1
|
Su F, Huo D, Yang H, Sun L. CircRNA8388 functions as the sponge for miR-2392 during intestinal regeneration in sea cucumber Apostichopus japonicus. Int J Biol Macromol 2024; 274:133302. [PMID: 38909735 DOI: 10.1016/j.ijbiomac.2024.133302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
The sea cucumber Apostichopus japonicus can expel internal organs under stress and regenerate them subsequently. However, growth is delayed during regeneration, significantly impacting the industry. Circular RNAs (circRNAs) are single-stranded circular RNA molecules produced through alternative splicing of mRNA precursors. They play crucial roles in regulating gene expression via the ceRNA mechanism. In this study, circRNA profiles of control and regenerated intestines were constructed. A total of 15,874 circRNAs were identified, with a length of 300-350 nucleotides (nt) being the most abundant. Sanger sequencing confirmed the circular structure of circRNA398. Compared with the normal intestine, 50 and 83 differentially expressed circRNAs (DE-circRNAs) were identified in the regenerated intestine at 1 and 3 days post evisceration (dpe), respectively. Gene ontology (GO) terms for signal transduction and development regulation were most significantly enriched in 1dpeVScon and 3dpeVScon treatments, respectively. The dual-luciferase assay revealed that circRNA8388 functions as a sponge for miR-2392, participating in the remodeling of the extracellular matrix (ECM). In conclusion, these findings will contribute to the enhancement of the non-coding RNA database for echinoderms and lay the groundwork for future investigations into circRNA regulation during intestinal regeneration.
Collapse
Affiliation(s)
- Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Li T, Fan L, Jia Y, Xu C, Guo W, Wang Y, Li Y. Colorectal cancer cells with stably expressed SIRT3 demonstrate proliferating retardation by Wnt/β-catenin cascade inactivation. Clin Exp Pharmacol Physiol 2024; 51:e13856. [PMID: 38621772 DOI: 10.1111/1440-1681.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Colorectal cancer (CRC) is a typical and lethal digestive system malignancy. In this study, we investigated the effect of sirtuin 3 (SIRT3) expression, a fidelity mitochondrial protein, on the proliferation of CRC cells and the mechanisms involved. Using the University of Alabama at Birmingham Cancer Data Analysis Portal database and the Clinical Proteomic Tumour Analysis Consortium database, we discovered that low expression of SIRT3 in CRC was a negative factor for survival prognosis (P < .05). Meanwhile, SIRT3 expression was correlated with distant metastasis and tumour, node, metastasis stage of CRC patients (P < .05). Subsequently, we observed that CRC cells with stable SIRT3 expression exhibited a significant decrease in proliferative capacities both in vitro and in vivo, compared to their counterparts (P < .05). Further investigation using western blot, immunoprecipitation and TOPflash/FOPflash assay showed the mechanism of growth retardation of these cells was highly associated with the degradation of β-catenin in cytosol, and the localization of β-catenin/α-catenin complex in the nucleus. In conclusion, our findings suggest that the inhibition of CRC cell proliferation by SIRT3 is closely associated with the inactivation of the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Pharmacology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Leqi Fan
- Department of Pharmacology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Yijiang Jia
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Chen Xu
- Department of Pharmacology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Wei Guo
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yuji Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Ye Li
- Department of Pharmacology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Xiang F, Wang P, Gong H, Luo J, Zhou X, Zhan C, Hu T, Wang M, Xing Y, Guo H, Luo G, Li Y. Wnt4 increases the thickness of the epidermis in burn wounds by activating canonical Wnt signalling and decreasing the cell junctions between epidermal cells. BURNS & TRAUMA 2023; 11:tkac053. [PMID: 37408701 PMCID: PMC10318205 DOI: 10.1093/burnst/tkac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/04/2022] [Indexed: 07/07/2023]
Abstract
Background Burn wound healing is a complex process and the role of Wnt ligands varies in this process. Whether and how Wnt4 functions in burn wound healing is not well understood. In this study, we aim to reveal the effects and potential mechanisms of Wnt4 in burn wound healing. Methods First, the expression of Wnt4 during burn wound healing was determined by immunofluorescence, Western blotting and qPCR. Then, Wnt4 was overexpressed in burn wounds. The healing rate and healing quality were analysed by gross photography and haematoxyline and eosin staining. Collagen secretion was observed by Masson staining. Vessel formation and fibroblast distribution were observed by immunostaining. Next, Wnt4 was knocked down in HaCaT cells. The migration of HaCaT cells was analysed by scratch healing and transwell assays. Next, the expression of β-catenin was detected by Western blotting and immunofluorescence. The binding of Frizzled2 and Wnt4 was detected by coimmunoprecipitation and immunofluorescence. Finally, the molecular changes induced by Wnt4 were analysed by RNA sequencing, immunofluorescence, Western blotting and qPCR in HaCaT cells and burn wound healing tissues. Results The expression of Wnt4 was enhanced in burn wound skin. Overexpression of Wnt4 in burn wound skin increased the thickness of epidermis. Collagen secretion, vessel formation and fibroblast distribution were not significantly impacted by Wnt4 overexpression. When Wnt4 was knocked down in HaCaT cells, the ratio of proliferating cells decreased, the ratio of apoptotic cells increased and the ratio of the healing area in the scratch healing assay to the number of migrated cells in the transwell assay decreased. The nuclear translocation of β-catenin decreased in shRNA of Wnt4 mediated by lentivirus-treated HaCaT cells and increased in Wnt4-overexpressing epidermal cells. RNA-sequencing analysis revealed that cell junction-related signalling pathways were significantly impacted by Wnt4 knockdown. The expression of the cell junction proteins was decreased by the overexpression of Wnt4. Conclusions Wnt4 promoted the migration of epidermal cells. Overexpression of Wnt4 increased the thickness of the burn wound. A potential mechanism for this effect is that Wnt4 binds with Frizzled2 and increases the nuclear translocation of β-catenin, thus activating the canonical Wnt signalling pathway and decreasing the cell junction between epidermal cells.
Collapse
Affiliation(s)
| | | | - Hao Gong
- Department of Cell Biology, Army Medical University, Chongqing 400038, PR China
| | - Jia Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Xin Zhou
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Chenglin Zhan
- Department of Cell Biology, Army Medical University, Chongqing 400038, PR China
| | - Tianxing Hu
- Department of Cell Biology, Army Medical University, Chongqing 400038, PR China
| | - Mengru Wang
- Department of Cell Biology, Army Medical University, Chongqing 400038, PR China
| | - Yizhan Xing
- Department of Cell Biology, Army Medical University, Chongqing 400038, PR China
| | - Haiying Guo
- Department of Cell Biology, Army Medical University, Chongqing 400038, PR China
| | | | - Yuhong Li
- Correspondence. Yuhong Li, ; Gaoxing Luo,
| |
Collapse
|
4
|
Liu F, Yao Y, Wang Q, Zhang F, Wang M, Zhu C, Lin C. Nigakinone alleviates DSS-induced experimental colitis via regulating bile acid profile and FXR/NLRP3 signaling pathways. Phytother Res 2023; 37:15-34. [PMID: 36054406 DOI: 10.1002/ptr.7588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 01/20/2023]
Abstract
The correlation of bile acid (BA) metabolism disorder with the pathogenesis of ulcerative colitis (UC) is realized nowadays. Farnesoid X receptor (FXR), a controller for BA homeostasis and inflammation, is a promising target for UC therapy. Nigakinone has potential therapeutic effects on colitis. Herein, we investigated the anti-UC effects and mechanism of nigakinone in colitic animals induced by dextran sulfate sodium (DSS). The related targets involved in the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) signaling pathway were measured. BA-targeted metabolomics was employed to reveal the regulatory effects of nigakinone on BA profile in colitis, while expressions of FXR and its mediated targets referring to BA enterohepatic circulation were determined. The critical role of FXR in the treatment of nigakinone for colitis was studied via molecule-docking, dual-luciferase reporter® (DLR™) assays, FXR silencing cells, and FXR knockout mice. Results showed nigakinone attenuated DSS-induced colitis symptoms, including excessive inflammatory response by NLRP3 activation, and injury of the intestinal mucosal barrier. Nigakinone regulated BA disorders by controlling cholesterol hydroxylase and transporters mediated by FXR, then decreased BA accumulation in colon. Molecular-docking and DLR™ assays indicated FXR might be a target of nigakinone. In vitro, nigakinone restrained BA-induced inflammation and cell damage via FXR activation and inhibition of inflammatory cytokines. However, ameliorating effects of nigakinone on colitis were suppressed by FXR knockout or silencing in vivo or in vitro. Taken together, nigakinone ameliorated experimental colitis via regulating BA profile and FXR/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Fangle Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China.,School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yufeng Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qian Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Fengxue Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| |
Collapse
|
5
|
Wong R, Zhang Y, Zhao H, Ma D. Circular RNAs in organ injury: recent development. J Transl Med 2022; 20:533. [PMID: 36401311 PMCID: PMC9673305 DOI: 10.1186/s12967-022-03725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Circular ribonucleic acids (circRNAs) are a class of long non-coding RNA that were once regarded as non-functional transcription byproducts. However, recent studies suggested that circRNAs may exhibit important regulatory roles in many critical biological pathways and disease pathologies. These studies have identified significantly differential expression profiles of circRNAs upon changes in physiological and pathological conditions of eukaryotic cells. Importantly, a substantial number of studies have suggested that circRNAs may play critical roles in organ injuries. This review aims to provide a summary of recent studies on circRNAs in organ injuries with respect to (1) changes in circRNAs expression patterns, (2) main mechanism axi(e)s, (3) therapeutic implications and (4) future study prospective. With the increasing attention to this research area and the advancement in high-throughput nucleic acid sequencing techniques, our knowledge of circRNAs may bring fruitful outcomes from basic and clinical research.
Collapse
|
6
|
Deng Y, Xu X, Meng F, Lou J, Liao Y, Li Q, Zhuang M, Sun Y. PRP8-Induced CircMaml2 Facilitates the Healing of the Intestinal Mucosa via Recruiting PTBP1 and Regulating Sec62. Cells 2022; 11:3460. [PMID: 36359856 PMCID: PMC9654005 DOI: 10.3390/cells11213460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Multiple organ dysfunction syndrome (MODS) occurs in the gastrointestinal tract and injured intestinal mucosa is the anatomical basis for various diseases. The expression of circular RNAs (circRNAs) is implicated in many diseases; however, the role of circRNAs in intestinal mucosal injury is yet to be discovered. Our preliminary gene microarray analysis revealed a novel circular RNA, circMaml2, with a significant intestinal mucosal protection effect. Its expression was found to decrease in severely burned intestinal mucosal tissue, whereas its overexpression might facilitate the reconstruction of the injured intestinal mucous membrane. METHODS The function of circMaml2 in cell proliferation and migration was studied in MC38 cells. The repair function of circMaml2 was tested on the intestinal mucosa of mice. RNA-binding protein polypyrimidine tract-binding protein 1(PTBP1) was selected by pull-down assay and mass spectrometry (MS). RNA immunoprecipitation (RIP) was performed to confirm the binding of circMaml2 and PTBP1 and to study PTBP1 and its downstream target, early B-cell factor 1(Ebf1). Bioinformatics software forecast analysis and dual-luciferase reporter assay were performed to ascertain miR-683 and Sec62 as the downstream targets of circMaml2 and miR-683, respectively. Furthermore, PRP8 was discovered to promote the biogenesis of circMaml2. RESULTS CircMaml2 promotes cell proliferation and migration of MC38 cells and the repair of the intestinal mucosa of mice. This effect is brought about by combining with PTBP1 to improve Ebf1 and interacting with miR-683 to regulate Sec2. Furthermore, PRP8 was discovered to promote the biogenesis of circMaml2. CONCLUSIONS This is the first reported study of the effect of circMaml2 on intestinal mucosal repair.
Collapse
Affiliation(s)
- Yuequ Deng
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Xiaoqing Xu
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Fanze Meng
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Jiaqi Lou
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Yu Liao
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Qi Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Mengmeng Zhuang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Yong Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| |
Collapse
|
7
|
Guo X, Sha Y, Pu X, Xu Y, Yao L, Liu X, He Y, Hu J, Wang J, Li S, Chen G. Coevolution of Rumen Epithelial circRNAs with Their Microbiota and Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep. Int J Mol Sci 2022; 23:ijms231810488. [PMID: 36142400 PMCID: PMC9499677 DOI: 10.3390/ijms231810488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
This study explores the effects of the coevolution of the host genome (the first genome) and gut microbiome (the second genome) on nutrition stress in Tibetan sheep during the cold season. The rumen epithelial tissue of six Tibetan sheep (Oula-type) was collected as experimental samples during the cold and warm seasons and the study lasted for half a year. The cDNA library was constructed and subjected to high-throughput sequencing. The circRNAs with significant differential expression were identified through bioinformatics analysis and functional prediction, and verified by real-time quantitative PCR (qRT-PCR). The results showed that a total of 56 differentially expressed (DE) circRNAs of rumen epithelial tissue were identified using RNA-seq technology, among which 29 were significantly upregulated in the cold season. The circRNA-miRNA regulatory network showed that DE circRNAs promoted the adaptation of Tibetan sheep in the cold season by targeting miR-150 and oar-miR-370-3p. The results of correlation analysis among circRNAs, microbiota, and metabolites showed that the circRNA NC_040275.1:28680890|28683112 had a very significant positive correlation with acetate, propionate, butyrate, and total volatile fatty acid (VFA) (p < 0.01), and had a significant positive correlation with Ruminococcus-1 (p < 0.05). In addition, circRNA NC_040256.1:78451819|78454934 and metabolites were enriched in the same KEGG pathway biosynthesis of amino acids (ko01230). In conclusion, the host genome and rumen microbiome of Tibetan sheep co-encoded a certain glycoside hydrolase (β-glucosidase) and coevolved efficient VFA transport functions and amino acid anabolic processes; thus, helping Tibetan sheep adapt to nutrient stress in the cold season in high-altitude areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiu Liu
- Correspondence: (X.L.); (G.C.)
| | | | | | | | | | | |
Collapse
|
8
|
He QL, Gao SW, Qin Y, Huang RC, Chen CY, Zhou F, Lin HC, Huang WQ. Gastrointestinal dysfunction is associated with mortality in severe burn patients: a 10-year retrospective observational study from South China. Mil Med Res 2022; 9:49. [PMID: 36064456 PMCID: PMC9442990 DOI: 10.1186/s40779-022-00403-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/21/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Data on severe and extensive burns in China are limited, as is data on the prevalence of a range of related gastrointestinal (GI) disorders [such as stress ulcers, delayed defecation, opioid-related bowel immotility, and abdominal compartment syndrome (ACS)]. We present a multicentre analysis of coincident GI dysfunction and its effect on burn-related mortality. METHODS This retrospective analysis was conducted on patients with severe [≥ 20% total burn surface area (TBSA)] and extensive (> 50% TBSA or > 25% full-thickness TBSA) burns admitted to three university teaching institutions in China between January 1, 2011 and December 31, 2020. Both 30- and 90-day mortality were assessed by collating demographic data, burn causes, admission TBSA, % full-thickness TBSA, Baux score, Abbreviated Burn Severity Index (ABSI) score, and Sequential Organ Failure Assessment (SOFA) score, shock at admission and the presence of an inhalation injury. GI dysfunction included abdominal distension, nausea/vomiting, diarrhoea/constipation, GI ulcer/haemorrhage, paralytic ileus, feeding intolerance and ACS. Surgeries, length of intensive care unit (ICU) stay, pain control [in morphine milligram equivalents (MME)] and overall length of hospital stay (LOHS) were recorded. RESULTS We analyzed 328 patients [75.6% male, mean age: (41.6 ± 13.6) years] with a median TBSA of 62.0% (41.0-80.0%); 256 (78.0%) patients presented with extensive burns. The 90-day mortality was 23.2% (76/328), with 64 (84.2%) of these deaths occurring within 30 d and 25 (32.9%) occurring within 7 d. GI dysfunction was experienced by 45.4% of patients and had a significant effect on 90-day mortality [odds ratio (OR) = 14.070, 95% confidence interval (CI) 5.886-38.290, P < 0.001]. Multivariate analysis showed that GI dysfunction was associated with admission SOFA score and % full-thickness TBSA. Overall, 88.2% (67/76) of deceased patients had GI dysfunction [hazard ratio (HR) for death of GI dysfunction = 5.951], with a survival advantage for functional disorders (diarrhoea, constipation, or nausea/vomiting) over GI ulcer/haemorrhage (P < 0.001). CONCLUSION Patients with severe burns have an unfavourable prognosis, as nearly one-fifth died within 90 d. Half of our patients had comorbidities related to GI dysfunction, among which GI ulcers and haemorrhages were independently correlated with 90-day mortality. More attention should be given to severe burn patients with GI dysfunction.
Collapse
Affiliation(s)
- Qiu-Lan He
- Department of Anesthesiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shao-Wei Gao
- Department of Anesthesiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Qin
- Department of Anesthesiology, Zhongshan People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Run-Cheng Huang
- Department of Anesthesiology, Dongguan People's Hospital, Dongguan, 523059, Guangdong, China
| | - Cai-Yun Chen
- Department of Anesthesiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Fei Zhou
- Department of Burn Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong-Cheng Lin
- Department of Colorectal Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Wen-Qi Huang
- Department of Anesthesiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|