
- Flow Cytometry Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ron Kerkhoven
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Colinda L G J Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mirjam C Boelens
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Li Y, Cui S, Wu B, Gao J, Li M, Zhang F, Xia H. FGF5 alleviated acute lung injury via AKT signal pathway in endothelial cells. Biochem Biophys Res Commun 2022; 634:152-158. [PMID: 36244113 PMCID: PMC9527228 DOI: 10.1016/j.bbrc.2022.09.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
Abstract
Acute lung injury (ALI), with high morbidity and mortality, is mainly resulted by infectious or non-infectious inflammatory stimulators, and it will further evolve into acute respiratory distress syndrome if not controlled. Fibroblast growth factors (FGFs) consist of more than 23 kinds of members, which are involved in various pathophysiological processes of body. However, the effect of FGF5, one member of FGFs, is still not certain in lipopolysaccharide (LPS)-induced ALI. In this study, we explored the possible impacts of FGF5 in LPS-induced ALI and primarily focused on endothelial cell, which was one of the most vulnerable cells in septic ALI. In the mouse group of FGF5 overexpression, LPS-induced lung injuries were mitigated, as well as the pyroptosis levels of pulmonary vascular endothelial cells. Additionally, in vitro human umbilical vein endothelial cells (HUVECs), our results showed that the level of cell pyroptosis was ameliorated with FGF5 overexpression, and AKT signal was activated with the overexpression of FGF5, whereas after administration of MK2206, an inhibitor of AKT signal, the protection of FGF5 was inhibited. Therefore, these results suggested that FGF5 exerted protective effects in endothelial cells exposed to LPS, and this protection of FGF5 could be attributed to activated AKT signal.
Collapse
Affiliation(s)
- Yuhua Li
- Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jixian Gao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ming Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Furong Zhang
- Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
16
|
Baik JE, Park HJ, Kataru RP, Savetsky IL, Ly CL, Shin J, Encarnacion EM, Cavali MR, Klang MG, Riedel E, Coriddi M, Dayan JH, Mehrara BJ. TGF-β1 mediates pathologic changes of secondary lymphedema by promoting fibrosis and inflammation. Clin Transl Med 2022; 12:e758. [PMID: 35652284 PMCID: PMC9160979 DOI: 10.1002/ctm2.758] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/15/2022] Open
Abstract
Background Secondary lymphedema is a common complication of cancer treatment, and previous studies have shown that the expression of transforming growth factor‐beta 1 (TGF‐β1), a pro‐fibrotic and anti‐lymphangiogenic growth factor, is increased in this disease. Inhibition of TGF‐β1 decreases the severity of the disease in mouse models; however, the mechanisms that regulate this improvement remain unknown. Methods Expression of TGF‐β1 and extracellular matrix molecules (ECM) was assessed in biopsy specimens from patients with unilateral breast cancer‐related lymphedema (BCRL). The effects of TGF‐β1 inhibition using neutralizing antibodies or a topical formulation of pirfenidone (PFD) were analyzed in mouse models of lymphedema. We also assessed the direct effects of TGF‐β1 on lymphatic endothelial cells (LECs) using transgenic mice that expressed a dominant‐negative TGF‐β receptor selectively on LECs (LECDN‐RII). Results The expression of TGF‐β1 and ECM molecules is significantly increased in BCRL skin biopsies. Inhibition of TGF‐β1 in mouse models of lymphedema using neutralizing antibodies or with topical PFD decreased ECM deposition, increased the formation of collateral lymphatics, and inhibited infiltration of T cells. In vitro studies showed that TGF‐β1 in lymphedematous tissues increases fibroblast, lymphatic endothelial cell (LEC), and lymphatic smooth muscle cell stiffness. Knockdown of TGF‐β1 responsiveness in LECDN‐RII resulted in increased lymphangiogenesis and collateral lymphatic formation; however, ECM deposition and fibrosis persisted, and the severity of lymphedema was indistinguishable from controls. Conclusions Our results show that TGF‐β1 is an essential regulator of ECM deposition in secondary lymphedema and that inhibition of this response is a promising means of treating lymphedema.
Collapse
Affiliation(s)
- Jung Eun Baik
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyeung Ju Park
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raghu P Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ira L Savetsky
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine L Ly
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinyeon Shin
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elizabeth M Encarnacion
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michele R Cavali
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark G Klang
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elyn Riedel
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michelle Coriddi
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph H Dayan
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
Identification of Hub Genes of Keloid Fibroblasts by Coexpression Network Analysis and Degree Algorithm. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1272338. [PMID: 35047146 PMCID: PMC8763531 DOI: 10.1155/2022/1272338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Background Keloid is a benign dermal tumor characterized by abnormal proliferation and invasion of fibroblasts. The establishment of biomarkers is essential for the diagnosis and treatment of keloids. Methods We systematically identified coexpression modules using the weighted gene coexpression network analysis method (WGCNA). Differential expressed genes (DEGs) in GSE145725 and genes in significant modules were integrated to identify overlapping key genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were then performed, as well as protein-protein interaction (PPI) network construction for hub gene screening. Results Using the R package of WGCNA, 22 coexpression modules consisting of different genes were identified from the top 5,000 genes with maximum mean absolute deviation in 19 human fibroblast samples. Blue-green and yellow modules were identified as the most important modules, where genes overlapping with DEGs were identified as key genes. We identified the most critical functions and pathways as extracellular structure organization, vascular smooth muscle contraction, and the cGMP-PKG signaling pathway. Hub genes from key genes as BMP4, MSX1, HAND2, TBX2, SIX1, IRX1, EDN1, DLX5, MEF2C, and DLX2 were identified. Conclusion The blue-green and yellow modules may play an important role in the pathogenesis of keloid. 10 hub genes were identified as potential biomarkers and therapeutic targets for keloid.
Collapse
|
18
|
Liu Z, Yang J, Chen Y, Chen C, Wang J, Lee YM, Zheng W, Shang R, Tang Y, Zhang X, Hu X, Huang Y, Peng S, Liou YC, He W, Luo G. P311 Facilitates the Angiogenesis and Wound Healing Function of MSCs by Increasing VEGF Production. Front Immunol 2022; 13:821932. [PMID: 35154140 PMCID: PMC8831272 DOI: 10.3389/fimmu.2022.821932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
As a potential clinical therapeutic cell for injured tissue repair, mesenchymal stem cells (MSCs) have attracted increasing attention. Enhancing the pro-healing function of MSCs has gradually become an essential topic in improving the clinical efficacy of MSCs. Recently, studies have shown that neuronal protein 3.1 (P311) plays a crucial role in promoting skin wound healing, suggesting P311 gene modification may improve the pro-healing function of MSCs. In this study, we demonstrated that increasing the in vivo expression of P311 could significantly enhance the ability of MSCs to lessen the number of inflammatory cells, increase the expression of IL10, reduce the levels of TNF-α and IFN-γ, increase collagen deposition, promote angiogenesis, and ultimately accelerate skin wound closure and improve the quality of wound healing. Importantly, we uncovered that P311 enhanced the pro-angiogenesis function of MSCs by increasing the production of vascular endothelial growth factor (VEGF) in vitro and in vivo. Mechanistically, we revealed that the mTOR signalling pathway was closely related to the regulation of P311 on VEGF production in MSCs. Together, our data displayed that P311 gene modification in MSCs augments their capabilities to promote skin wound closure, which might bring the dawn for its clinical application in the future.
Collapse
Affiliation(s)
- Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jue Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.,National University of Singapore (NUS) Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Wenxia Zheng
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Shiya Peng
- Department of Dermatology, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.,National University of Singapore (NUS) Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| |
Collapse
|
19
|
Michalak-Micka K, Klar AS, Dasargyri A, Biedermann T, Reichmann E, Moehrlen U. The influence of CD26 + and CD26 - fibroblasts on the regeneration of human dermo-epidermal skin substitutes. Sci Rep 2022; 12:1944. [PMID: 35121765 PMCID: PMC8816920 DOI: 10.1038/s41598-022-05309-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/04/2022] [Indexed: 11/15/2022] Open
Abstract
CD26, also known as dipeptidyl peptidase IV (DPPIV), is a multifunctional transmembrane protein playing a significant role in the cutaneous wound healing processes in the mouse skin. However, only scarce data are available regarding the distribution and function of this protein in the human skin. Therefore, the aim of this study was to investigate the impact of CD26 deficiency in human primary fibroblasts on the regeneration of human tissue-engineered skin substitutes in vivo. Dermo-epidermal skin analogs, based on collagen type I hydrogels, were populated either with human CD26+ or CD26knockout fibroblasts and seeded with human epidermal keratinocytes. These skin substitutes were transplanted onto the back of immune-incompetent rodents. Three weeks post-transplantation, the grafts were excised and analyzed with respect to specific epidermal and dermal maturation markers. For the first time, we show here that the expression of CD26 protein in human dermis is age-dependent. Furthermore, we prove that CD26+ fibroblasts are more active in the production of extracellular matrix (ECM) both in vitro and in vivo and are necessary to achieve rapid epidermal and dermal homeostasis after transplantation.
Collapse
Affiliation(s)
- Katarzyna Michalak-Micka
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Athanasia Dasargyri
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
- Department of Surgery, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|