1
|
Rahnama M, Heidari M, Poursalehi Z, Golchin A. Global Trends of Exosomes Application in Clinical Trials: A Scoping Review. Stem Cell Rev Rep 2024; 20:2165-2193. [PMID: 39340738 DOI: 10.1007/s12015-024-10791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Exosomes, nano-sized extracellular vesicles, have emerged as a promising tool for the diagnosis and treatment of various intractable diseases, including chronic wounds and cancers. As our understanding of exosomes continues to grow, their potential as a powerful therapeutic modality in medicine is also expanding. This systematic review aims to examine the progress of exosome-based clinical trials and provide a comprehensive overview of the therapeutic perspectives of exosomes. METHODS This systematic review strictly follows PRISMA guidelines and has been registered in PROSPERO, the International Prospective Register of Systematic Reviews. It encompasses articles from January 2000 to January 2023, sourced from bibliographic databases, with targeted search terms targeting exosome applications in clinical trials. During the screening process, strict inclusion and exclusion criteria were applied, including a focus on clinical trials utilizing different cell-derived exosomes for therapeutic purposes. RESULTS Among the 522 publications initially identified, only 10 studies met the stringent eligibility criteria after meticulous screening. The selection process involved systematically excluding duplicates and irrelevant articles to provide a transparent overview. CONCLUSION According to our systematic review, exosomes have promising applications in a variety of medical fields, including cell-free therapies and drug delivery systems for treating a variety of diseases, especially cancers and chronic wounds. To ensure safety, potency, and broader clinical applications, further optimization of exosome extraction, loading, targeting, and administration is necessary. While cell-based therapeutics are increasingly utilizing exosomes, this field is still in its infancy, and ongoing clinical trials will provide valuable insights into the clinical utility of exosomes.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Heidari
- Department of Biostatistics and Epidemiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Poursalehi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Manzoor T, Farooq N, Sharma A, Shiekh PA, Hassan A, Dar LA, Nazir J, Godha M, Sheikh FA, Gugjoo MB, Saleem S, Ahmad SM. Exosomes in nanomedicine: a promising cell-free therapeutic intervention in burn wounds. Stem Cell Res Ther 2024; 15:355. [PMID: 39385310 PMCID: PMC11462792 DOI: 10.1186/s13287-024-03970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Burn injuries are serious injuries that have a big impact on a person's health and can even cause death. Incurring severe burns can incite an immune response and inflammation within the body, alongside metabolic changes. It is of utmost importance to grasp the fact that the effects of the burn injury extend beyond the body, affecting the mind and overall well-being. Burn injuries cause long-lasting changes that need to be taken care of in order to improve their quality of life. The intricate process of skin regeneration at the site of a burn wound involves a complex and dynamic interplay among diverse cells, growth factors, nerves, and blood vessels. Exciting opportunities have arisen in the field of stem cells and regenerative medicine, allowing us to explore the development of cell-free-based alternatives that can aid in the treatment of burn injuries. These cell-free-based therapies have emerged as a promising facet within regenerative medicine. Exosomes, also referred to as naturally occurring nanoparticles, are small endosome-derived vesicles that facilitate the delivery of molecular cargo between the cells, thus allowing intercellular communication. The knowledge gained in this field has continued to support their therapeutic potential, particularly in the domains of wound healing and tissue regeneration. Notably, exosomes derived from mesenchymal stem cells (MSCs) can be safely administered in the system, which is then adeptly uptaken and internalized by fibroblasts/epithelial cells, subsequently accelerating essential processes such as migration, proliferation, and collagen synthesis. Furthermore, exosomes released by immune cells, specifically macrophages, possess the capability to modulate inflammation and effectively diminish it in adjacent cells. Exosomes also act as carriers when integrated with a scaffold, leading to scarless healing of cutaneous wounds. This comprehensive review examines the role of exosomes in burn wound healing and their potential utility in regeneration and repair.
Collapse
Affiliation(s)
- Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
- School of Life and Basic Sciences, Jaipur National University, Jagatpura, Jaipur, India
| | - Nida Farooq
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Arushi Sharma
- Centre for Biomedical Engineering, Indian Institute of Technology-Delhi, New Delhi, India
| | - Parvaiz A Shiekh
- Centre for Biomedical Engineering, Indian Institute of Technology-Delhi, New Delhi, India
| | - Amreena Hassan
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Lateef Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Junaid Nazir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Meena Godha
- School of Life and Basic Sciences, Jaipur National University, Jagatpura, Jaipur, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Srinagar, Kashmir, India
| | - Mudasir Bashir Gugjoo
- Veterinary Clinical Services Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST- Srinagar, Kashmir, India
| | - Sahar Saleem
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
3
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
4
|
Meretsky CR, Polychronis A, Schiuma AT. A Comparative Analysis of the Advances in Scar Reduction: Techniques, Technologies, and Efficacy in Plastic Surgery. Cureus 2024; 16:e66806. [PMID: 39268283 PMCID: PMC11392586 DOI: 10.7759/cureus.66806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
The study provides a comprehensive analysis of the latest methodologies and treatments aimed at improving scar management. Scar formation results from the replacement of normal skin with fibroblasts, leading to a structured unidirectional collagen bundle, as opposed to the collagen sheet matrix found in healthy skin. This review categorizes scars into hypertrophic scars and keloids, each with distinct pathophysiological characteristics. It highlights the importance of consistent scar assessment using scales such as the Vancouver Scar Scale and the Patient and Observer Scar Assessment Scale, emphasizing the need for standardized evaluation methods. The study systematically reviews various scar management techniques, ranging from traditional surgical methods to innovative treatments. Conventional approaches such as pressure garments and silicone gel sheeting are explored, noting their roles in maintaining hydration and occlusion. The efficacy of intralesional corticosteroid injections and laser therapies is discussed, with particular attention given to their combined use for optimal outcomes. The review also covers advanced techniques such as microneedling, platelet-rich plasma therapy, and stem cell-based treatments, detailing their mechanisms and potential benefits in scar remodelling. Additionally, the study underscores the emerging role of botulinum toxin A in both preventive and corrective scar treatments, offering promising results in reducing movement-induced scar exaggeration. The systematic review includes a thorough examination of existing literature, clinical trials, and meta-analyses to evaluate the effectiveness of these interventions. It concludes by calling for further research to refine these techniques and enhance their application in clinical practice, aiming to achieve better aesthetic and functional outcomes for patients with scars.
Collapse
Affiliation(s)
| | - Andreas Polychronis
- General Surgery, St. George's University School of Medicine, Great River, USA
| | | |
Collapse
|
5
|
Yang Y, Zhang J, Wu S, Deng Y, Wang S, Xie L, Li X, Yang L. Exosome/antimicrobial peptide laden hydrogel wound dressings promote scarless wound healing through miR-21-5p-mediated multiple functions. Biomaterials 2024; 308:122558. [PMID: 38581764 DOI: 10.1016/j.biomaterials.2024.122558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Mesenchymal stem cell (MSC)-based therapy is an effective strategy for regenerative therapy. However, safety and ease of use are still issues to be overcome in clinical applications. Exosomes are naturally derived nanoparticles containing bioactive molecules, which serve as ideal cell-free therapeutic modalities. However, issues such as delivery, long-term preservation and activity maintenance of exosomes are other problems that limit their application. In this study, we proposed the use of rapid freeze-dry-thaw macroporous hydrogels for the encapsulation of HucMSC-derived exosomes (HucMSC-Exos) combined with an antimicrobial peptide coating. This exosome-encapsulated hyaluronic acid macroporous hydrogel HD-DP7/Exo can achieve long-term storage and transport by lyophilization and can be rapidly redissolved for treatment. After comprehensively comparing the therapeutic effects of HucMSC-Exos and HucMSC-loaded hydrogels, we found that HucMSC-Exos could also effectively regulate fibroblasts, vascular endothelial cells, and macrophages and inhibit myofibroblast-mediated fibrosis, thus promoting tissue regeneration and inhibiting scar formation in a mouse model of deep second-degree burn infection healing. These properties of lyophilized storage and whole-process-repair make HD-DP7/Exo have potential application value and application prospects.
Collapse
Affiliation(s)
- YuLing Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - JiaNi Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - SiWen Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Deng
- Hangzhou Wutong Tree Pharmaceutical Co., Ltd., Hangzhou, 310018, China
| | - ShiHan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - XiaoPeng Li
- Hangzhou Wutong Tree Pharmaceutical Co., Ltd., Hangzhou, 310018, China.
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Xu J, Chen X, Wang J, Zhang B, Ge W, Wang J, Yang P, Liu Y. An ADSC-loaded dermal regeneration template promotes full-thickness wound healing. Regen Ther 2024; 26:800-810. [PMID: 39309394 PMCID: PMC11415530 DOI: 10.1016/j.reth.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Full-thickness wounds lead to delayed wound healing and scarring. Adipose-derived stem cell (ADSC) grafting promotes wound healing and minimizes scarring, but the low efficiency of grafting has been a challenge. We hypothesized that loading ADSCs onto a clinically widely used dermal regeneration template (DRT) would improve the efficacy of ADSC grafting and promote full-thickness wound healing. Methods ADSCs from human adipose tissue were isolated, expanded, and labeled with a cell tracker. Labeled ADSCs were loaded onto the DRT. The viability, the location of ADSCs on the DRT, and the abundance of ADSCs in the wound area were confirmed using CCK8 and fluorescence microscopy. Full-thickness wounds were created on Bama minipigs, which were applied with sham, ADSC, DRT, and ADSC-DRT. Wounds from the four groups were collected at the indicated time and histological analysis was performed. RNA-seq analysis was also conducted to identify transcriptional differences among the four groups. The identified genes by RNA-seq were verified by qPCR. Immunohistochemistry and western blotting were used to assess collagen deposition. In vitro, the supernatant of ADSCs was used to culture fibroblasts to investigate the effect of ADSCs on fibroblast transformation into myofibroblasts. Results ADSCs were successfully isolated, marked, and loaded onto the DRT. The abundance of ADSCs in the wound area was significantly greater in the ADSC-DRT group than in the ADSC group. Moreover, the ADSC-DRT group exhibited better wound healing with improved re-epithelialization and denser collagen deposition than the other three groups. The RNA-seq results suggested that the application of the integrated ADSC-DRT system resulted in the differential expression of genes mainly associated with extracellular matrix remodeling. In vivo, wounds from the ADSC-DRT group exhibited an earlier increase in type III collagen deposition and alleviated scar formation. ADSCs inhibited the transformation of fibroblasts into myofibroblasts, along with increased levels of CTGF, FGF, and HGF in the supernatant of ADSCs. Wounds from the ADSC-DRT group had up-regulated expressions of CTGF, HGF, FGF, and MMP3. Conclusion The integral of ADSC-DRT increased the efficacy of ADSC grafting, and promoted full-thickness wound healing with better extracellular matrix remodeling and alleviated scar formation.
Collapse
Affiliation(s)
- Jin Xu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuelian Chen
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jizhuang Wang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Zhang
- Department of Plastic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjia Ge
- Department of Plastic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqiang Wang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilang Yang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Jameel F, Irfan F, Salim A, Khan I, Khalil EA. Alpha terpineol preconditioning enhances regenerative potential of mesenchymal stem cells in full thickness acid burn wounds. Regen Ther 2024; 26:188-202. [PMID: 38948132 PMCID: PMC11214267 DOI: 10.1016/j.reth.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024] Open
Abstract
Regeneration of full thickness burn wounds is a significant clinical challenge. Direct stem cell transplantation at the wound site has a promising effect on wound regeneration. However, stem cell survival within the harsh wound environment is critically compromised. In this regard, preconditioning of stem cells with cytoprotective compounds can improve the efficiency of transplanted cells. This study evaluated the possible effect of alpha terpineol (αT) preconditioned mesenchymal stem cells (αT-MSCs) in full thickness acid burn wound. An optimized concentration of 10 μM αT was used for MSC preconditioning, followed by scratch assay analysis. A novel rat model of full thickness acid burn wound was developed and characterized via macroscopic and histological examinations. Treatment (normal and αT-MSCs) was given after 48 h of burn wound induction, and the healing pattern was examined till day 40. Skin tissues were harvested at the early (day 10) and late (day 40) wound healing phases and examined by histological grading, neovascularization, and gene expression profiling of healing mediators. In scratch assay, αT-MSCs exhibited enhanced cell migration and wound closure (scratch gap) compared to normal MSCs. In vivo findings revealed enhanced regeneration in the wound treated with αT-MSCs compared to normal MSCs and untreated control. Histology revealed enhanced collagen deposition with regenerated skin layers in normal MSC- and αT-MSC treated groups compared to the untreated control. These findings were correlated with enhanced expression of α-SMA as shown by immunohistochemistry. Additionally, αT-MSC group showed reduced inflammation and oxidative stress, and enhanced regeneration, as witnessed by a decrease in IL-1β, IL-6, TNF-α, and Bax and an increase in BCL-2, PRDX-4, GPX-7, SOD-1, VEGF, EGF, FGF, MMP-9, PDGF, and TGF-β gene expression levels at early and late phases, respectively. Overall findings demonstrated that αT exerts its therapeutic effect by mitigating excessive inflammation and oxidative stress while concurrently enhancing neovascularization. Thus, this study offers new perspectives on managing full thickness acid burn wounds in future clinical settings.
Collapse
Affiliation(s)
- Fatima Jameel
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fatima Irfan
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Asmat Salim
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Irfan Khan
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Enam A. Khalil
- Department of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
8
|
Bahavarnia F, Hasanzadeh M, Bahavarnia P, Shadjou N. Advancements in application of chitosan and cyclodextrins in biomedicine and pharmaceutics: recent progress and future trends. RSC Adv 2024; 14:13384-13412. [PMID: 38660530 PMCID: PMC11041621 DOI: 10.1039/d4ra01370k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
The global community is faced with numerous health concerns such as cancer, cardiovascular and neurological diseases, diabetes, joint pain, osteoporosis, among others. With the advancement of research in the fields of materials chemistry and medicine, pharmaceutical technology and biomedical analysis have entered a new stage of development. The utilization of natural oligosaccharides and polysaccharides in pharmaceutical/biomedical studies has gained significant attention. Over the past decade, several studies have shown that chitosan and cyclodextrin have promising biomedical implications in background analysis, ongoing development, and critical applications in biomedical and pharmaceutical research fields. This review introduces different types of saccharides/natural biopolymers such as chitosan and cyclodextrin and discusses their wide-ranging applications in the biomedical/pharmaceutical research area. Recent research advances in pharmaceutics and drug delivery based on cyclodextrin, and their response to smart stimuli, as well as the biological functions of cyclodextrin and chitosan, such as the immunomodulatory effects, antioxidant, and antibacterial properties, have also been discussed, along with their applications in tissue engineering, wound dressing, and drug delivery systems. Finally, the innovative applications of chitosan and cyclodextrin in the pharmaceutical/biomedicine were reviewed, and current challenges, research/technological gaps, and future development opportunities were surveyed.
Collapse
Affiliation(s)
- Farnaz Bahavarnia
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Parinaz Bahavarnia
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
9
|
Li G, Wang Q, Liu H, Yang Z, Wu Y, He L, Deng X. Fabricating Composite Cell Sheets for Wound Healing: Cell Sheets Based on the Communication Between BMSCs and HFSCs Facilitate Full-Thickness Cutaneous Wound Healing. Tissue Eng Regen Med 2024; 21:421-435. [PMID: 37995084 PMCID: PMC10987453 DOI: 10.1007/s13770-023-00614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Insufficient angiogenesis and the lack of skin appendages are critical challenges in cutaneous wound healing. Stem cell-fabricated cell sheets have become a promising strategy, but cell sheets constructed by a single cell type are inadequate to provide a comprehensive proregenerative microenvironment for wound tissue. METHODS Based on the communication between cells, in this study, bone marrow mesenchymal stem cells (BMSCs) and hair follicle stem cells (HFSCs) were cocultured to fabricate a composite cell sheet (H/M-CS) for the treatment of full-thickness skin wounds in mice. RESULTS Experiments confirmed that there is cell-cell communication between BMSCs and HFSCs, which enhances the cell proliferation and migration abilities of both cell types. Cell-cell talk also upregulates the gene expression of pro-angiogenic-related cytokines in BMSCs and pro-hair follicle-related cytokines in HFSCs, as well as causing changes in the properties of secreted extracellular matrix components. CONCLUSIONS Therefore, the composite cell sheet is more conducive for cutaneous wound healing and promoting the regeneration of blood vessels and hair follicles.
Collapse
Affiliation(s)
- Gongjian Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qin Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hao Liu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zuojun Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yuhan Wu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Li He
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyuan Deng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
10
|
Wu S, Sun S, Fu W, Yang Z, Yao H, Zhang Z. The Role and Prospects of Mesenchymal Stem Cells in Skin Repair and Regeneration. Biomedicines 2024; 12:743. [PMID: 38672102 PMCID: PMC11048165 DOI: 10.3390/biomedicines12040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have been recognized as a cell therapy with the potential to promote skin healing. MSCs, with their multipotent differentiation ability, can generate various cells related to wound healing, such as dermal fibroblasts (DFs), endothelial cells, and keratinocytes. In addition, MSCs promote neovascularization, cellular regeneration, and tissue healing through mechanisms including paracrine and autocrine signaling. Due to these characteristics, MSCs have been extensively studied in the context of burn healing and chronic wound repair. Furthermore, during the investigation of MSCs, their unique roles in skin aging and scarless healing have also been discovered. In this review, we summarize the mechanisms by which MSCs promote wound healing and discuss the recent findings from preclinical and clinical studies. We also explore strategies to enhance the therapeutic effects of MSCs. Moreover, we discuss the emerging trend of combining MSCs with tissue engineering techniques, leveraging the advantages of MSCs and tissue engineering materials, such as biodegradable scaffolds and hydrogels, to enhance the skin repair capacity of MSCs. Additionally, we highlight the potential of using paracrine and autocrine characteristics of MSCs to explore cell-free therapies as a future direction in stem cell-based treatments, further demonstrating the clinical and regenerative aesthetic applications of MSCs in skin repair and regeneration.
Collapse
Affiliation(s)
- Si Wu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Shengbo Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100050, China
| | - Wentao Fu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
11
|
Ribeiro M, Simões M, Vitorino C, Mascarenhas-Melo F. Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential. Gels 2024; 10:188. [PMID: 38534606 DOI: 10.3390/gels10030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogels are polymeric materials that possess a set of characteristics meeting various requirements of an ideal wound dressing, making them promising for wound care. These features include, among others, the ability to absorb and retain large amounts of water and the capacity to closely mimic native structures, such as the extracellular matrix, facilitating various cellular processes like proliferation and differentiation. The polymers used in hydrogel formulations exhibit a broad spectrum of properties, allowing them to be classified into two main categories: natural polymers like collagen and chitosan, and synthetic polymers such as polyurethane and polyethylene glycol. This review offers a comprehensive overview and critical analysis of the key polymers that can constitute hydrogels, beginning with a brief contextualization of the polymers. It delves into their function, origin, and chemical structure, highlighting key sources of extraction and obtaining. Additionally, this review encompasses the main intrinsic properties of these polymers and their roles in the wound healing process, accompanied, whenever available, by explanations of the underlying mechanisms of action. It also addresses limitations and describes some studies on the effectiveness of isolated polymers in promoting skin regeneration and wound healing. Subsequently, we briefly discuss some application strategies of hydrogels derived from their intrinsic potential to promote the wound healing process. This can be achieved due to their role in the stimulation of angiogenesis, for example, or through the incorporation of substances like growth factors or drugs, such as antimicrobials, imparting new properties to the hydrogels. In addition to substance incorporation, the potential of hydrogels is also related to their ability to serve as a three-dimensional matrix for cell culture, whether it involves loading cells into the hydrogel or recruiting cells to the wound site, where they proliferate on the scaffold to form new tissue. The latter strategy presupposes the incorporation of biosensors into the hydrogel for real-time monitoring of wound conditions, such as temperature and pH. Future prospects are then ultimately addressed. As far as we are aware, this manuscript represents the first comprehensive approach that brings together and critically analyzes fundamental aspects of both natural and synthetic polymers constituting hydrogels in the context of cutaneous wound healing. It will serve as a foundational point for future studies, aiming to contribute to the development of an effective and environmentally friendly dressing for wounds.
Collapse
Affiliation(s)
- Mariana Ribeiro
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Marco Simões
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
12
|
Saad-Naguib MH, Kenfack Y, Sherman LS, Chafitz OB, Morelli SS. Impaired receptivity of thin endometrium: therapeutic potential of mesenchymal stem cells. Front Endocrinol (Lausanne) 2024; 14:1268990. [PMID: 38344687 PMCID: PMC10854221 DOI: 10.3389/fendo.2023.1268990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
The endometrium is a resilient and highly dynamic tissue, undergoing cyclic renewal in preparation for embryo implantation. Cyclic endometrial regeneration depends on the intact function of several cell types, including parenchymal, endothelial, and immune cells, as well as adult stem cells that can arise from endometrial or extrauterine sources. The ability of the endometrium to undergo rapid, repeated regeneration without scarring is unique to this tissue. However, if this tissue renewal process is disrupted or dysfunctional, women may present clinically with infertility due to endometrial scarring or persistent atrophic/thin endometrium. Such disorders are rate-limiting in the treatment of female infertility and in the success of in vitro fertilization because of a dearth of treatment options specifically targeting the endometrium. A growing number of studies have explored the potential of adult stem cells, including mesenchymal stem cells (MSCs), to treat women with disorders of endometrial regeneration. MSCs are multipotent adult stem cells with capacity to differentiate into cells such as adipocytes, chondrocytes, and osteoblasts. In addition to their differentiation capacity, MSCs migrate toward injured sites where they secrete bioactive factors (e.g. cytokines, chemokines, growth factors, proteins and extracellular vesicles) to aid in tissue repair. These factors modulate biological processes critical for tissue regeneration, such as angiogenesis, cell migration and immunomodulation. The MSC secretome has therefore attracted significant attention for its therapeutic potential. In the uterus, studies utilizing rodent models and limited human trials have shown a potential benefit of MSCs and the MSC secretome in treatment of endometrial infertility. This review will explore the potential of MSCs to treat women with impaired endometrial receptivity due to a thin endometrium or endometrial scarring. We will provide context supporting leveraging MSCs for this purpose by including a review of mechanisms by which the MSC secretome promotes regeneration and repair of nonreproductive tissues.
Collapse
Affiliation(s)
- Michael H. Saad-Naguib
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yannick Kenfack
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Lauren S. Sherman
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Olivia B. Chafitz
- Department of Obstetrics & Gynecology, Hackensack University Medical Center, Hackensack, NJ, United States
| | - Sara S. Morelli
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
13
|
Tasneem S, Ghufran H, Azam M, Arif A, Bin Umair M, Yousaf MA, Shahzad K, Mehmood A, Malik K, Riazuddin S. Cassia Angustifolia Primed ASCs Accelerate Burn Wound Healing by Modulation of Inflammatory Response. Tissue Eng Regen Med 2024; 21:137-157. [PMID: 37847444 PMCID: PMC10764710 DOI: 10.1007/s13770-023-00594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Thermal traumas impose a huge burden on healthcare systems. This merits the need for advanced but cost-effective remedies with clinical prospects. In this context, we prepared a regenerative 3D-construct comprising of Cassia angustifolia extract (SM) primed adipose-derived stem cells (ASCs) laden amniotic membrane for faster burn wound repair. METHODS ASCs were preconditioned with SM (30 µg/ml for 24 h), and subsequently exposed to in-vitro thermal injury (51 °C,10 min). In-vivo thermal injury was induced by placing pre-heated copper-disc (2 cm diameter) on dorsum of the Wistar rats. ASCs (2.0 × 105) pre-treated with SM (SM-ASCs), cultured on stromal side of amniotic membrane (AM) were transplanted in rat heat-injury model. Non-transplanted heat-injured rats and non-heat-injured rats were kept as controls. RESULTS The significantly upregulated expression of IGF1, SDF1A, TGFβ1, VEGF, GSS, GSR, IL4, BCL2 genes and downregulation of BAX, IL6, TNFα, and NFkB1 in SM-ASCs in in-vitro and in-vivo settings confirmed its potential in promoting cell-proliferation, migration, angiogenesis, antioxidant, cell-survival, anti-inflammatory, and wound healing activity. Moreover, SM-ASCs induced early wound closure, better architecture, normal epidermal thickness, orderly-arranged collagen fibers, and well-developed skin appendages in healed rat-skin transplanted with AM+SM-ASCs, additionally confirmed by increased expression of structural genes (Krt1, Krt8, Krt19, Desmin, Vimentin, α-Sma) in comparison to untreated-ASCs laden-AM transplanted in heat injured rats. CONCLUSION SM priming effectively enabled ASCs to counter thermal injury by significantly enhancing cell survival and reducing inflammation upon transplantation. This study provides bases for development of effective combinational therapies (natural scaffold, medicine, and stem cells) with clinical prospects for treating burn wounds.
Collapse
Affiliation(s)
- Saba Tasneem
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Amna Arif
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Musab Bin Umair
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Muhammad Amin Yousaf
- Jinnah Burn & Reconstructive Surgery Centre, Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- CosmoPlast, Lahore, Pakistan
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
| | - Kausar Malik
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
- Jinnah Burn & Reconstructive Surgery Centre, Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
14
|
De Francesco F, Ogawa R. From Time to Timer in Wound Healing Through the Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:1-18. [PMID: 38842786 DOI: 10.1007/5584_2024_815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Hard-to-heal wounds are an important public health issue worldwide, with a significant impact on the quality of life of patients. It is estimated that approximately 1-2% of the global population suffers from difficult wounds, which can be caused by a variety of factors such as trauma, infections, chronic diseases like diabetes or obesity, or poor health conditions. Hard-to-heal wounds are often characterized by a slow and complicated healing process, which can lead to serious complications such as infections, pressure ulcers, scar tissue formation, and even amputations. These complications can have a significant impact on the mobility, autonomy, and quality of life of patients, leading to an increase in healthcare and social costs associated with wound care. The preparation of the wound bed is a key concept in the management of hard-to-heal wounds, with the aim of promoting an optimal environment for healing. The TIME (Tissue, Infection/Inflammation, Moisture, Edge) model is a systematic approach used to assess and manage wounds in a targeted and personalized way. The concept of TIMER, expanding the TIME model, further focuses on regenerative processes, paying particular attention to promoting tissue regeneration and wound healing in a more effective and comprehensive way. The new element introduced in the TIMER model is "Regeneration", which highlights the importance of activating and supporting tissue regeneration processes to promote complete and lasting wound healing. Regenerative therapies can include a wide range of approaches, including cellular therapies, growth factors, bioactive biomaterials, stem cell therapies, and growth factor therapies. These therapies aim to promote the formation of new healthy tissues, reduce inflammation, improve vascularization, and stimulate cellular proliferation to accelerate wound closure and prevent complications. Thanks to continuous progress in research and development of regenerative therapies, more and more patients suffering from difficult wounds can benefit from innovative and promising solutions to promote faster and more effective healing, improve quality of life, and reduce the risk of long-term complications.
Collapse
Affiliation(s)
- Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, Azienda Ospedaliera Universitaria delle Marche, Ancona, Italy.
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
15
|
Radzikowska-Büchner E, Łopuszyńska I, Flieger W, Tobiasz M, Maciejewski R, Flieger J. An Overview of Recent Developments in the Management of Burn Injuries. Int J Mol Sci 2023; 24:16357. [PMID: 38003548 PMCID: PMC10671630 DOI: 10.3390/ijms242216357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
According to the World Health Organization (WHO), around 11 million people suffer from burns every year, and 180,000 die from them. A burn is a condition in which heat, chemical substances, an electrical current or other factors cause tissue damage. Burns mainly affect the skin, but can also affect deeper tissues such as bones or muscles. When burned, the skin loses its main functions, such as protection from the external environment, pathogens, evaporation and heat loss. Depending on the stage of the burn, the patient's condition and the cause of the burn, we need to choose the most appropriate treatment. Personalization and multidisciplinary collaboration are key to the successful management of burn patients. In this comprehensive review, we have collected and discussed the available treatment options, focusing on recent advances in topical treatments, wound cleansing, dressings, skin grafting, nutrition, pain and scar tissue management.
Collapse
Affiliation(s)
- Elżbieta Radzikowska-Büchner
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Inga Łopuszyńska
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Wojciech Flieger
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4 Street, 20-090 Lublin, Poland;
| | - Michał Tobiasz
- Department of Plastic Surgery, Reconstructive Surgery and Burn Treatment, Medical University of Lublin, Krasnystawska 52 Street, 21-010 Łęczna, Poland;
| | - Ryszard Maciejewski
- Faculty of Medicine, University of Warsaw, Żwirki i Wigury 101 Street, 02-089 Warszawa, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A Street, 20-093 Lublin, Poland
| |
Collapse
|
16
|
Park C, Lee OH, Park JJ, Yoo J, Kwon E, Park JE, Kang BC, Lee DS, Cho J. Self-assembled adipose-derived mesenchymal stem cells as an extracellular matrix component- and growth factor-enriched filler. Front Cell Dev Biol 2023; 11:1219739. [PMID: 37799276 PMCID: PMC10549996 DOI: 10.3389/fcell.2023.1219739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/24/2023] [Indexed: 10/07/2023] Open
Abstract
The clinical application of mesenchymal stem cells (MSCs) is attracting attention due to their excellent safety, convenient acquisition, multipotency, and trophic activity. The clinical effectiveness of transplanted MSCs is well-known in regenerative and immunomodulatory medicine, but there is a demand for their improved viability and regenerative function after transplantation. In this study, we isolated MSCs from adipose tissue from three human donors and generated uniformly sized MSC spheroids (∼100 µm in diameter) called microblocks (MiBs) for dermal reconstitution. The viability and MSC marker expression of MSCs in MiBs were similar to those of monolayer MSCs. Compared with monolayer MSCs, MiBs produced more extracellular matrix (ECM) components, including type I collagen, fibronectin, and hyaluronic acid, and growth factors such as vascular endothelial growth factor and hepatocyte growth factor. Subcutaneously injected MiBs showed skin volume retaining capacity in mice. These results indicate that MiBs could be applied as regenerative medicine for skin conditions such as atrophic scar by having high ECM and bioactive factor expression.
Collapse
Affiliation(s)
- Choa Park
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ok-Hee Lee
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jin Ju Park
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jiyoon Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jie-Eun Park
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
He Q, Chen C, Gao S, Yang L, Huang R, Qin Y, Huang W. Predictive value of perioperative peripheral blood cells counts for bacteremia and 90-day mortality in severe burn patients. Burns 2023; 49:1412-1421. [PMID: 36372599 DOI: 10.1016/j.burns.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/20/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Burn bacteremia is related to immune barrier damage, but whether the level of circulating immune cells predicts outcomes in severe burns is still not clear. This study aimed to explore the predictive value of perioperative blood cells of the first surgery after burn for bacteremia and 90-day death. METHODS Data from severe burn patients treated at the First Affiliated Hospital of Sun Yat-sen University from 2011 to 2020 were retrospectively analyzed. Data on monocytes (M), lymphocytes (L), white blood cell-to-platelet ratio (WPR), neutrophil-to-lymphocyte ratio (NLR) in peripheral blood and changes in temperature (T-37) were collected at one day before(X0), the first day after (X1) and the third day after (X3) the primary surgery.Univariate and multivariate logistic regression were used to identify the independent risk factors of bacteremia and death within 90 days, which were used to establish the risk prediction models (xbac and x90d-m) in severely burned patients. Severe burn cases from two other burn centers were selected to verify the prediction models. RESULTS We analyzed 169 severe burn cases in the training dataset, with a 90-day mortality of 21.3% (36/169); 56 (33.1%) patients experienced burn bacteremia. Higher M0, WPR0, NLR0, NLR3, T3-37, ∆M (M0-M3) and lower M3, L3 were associated with higher risk of bacteremia (P < 0.05). Multivariate regression analysis showed that SOFA0, WPR0, M3, and T3-37 were independently associated with bacteremia. The prediction model for bacteremia Xbac = 0.1809 × SOFA0 + 6.532 × WPR0-1.171 × M3 + 0.6987 × T3-37- 2.297. TBSAB, SOFA0, and ∆M (M0-M3) were independently correlated with 90-day mortality. The risk prediction model X90d-m= 0.055 × TBSAB + 0.301 ×SOFA0 + 1.508 × ∆M - 7.196. External validation suggested that the specificity, sensitivity and AUC of the prediction model Xbac was 90.7%, 62.5% and 0.797, respectively; of the prediction model X90d-m was 69.2%, 90.0% and 0.873, respectively. CONCLUSION Peripheral M3, WPR0 and ∆M (M0-M3) during the primary surgery has reasonable predictive ability for bacteremia and 90-day mortality in severe burn patients, which could inform clinical antimicrobial judgment and prognostication.
Collapse
Affiliation(s)
- Qiulan He
- Department of Anesthesiology, the First Affiliated Hospital of Sun Yat-sen University, China
| | - Caiyun Chen
- Department of Anesthesiology, the First Affiliated Hospital of Sun Yat-sen University, China
| | - Shaowei Gao
- Department of Anesthesiology, the First Affiliated Hospital of Sun Yat-sen University, China
| | - Lu Yang
- Department of Anesthesiology, the First Affiliated Hospital of Sun Yat-sen University, China
| | - Runcheng Huang
- Department of Anesthesiology, the Dongguan People's Hospital, China
| | - Ying Qin
- Department of Anesthesiology, Zhongshan People's Hospital, China
| | - Wenqi Huang
- Department of Anesthesiology, the First Affiliated Hospital of Sun Yat-sen University, China.
| |
Collapse
|
18
|
Zhou Z, Xun J, Wu C, Ji C, Ji S, Shu F, Wang Y, Chen H, Zheng Y, Xiao S. Acceleration of burn wound healing by micronized amniotic membrane seeded with umbilical cord-derived mesenchymal stem cells. Mater Today Bio 2023; 20:100686. [PMID: 37334186 PMCID: PMC10276167 DOI: 10.1016/j.mtbio.2023.100686] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023] Open
Abstract
Umbilical cord-derived mesenchymal stem cells (UC-MSC) are promising candidates for wound healing. However, the low amplification efficiency of MSC in vitro and their low survival rates after transplantation have limited their medical application. In this study, we fabricated a micronized amniotic membrane (mAM) as a microcarrier to amplify MSC in vitro and used mAM and MSC (mAM-MSC) complexes to repair burn wounds. Results showed that MSC could live and proliferate on mAM in a 3D culture system, exhibiting higher cell activity than in 2D culture. Transcriptome sequencing of MSC showed that the expression of growth factor-related, angiogenesis-related, and wound healing-related genes was significantly upregulated in mAM-MSC compared to traditional 2D-cultured MSC, which was verified via RT-qPCR. Gene ontology (GO) analysis of differentially expressed genes (DEGs) showed significant enrichment of terms related to cell proliferation, angiogenesis, cytokine activity, and wound healing in mAM-MSC. In a burn wound model of C57BL/6J mice, topical application of mAM-MSC significantly accelerated wound healing compared to MSC injection alone and was accompanied by longer survival of MSC and greater neovascularization in the wound.
Collapse
Affiliation(s)
- Zixuan Zhou
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Jingnan Xun
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Chenghao Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Chao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Futing Shu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Yuxiang Wang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Hao Chen
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Shichu Xiao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
19
|
Saadh MJ, Ramírez-Coronel AA, Saini RS, Arias-Gonzáles JL, Amin AH, Gavilán JCO, Sârbu I. Advances in mesenchymal stem/stromal cell-based therapy and their extracellular vesicles for skin wound healing. Hum Cell 2023:10.1007/s13577-023-00904-8. [PMID: 37067766 DOI: 10.1007/s13577-023-00904-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Wound healing is a dynamic and complicated process containing overlapping phases. Presently, definitive therapy is not available, and the investigation into optimal wound care is influenced by the efficacy and cost-effectiveness of developing therapies. Accumulating evidence demonstrated the potential role of mesenchymal stem/stromal cell (MSC) therapy in several tissue injuries and diseases due to their high proliferation and differentiation abilities along with an easy collection procedure, low tumorigenesis, and immuno-privileged status. MSCs have also accelerated wound repair in all phases through their advantageous properties, such as accelerating wound closure, improving re-epithelialization, elevating angiogenesis, suppressing inflammation, and modulating extracellular matrix (ECM) remodeling. In addition, the beneficial therapeutic impacts of MSCs are largely associated with their paracrine functions, including extracellular vesicles (EVs). Exosomes and microvesicles are the two main subgroups of EVs. These vesicles are heterogeneous bilayer membrane structures that contain several proteins, lipids, and nucleic acids. EVs have emerged as a promising alternative to stem cell-based therapies because of their lower immunogenicity, tumorigenicity, and ease of management. MSCs from various sources have been widely investigated in skin wound healing and regeneration. Considering these features, in this review, we highlighted recent studies that the investigated therapeutic potential of various MSCs and MSC-EVs in skin damages and wounds.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, Pontifical University of Peru, San Miguel, Peru
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | | | - Ioan Sârbu
- 2nd Department of Surgery, Pediatric Surgery and Orthopedics, "Grigore T. Popa", University of Medicine and Pharmacy, 700115, Iași, Romania.
| |
Collapse
|
20
|
Li B, Qian L, Pi L, Meng X. A therapeutic role of exosomal lncRNA H19 from adipose mesenchymal stem cells in cutaneous wound healing by triggering macrophage M2 polarization. Cytokine 2023; 165:156175. [PMID: 36948039 DOI: 10.1016/j.cyto.2023.156175] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/31/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Emerging evidence has figured out that adipose mesenchymal stem cells (ADSCs) promote wound healing. Exosomes, which act as main paracrine factors and contains various protein, lncRNA, and miRNAs, play a critical role in wound healing. Nevertheless, the mechanism remains to be elucidated. This study aims to identify the underlying mechanism of ADSCs-derived exosome (ADSCs-exos)-mediated wound healing. METHODS ADSCs-exos were characterized using the transmission electron microscope, dynamic light scattering, and western blot. ELISA, RT-qPCR, flow cytometry, western blot, CCK-8 assay, transwell assay and tube formation were employed to validate the actions of ADSCs-exos harboring H19 in cell polarization, proliferation, migration and angiogenesis. The regulatory axis among H19, miR-130b-3p and PPARγ or STAT3 was confirmed by RNA pull-down, RIP assay and dual-luciferase reporter assays. RESULTS ADSCs-exos harboring H19 promoted macrophage M2 polarization, thereby enhancing fibroblast proliferation, migration and endothelial cell angiogenesis. However, their promotive effects were disrupted within H19 depletion in ADSCs-exos. Additionally, miR-130b-3p, directly targeting PPARγ or STAT3, was identified to be a downstream effector to participate in H19-mediated biological effects. Moreover, ADSCs-exos carrying H19 modulated cutaneous wound healing via H19/miR-130b-3p -mediated macrophage M2 polarization in vivo. CONCLUSION Collectively, ADSCs-derived exosomal H19 accelerates cutaneous wound healing via the miR-130b-3p/PPARγ/STAT3 axis, indicating potential therapeutic strategies for the treatment of wound healing.
Collapse
Affiliation(s)
- Bo Li
- Department of Plastic & Laser Cosmetic, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, PR China
| | - Li Qian
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China.
| | - Li Pi
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Xianxi Meng
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| |
Collapse
|
21
|
Azam M, Ghufran H, Tasneem S, Mehmood A, Malik K, Yousaf MA, Tarar MN, Akram SJ, Riazuddin S. Priming of adipose-derived stem cells with curcumin prior to cryopreservation preserves their functional potency: Towards an 'Off-the-shelf' therapy for burns. Cryobiology 2023; 110:69-78. [PMID: 36470459 DOI: 10.1016/j.cryobiol.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Stem cells-based treatment for burn wounds require frozen cells as an off-the-shelf therapy; however, cryopreservation-induced oxidative stress resulted in post-thaw cell death or loss of cell functions, thus arrested their clinical practicality. Although antioxidant priming to stem cells increase their resistant to oxidative stress, but this strategy is still unexplored on cryopreserved cells. Herein, we investigated whether curcumin priming before cryopreservation could preserve the therapeutic potency of thawed stem cells. For this, unprimed and curcumin-primed adipose-derived stem cells (ASCs) were cryopreserved for one month. Post-thawing, cells were assessed for viability by trypan blue assay; metabolic activity by MTT assay; senescence by senescence-associated (SA)-β-galactosidase activity staining assay; migration by scratch healing assay and; mRNA expression by real-time PCR. Subsequently, the healing potential was examined by injecting cells around the wound periphery of acidic burn in rats. Post-healing, skin architecture was histologically examined. Results demonstrated that, curcumin-primed frozen cells (Cryo/Cur-ASCs) showed better post-thaw viability, metabolic activity, migration ability and lower percent of senescence comparative to unprimed frozen cells (Cryo/ASCs). Curcumin priming alleviated the oxidative damage by activating the ROS-reducing cellular antioxidant system as shown by the evident increase in GSH levels and upregulated mRNA expression of glutathione peroxidase (GPx), superoxide dismutases (SOD1, SOD2), and catalase (CAT). Further, invivo findings revealed that Cryo/Cur-ASCs-treated wounds exhibited earlier wound closure with an improved architecture comparative to Cryo/ASCs and depicted healing capacity almost similar to Fresh/ASCs. Our findings suggested that curcumin priming could be effective to alleviate the cryo-induced oxidative stress in post-thawed cells.
Collapse
Affiliation(s)
- Maryam Azam
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Saba Tasneem
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - Kausar Malik
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | | | - Moazzam N Tarar
- Jinnah Burn and Reconstructive Surgery Centre, Lahore, Pakistan
| | | | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan; Jinnah Burn and Reconstructive Surgery Centre, Lahore, Pakistan
| |
Collapse
|
22
|
Wood FM. The Role of Cell-Based Therapies in Acute Burn Wound Skin Repair: A Review. J Burn Care Res 2023; 44:S42-S47. [PMID: 36567469 DOI: 10.1093/jbcr/irac146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tissue engineering solutions for skin have been developed over the last few decades with a focus initially on a two-layered structure with epithelial and dermal repair. An essential element of skin restoration is a source of cells capable of differentiating into the appropriate phenotype. The need to repair areas of skin when traditional techniques were not adequate addressed led to cell based therapies being developed initially as a laboratory-based tissue expansion opportunity, both as sheets of cultured epithelial autograft and in composite laboratory-based skin substitutes. The time to availability of the cell-based therapies has been solved in a number of ways, from using allograft cell-based solutions to the use of point of care skin cell harvesting for immediate clinical use. More recently pluripotential cells have been explored providing a readily available source of cells and cells which can express the broad range of phenotypes seen in the mature skin construct. The lessons learnt from the use of cell based techniques has driven the exploration of the use of 3D printing technology, with controlled accurate placement of the cells within a specific printed construct to optimise the phenotypic expression and tissue generation.
Collapse
Affiliation(s)
- Fiona M Wood
- University of Western Australia, Fiona Stanley Hospital, Perth Children's Hospital, Burns Service of WA, Level 4 Fiona Stanley Hospital, 11 Robin Warren Drive, Murdoch Western, Australia 6150
| |
Collapse
|
23
|
Irfan F, Jameel F, Khan I, Aslam R, Faizi S, Salim A. Role of quercetin and rutin in enhancing the therapeutic potential of mesenchymal stem cells for cold induced burn wound. Regen Ther 2022; 21:225-238. [PMID: 36092499 PMCID: PMC9420879 DOI: 10.1016/j.reth.2022.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 07/23/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Cold burn wounds differ in their pathophysiological spectrum as compared to other types of burn wounds. These wounds have prolonged devastating effects on the body including hypertrophic scars, contracture, and necrosis. Mesenchymal stem cells (MSCs) are considered promising candidates for the complete regeneration of burn wounds. However, transplanted MSCs face the challenge to survive under the harsh tissue conditions. Preconditioning of MSCs with bioactive compounds may enhance their survival and regenerative potential for use in clinical applications. Bioactive compounds of Melia azedarach are well known for their potential role in treating different types of skin wounds due to their anti-inflammatory, anti-viral, anti-cytotoxic, and anti-oxidative properties. This study aims to evaluate the synergistic effects of human umbilical cord derived MSCs (hUC-MSCs) after preconditioning them with bioactive compounds of M. azedarach (quercetin and rutin) for cold induced burn wounds. Method Human umbilical cord MSCs (hUC-MSCs) were characterized based on their specific cell surface markers and treated with 20 μM of quercetin or rutin. In vitro scratch assay was performed to measure cell migration and wound closure. In vivo cold burn wound model was developed via direct exposure of the dorsal rat skin to liquid nitrogen. hUC-MSCs were subcutaneously transplanted next day of burn wound induction and wound was examined at different time points corresponding to the wound healing phases (days 3, 7, and 14). The regenerative potential of preconditioned hUC-MSCs was assessed in different groups; control (treated only with hUC-MSCs), and treated groups (quercetin or rutin treated hUC-MSCs). Healing potential and wound closure were evaluated by histological, gene expression, and immunohistochemical analyses of the wound tissues before and after treatment. Results Scratch assay exhibited enhanced cell migration towards wound closure in the treated groups as compared to the control. Macroscopic examination of the wound revealed scab formation at day 14 in control, whereas scab was detached and the wound tissue was remarkably remodeled in the treated groups. Comparison between the treated groups showed that burn wound treated with quercetin significantly increased healing potential than the rutin treated MSCs. Histological findings showed enhanced regeneration of skin layers along with hair follicles in the quercetin group, while increased neovascularization was noted in both treatment groups. Gene profile of wound healing mediators illustrated significant upregulation of IL-5, IL-4, GPX-7, TXNRD-2, PRDX, VEGF, and FGF and downregulation of inflammatory cytokines IL-1β and IL-6. Conclusion In conclusion, synergistic effect of hUC-MSCs and bioactive compounds of M. azedarach enhances wound healing by reducing the inflammation, mitigating oxidative stress and enhancing neovascularization. The study findings will aid in designing more effective treatment options for cold burn wounds.
Collapse
Affiliation(s)
- Fatima Irfan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Fatima Jameel
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | | | - Shaheen Faizi
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Corresponding author. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan. Tel.: + (92-21) 99261671; Fax: + (92-21) 34819018-9.
| |
Collapse
|
24
|
Xue E, Minniti A, Alexander T, Del Papa N, Greco R. Cellular-Based Therapies in Systemic Sclerosis: From Hematopoietic Stem Cell Transplant to Innovative Approaches. Cells 2022; 11:3346. [PMID: 36359742 PMCID: PMC9658618 DOI: 10.3390/cells11213346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 08/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a systemic disease characterized by autoimmune responses, vasculopathy and tissue fibrosis. The pathogenic mechanisms involve a wide range of cells and soluble factors. The complexity of interactions leads to heterogeneous clinical features in terms of the extent, severity, and rate of progression of skin fibrosis and internal organ involvement. Available disease-modifying drugs have only modest effects on halting disease progression and may be associated with significant side effects. Therefore, cellular therapies have been developed aiming at the restoration of immunologic self-tolerance in order to provide durable remissions or to foster tissue regeneration. Currently, SSc is recommended as the 'standard indication' for autologous hematopoietic stem cell transplantation by the European Society for Blood and Marrow Transplantation. This review provides an overview on cellular therapies in SSc, from pre-clinical models to clinical applications, opening towards more advanced cellular therapies, such as mesenchymal stem cells, regulatory T cells and potentially CAR-T-cell therapies.
Collapse
Affiliation(s)
- Elisabetta Xue
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | - Antonina Minniti
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
| | - Tobias Alexander
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | | | - Raffaella Greco
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | | |
Collapse
|
25
|
Wang M, Wu P, Huang J, Liu W, Qian H, Sun Y, Shi H. Skin cell-derived extracellular vesicles: a promising therapeutic strategy for cutaneous injury. BURNS & TRAUMA 2022; 10:tkac037. [PMID: 36267497 PMCID: PMC9580071 DOI: 10.1093/burnst/tkac037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/12/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Wound healing refers to the healing process that occurs after the skin and other tissues are separated or damaged by internal or external forces. It is a complex combination of tissue regeneration, granulation tissue hyperplasia, and scar formation, and shows the synergistic effects of these processes. After skin damage, the environment around the wound and the cells at site of the damage respond immediately, and a range of cytokines and growth factors are released. In cutaneous injury, extracellular vesicle (EV) signaling plays a vital role in the healing process via paracrine and endocrine mechanisms. EVs are natural intercellular and inter-organ communication tools that carry various bioactive substances for message exchange. Stem cells and stem cell EVs facilitate tissue repair, showing promising potential in regenerative medicine. Nevertheless, EVs derived from specific skin tissue cells, such as epidermal cells, fibroblasts, vascular endothelial cells and inflammatory cells, also play important roles in cutaneous tissue repair. Here, we describe the characteristics of wound healing, concentrating on the production and functions of EVs derived from specific skin cells, and provide new ideas for wound therapy using EVs.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang 212000, China
| | - Peipei Wu
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Jin Huang
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Wenhui Liu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang 212000, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang 212000, China
| | - Yaoxiang Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang 212000, China
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang 212000, China
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu 215100, China
| |
Collapse
|
26
|
Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022; 11:cells11152439. [PMID: 35954282 PMCID: PMC9367945 DOI: 10.3390/cells11152439] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients’ quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
Collapse
|
27
|
Ren Y, Liu J, Xu H, Wang S, Li S, Xiang M, Chen S. Knockout of integrin β1 in induced pluripotent stem cells accelerates skin-wound healing by promoting cell migration in extracellular matrix. Stem Cell Res Ther 2022; 13:389. [PMID: 35908001 PMCID: PMC9338467 DOI: 10.1186/s13287-022-03085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Induced pluripotent stem cells (iPSCs) have the potential to promote wound healing; however, their adhesion to the extracellular matrix (ECM) might decrease iPSC migration, thereby limiting their therapeutic potential. Integrin β1 (Itgb1) is the major integrin subunit that mediates iPSC-ECM adhesion, suggesting that knocking out Itgb1 might be an effective method for enhancing the therapeutic efficacy of iPSCs. Methods We knocked out Itgb1 in mouse iPSCs and evaluated its effects on the therapeutic potential of topically applied iPSCs, as well as their underlying in vivo and in vitro mechanisms. Results The Itgb1-knockout (Itgb1-KO) did not change iPSC pluripotency, function, or survival in the absence of embedding in an ECM gel but did accelerate wound healing, angiogenesis, blood perfusion, and survival in skin-wound lesions. However, embedding in an ECM gel inhibited the in vivo effects of wild-type iPSCs but not those of Itgb1-knockout iPSCs. Additionally, in vitro results showed that Itgb1-knockout decreased iPSC-ECM adhesion while increasing ECM-crossing migration. Moreover, ECM coating on the culture surface did not change cell survival, regardless of Itgb1 status; however, the in vivo and in vitro functions of both Itgb1-knockout and wild-type iPSCs were not affected by the presence of agarose gel, which does not contain integrin-binding sites. Knockout of Integrin α4 (Itga4) did not change the above-mentioned cellular and therapeutic functions of iPSCs. Conclusions Itgb1-knockout increased iPSCs migration and the wound-healing-promoting effect of topically applied iPSCs. These findings suggest the inhibition of Itgb1 expression is a possible strategy for increasing the efficacy of iPSC therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03085-7.
Collapse
Affiliation(s)
- Yansong Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jinbo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Huijun Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shun Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shirui Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Meng Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
28
|
Role and Function of Mesenchymal Stem Cells on Fibroblast in Cutaneous Wound Healing. Biomedicines 2022; 10:biomedicines10061391. [PMID: 35740413 PMCID: PMC9219688 DOI: 10.3390/biomedicines10061391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Skin wounds often repair themselves completely over time; however, this is true only for healthy individuals. Although various studies are being conducted to improve wound-healing therapy outcomes, the mechanisms of wound healing and regeneration are not completely understood yet. In recent years, mesenchymal stem cells (MSCs) have been reported to contribute significantly to wound healing and regeneration. Understanding the function of MSCs will help to elucidate the fundamentals of wound healing. MSCs are multipotent stem cells that are used in regenerative medicine for their ability to self-renew and differentiate into bone, fat, and cartilage, with few ethical problems associated with cell harvesting. Additionally, they have anti-inflammatory and immunomodulatory properties and antifibrotic effects via paracrine signaling, and many studies have been conducted to use them to treat graft-versus-host disease, inflammatory bowel disease, and intractable cutaneous wounds. Many substances derived from MSCs are involved in the wound-healing process, and specific cascades and pathways have been elucidated. This review aims to explain the fundamental role of MSCs in wound healing and the effects of MSCs on fibroblasts.
Collapse
|
29
|
Liu Z, Yang J, Chen Y, Chen C, Wang J, Lee YM, Zheng W, Shang R, Tang Y, Zhang X, Hu X, Huang Y, Peng S, Liou YC, He W, Luo G. P311 Facilitates the Angiogenesis and Wound Healing Function of MSCs by Increasing VEGF Production. Front Immunol 2022; 13:821932. [PMID: 35154140 PMCID: PMC8831272 DOI: 10.3389/fimmu.2022.821932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
As a potential clinical therapeutic cell for injured tissue repair, mesenchymal stem cells (MSCs) have attracted increasing attention. Enhancing the pro-healing function of MSCs has gradually become an essential topic in improving the clinical efficacy of MSCs. Recently, studies have shown that neuronal protein 3.1 (P311) plays a crucial role in promoting skin wound healing, suggesting P311 gene modification may improve the pro-healing function of MSCs. In this study, we demonstrated that increasing the in vivo expression of P311 could significantly enhance the ability of MSCs to lessen the number of inflammatory cells, increase the expression of IL10, reduce the levels of TNF-α and IFN-γ, increase collagen deposition, promote angiogenesis, and ultimately accelerate skin wound closure and improve the quality of wound healing. Importantly, we uncovered that P311 enhanced the pro-angiogenesis function of MSCs by increasing the production of vascular endothelial growth factor (VEGF) in vitro and in vivo. Mechanistically, we revealed that the mTOR signalling pathway was closely related to the regulation of P311 on VEGF production in MSCs. Together, our data displayed that P311 gene modification in MSCs augments their capabilities to promote skin wound closure, which might bring the dawn for its clinical application in the future.
Collapse
Affiliation(s)
- Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jue Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.,National University of Singapore (NUS) Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Wenxia Zheng
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Shiya Peng
- Department of Dermatology, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.,National University of Singapore (NUS) Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| |
Collapse
|
30
|
Wu H, He S, Zhang W, Huang Y, Zhang Q, Liu D. Administration of circRNA_0075932 shRNA exhibits a therapeutic effect on burn-associated infection in obese rats. Biochem Biophys Res Commun 2022; 608:82-89. [PMID: 35397427 DOI: 10.1016/j.bbrc.2022.03.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/02/2022]
Abstract
miR-495 and miR-142-3p suppress inflammatory response. Circ_0075932 is overexpressed in the burned skin of obese individuals and is involved in the regulation of PUM2 and AuroraA kinase, thus activating the NF-kB pathway. Obesity significantly influences the length of hospital stay for paediatric burn patients, who present symptoms of slower healing or greater functional impairment. In this study, the relationship between the abovementioned genes was assessed using an obese rat burn model. Luciferase assays, real-time PCR, Western blotting and ELISA assays were performed to explore the regulatory relationships of circRNA_0075932/miR-142, circRNA_0075932/miR-495, miR-142/NLRP3, and miR-495/PUM2. Luciferase assays indicated that miR-142 effectively suppressed the expression of circRNA_0075932/NLRP3 while miR-495 inhibited the expression of circRNA_0075932/PUM2. Downregulation of circRNA_0075932 suppressed the expression of circRNA_0075932/NLRP3/PUM2 and activated the expression of miR-142/miR-495. Exosomes collected from lenti-circRNA_0075932 shRNA-treated ADSCs showed remarkable efficiency in maintaining the post heat stress (PHS)-induced dysregulation of circRNA_0075932, miR-142, miR-495, NLRP3, PUM2, AuroraB, Ika, NF-kB, TNF-α, IL-1β, and MCP-1 in THP-1 cells. Moreover, EXO-Lenti-circRNA_0075932 shRNA significantly restored burn-induced dysregulation of circRNA_0075932, miR-142, miR-495, NLRP3, PUM2, AuroraB, Ika, NF-kB, TNF-α, IL-1β, and MCP-1 in obese rats. In conclusion, this study confirmed that the expression of circ_0075932 in adipose tissue is evidently increased in burn-associated infection in obese rats. Moreover, the administration of circ_0075932 shRNA exhibited a therapeutic effect upon burn-associated infection in obese rats by suppressing the expression of circ_0075932.
Collapse
Affiliation(s)
- Haidong Wu
- Department of Burns Cosmetic Surgery, Ezhou Central Hospital, Ezhou, Hubei, 436099, China
| | - Sheng He
- Department of Burns Cosmetic Surgery, Ezhou Central Hospital, Ezhou, Hubei, 436099, China
| | - Wei Zhang
- Department of Burns Cosmetic Surgery, Ezhou Central Hospital, Ezhou, Hubei, 436099, China
| | - Ying Huang
- Department of Burns Cosmetic Surgery, Ezhou Central Hospital, Ezhou, Hubei, 436099, China
| | - Qiang Zhang
- Department of Burns Cosmetic Surgery, Ezhou Central Hospital, Ezhou, Hubei, 436099, China
| | - Dan Liu
- Health Management Center, Huanggang Center for Disease Control and Prevention, Huanggang, Hubei, 438021, China.
| |
Collapse
|
31
|
|
32
|
Zhao LX, Zhang K, Shen BB, Li JN. Mesenchymal stem cell-derived exosomes for gastrointestinal cancer. World J Gastrointest Oncol 2021; 13:1981-1996. [PMID: 35070036 PMCID: PMC8713327 DOI: 10.4251/wjgo.v13.i12.1981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) malignancies, a series of malignant conditions originating from the digestive system, include gastric cancer, hepatocellular carcinoma, pancreatic cancer, and colorectal cancer. GI cancers have been regarded as the leading cancer-related cause of death in recent years. Therefore, it is essential to develop effective treatment strategies for GI malignancies. Mesenchymal stem cells (MSCs), a type of distinct non-hematopoietic stem cells and an important component of the tumor microenvironment, play important roles in regulating GI cancer development and progression through multiple mechanisms, such as secreting cytokines and direct interactions. Currently, studies are focusing on the anti-cancer effect of MSCs on GI malignancies. However, the effects and functional mechanisms of MSC-derived exosomes on GI cancer are less studied. MSC-derived exosomes can regulate GI tumor growth, drug response, metastasis, and invasion through transplanting proteins and miRNA to tumor cells to activate the specific signal pathway. Besides, the MSC-derived exosomes are also seen as an important drug delivery system and have shown potential in anti-cancer treatment. This study aims to summarize the effect and biological functions of MSC-derived exosomes on the development of GI cancers and discuss their possible clinical applications for the treatment of GI malignancies.
Collapse
Affiliation(s)
- Lin-Xian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Bing-Bing Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jian-Nan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|