1
|
Qu J, Zhang Y, Song C, Wang Y. Effects of resveratrol-loaded dendrimer nanomedicine on hepatocellular carcinoma cells. Front Immunol 2024; 15:1500998. [PMID: 39611153 PMCID: PMC11602518 DOI: 10.3389/fimmu.2024.1500998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Resveratrol (Res), a Chinese herbal extract, has demonstrated a remarkable and distinct antitumor effect, characterized by prolonged efficacy and minimal adverse reactions. However, the bioavailability of Res in animals is hindered by limited absorption rates. Therefore, it is crucial to enhance the tumor-targeting ability of resveratrol to optimize cancer treatment outcomes by improving its bioavailability. Herein, we attempt to employ a functionalized nanoparticle drug carrier system based on polyamine-amine (PAMAM) dendrimers for targeted delivery of resveratrol in hepatocellular carcinoma cancer treatment. Initially, galactose-modified fifth-generation (G5) PAMAM dendrimers (G5-Gal) were synthesized through coupling reactions, followed by the synthesis of glycosylated dendrimers incorporating resveratrol (G5(Res)-Gal) via physical encapsulation. The G5-Gal or G5(Res)-Gal complexes were characterized using 1H NMR spectroscopy, zeta and size analysis, and UV spectrophotometry. Additionally, Hepa1-6 mouse hepatoma cells were utilized as model cells to assess the targeting capability of G5-Gal toward hepatoma cells using flow cytometry. Finally, CCK-8 assay was employed to evaluate the impact of G5(Res)-Gal on normal liver cells as well as its cytotoxicity against different types of hepatoma cells. Furthermore, cell apoptosis experiments were conducted to further evaluate the effects of G5(Res)-Gal on Hepa1-6 cells. The aim of this project is to establish a solid theoretical framework and provide technical expertise to optimize the application of resveratrol and advance its delivery system.
Collapse
Affiliation(s)
- Jiao Qu
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueqin Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Yue Wang
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Podgrajsek R, Ban Frangez H, Stimpfel M. Molecular Mechanism of Resveratrol and Its Therapeutic Potential on Female Infertility. Int J Mol Sci 2024; 25:3613. [PMID: 38612425 PMCID: PMC11011890 DOI: 10.3390/ijms25073613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Resveratrol is a polyphenol present in various plant sources. Studies have reported numerous potential health benefits of resveratrol, exhibiting anti-aging, anti-inflammatory, anti-microbial, and anti-carcinogenic activity. Due to the reported effects, resveratrol is also being tested in reproductive disorders, including female infertility. Numerous cellular, animal, and even human studies were performed with a focus on the effect of resveratrol on female infertility. In this review, we reviewed some of its molecular mechanisms of action and summarized animal and human studies regarding resveratrol and female infertility, with a focus on age-related infertility, polycystic ovary syndrome, and endometriosis.
Collapse
Affiliation(s)
- Rebeka Podgrajsek
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (H.B.F.)
| | - Helena Ban Frangez
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (H.B.F.)
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (H.B.F.)
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Guo H, Qin JL, Kuang WB, Li FY, Ma XL, Zhang Y. Design, synthesis, antioxidant and antitumor activity of some 3-(1H-benzimidazol-2-yl)quinolin-2(1H)-one-resveratrol hybrids. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Bai L, Yau L, Tong T, Chan W, Zhang W, Jiang Z. Improvement of tissue-specific distribution and biotransformation potential of nicotinamide mononucleotide in combination with ginsenosides or resveratrol. Pharmacol Res Perspect 2022; 10:e00986. [PMID: 35844164 PMCID: PMC9289528 DOI: 10.1002/prp2.986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Decreased Nicotinamide adenine dinucleotide (NAD+ ) level has received increasing attention in recent years since it plays a critical role in many diseases and aging. Although some research has proved that supplementing nicotinamide mononucleotide (NMN) could improve the level of NAD+ , it is still uncertain whether the NAD+ level in specific tissues could be improved in combination with other nutrients. So far, a variety of nutritional supplements have flooded the market, which contains the compositions of NMN coupled with natural products. However, the synergy and transformation process of NMN has not been fully elucidated. In this study, oral administration of NMN (500 mg/kg) combined with resveratrol (50 mg/kg) or ginsenoside Rh2&Rg3 (50 mg/kg) was used to validate the efficacy of appropriate drug combinations in mice. Compared with NMN alone, NMN combined with resveratrol could increase the levels of NAD+ in the heart and muscle by about 1.6 times and 1.7 times, respectively, whereas NMN coupled with ginsenoside Rh2&Rg3 could effectively improve the level of NAD+ in lung tissue for approximately 2.0 times. Our study may provide new treatment ideas for aging or diseases in cardiopulmonary caused by decreased NAD+ levels.
Collapse
Affiliation(s)
- Long‐Bo Bai
- State Key Laboratory of Quality Research in Chinese MedicinesMacau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyTaipaMacaoChina
| | - Lee‐Fong Yau
- State Key Laboratory of Quality Research in Chinese MedicinesMacau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyTaipaMacaoChina
| | - Tian‐Tian Tong
- State Key Laboratory of Quality Research in Chinese MedicinesMacau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyTaipaMacaoChina
| | - Wai‐Him Chan
- State Key Laboratory of Quality Research in Chinese MedicinesMacau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyTaipaMacaoChina
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese MedicinesMacau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyTaipaMacaoChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious DiseaseMacau University of Science and TechnologyTaipaMacaoChina
| | - Zhi‐Hong Jiang
- State Key Laboratory of Quality Research in Chinese MedicinesMacau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyTaipaMacaoChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious DiseaseMacau University of Science and TechnologyTaipaMacaoChina
| |
Collapse
|
5
|
Resveratrol as a modulatory of apoptosis and autophagy in cancer therapy. Clin Transl Oncol 2022; 24:1219-1230. [PMID: 35038152 DOI: 10.1007/s12094-021-02770-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the leading causes of death, with a heavy socio-economical burden for countries. Despite the great advances that have been made in the treatment of cancer, chemotherapy is still the most common method of treatment. However, many side effects, including hepatotoxicity, renal toxicity, and cardiotoxicity, limit the efficacy of conventional chemotherapy. Over recent years, natural products have attracted attention as therapeutic agents against various diseases, such as cancer. Resveratrol (RES), a natural polyphenol occurring in grapes, nuts, wine, and berries, exhibited potential for preventing and treating various cancer types. RES also ameliorates chemotherapy-induced detrimental effects. Furthermore, RES could modulate apoptosis and autophagy as the main forms of cancer cell deaths by targeting various signaling pathways and up/downregulation of apoptotic and autophagic genes. This review will summarize the anti-cancer effects of RES and focus on the fundamental mechanisms and targets for modulating apoptosis and autophagy by RES.
Collapse
|
6
|
Almatroodi SA, A. Alsahli M, S. M. Aljohani A, Alhumaydhi FA, Babiker AY, Khan AA, Rahmani AH. Potential Therapeutic Targets of Resveratrol, a Plant Polyphenol, and Its Role in the Therapy of Various Types of Cancer. Molecules 2022; 27:2665. [PMID: 35566016 PMCID: PMC9101422 DOI: 10.3390/molecules27092665] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer is among the most prominent causes of mortality worldwide. Different cancer therapy modes employed, including chemotherapy and radiotherapy, have been reported to be significant in cancer management, but the side effects associated with these treatment strategies are still a health problem. Therefore, alternative anticancer drugs based on medicinal plants or their active compounds have been generating attention because of their less serious side effects. Medicinal plants are an excellent source of phytochemicals that have been recognized to have health-prompting effects through modulating cell signaling pathways. Resveratrol is a well-known polyphenolic molecule with antioxidant, anti-inflammatory, and health-prompting effects among which its anticancer role has been best defined. Additionally, this polyphenol has confirmed its role in cancer management because it activates tumor suppressor genes, suppresses cell proliferation, induces apoptosis, inhibits angiogenesis, and modulates several other cell signaling molecules. The anticancer potential of resveratrol is recognized in numerous in vivo and in vitro studies. Previous experimental data suggested that resveratrol may be valuable in cancer management or improve the efficacy of drugs when given with anticancer drugs. This review emphasizes the potential role of resveratrol as an anticancer drug by modulating numerous cells signaling pathways in different types of cancer.
Collapse
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| |
Collapse
|
7
|
Beneficial Oxidative Stress-Related trans-Resveratrol Effects in the Treatment and Prevention of Breast Cancer. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112211041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resveratrol is one of the most investigated polyphenols for its multiple biological activities and many beneficial effects. These are mainly related to its ability to scavenge free radicals and reduce oxidative stress. Resveratrol has also been shown to have the ability to stimulate the production of antioxidant enzymes, which interact with numerous signaling pathways involved in tumor development, and to possess side effects associated with the use of chemotherapy drugs. In this review article we summarized the main discoveries about the impact resveratrol can have in helping to prevent, as well as adjuvant treating, breast cancer. A brief overview of the primary sources of resveratrol as well as some approaches for improving its bioavailability have been also discussed.
Collapse
|
8
|
Leischner C, Burkard M, Michel A, Berchtold S, Niessner H, Marongiu L, Busch C, Frank J, Lauer UM, Venturelli S. Comparative Analysis of the Antitumor Activity of Cis- and Trans-Resveratrol in Human Cancer Cells with Different p53 Status. Molecules 2021; 26:5586. [PMID: 34577057 PMCID: PMC8466563 DOI: 10.3390/molecules26185586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Resveratrol, a natural plant phytoalexin, is produced in response to fungal infection or- UV irradiation. It exists as an isomeric pair with cis- and trans-conformation. Whereas multiple physiological effects of the trans-form, including a pronounced anti-tumoral activity, are nowadays elucidated, much less knowledge exists concerning the cis-isomer. In our work, we analyzed the antiproliferative and cytotoxic properties of cis-resveratrol in four different human tumor entities in direct comparison to trans-resveratrol. We used human cell lines as tumor models for hepatocellular carcinoma (HCC; HepG2, Hep3B), colon carcinoma (HCT-116, HCT-116/p53(-/-)), pancreatic carcinoma (Capan-2, MiaPaCa-2), and renal cell carcinoma (A498, SN12C). Increased cytotoxicity in all investigated tumor cells was observed for the trans-isomer. To verify possible effects of the tumor suppressor p53 on resveratrol-induced cell death, we used wild type and p53-deleted or -mutated cell lines for every tested tumor entity. Applying viability and cytotoxicity assays, we demonstrated a differential, dose-dependent sensitivity towards cis- or trans-resveratrol among the respective tumor types.
Collapse
Affiliation(s)
- Christian Leischner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (M.B.); (A.M.); (H.N.); (L.M.)
| | - Markus Burkard
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (M.B.); (A.M.); (H.N.); (L.M.)
| | - Anja Michel
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (M.B.); (A.M.); (H.N.); (L.M.)
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Susanne Berchtold
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.B.); (U.M.L.)
| | - Heike Niessner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (M.B.); (A.M.); (H.N.); (L.M.)
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (M.B.); (A.M.); (H.N.); (L.M.)
| | | | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Ulrich M. Lauer
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.B.); (U.M.L.)
- German Cancer Consortium (DKTK), DKFZ Partner Site, 72076 Tuebingen, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (M.B.); (A.M.); (H.N.); (L.M.)
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, 72074 Tuebingen, Germany
| |
Collapse
|
9
|
Akter R, Rahman MH, Kaushik D, Mittal V, Uivarosan D, Nechifor AC, Behl T, Karthika C, Stoicescu M, Munteanu MA, Bustea C, Bungau S. Chemo-Preventive Action of Resveratrol: Suppression of p53-A Molecular Targeting Approach. Molecules 2021; 26:molecules26175325. [PMID: 34500758 PMCID: PMC8433711 DOI: 10.3390/molecules26175325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Extensive experimental, clinical, and epidemiological evidence has explained and proven that products of natural origin are significantly important in preventing and/or ameliorating various disorders, including different types of cancer that researchers are extremely focused on. Among these studies on natural active substances, one can distinguish the emphasis on resveratrol and its properties, especially the potential anticancer role. Resveratrol is a natural product proven for its therapeutic activity, with remarkable anti-inflammatory properties. Various other benefits/actions have also been reported, such as cardioprotective, anti-ageing, antioxidant, etc. and its rapid digestion/absorption as well. This review aims to collect and present the latest published studies on resveratrol and its impact on cancer prevention, molecular signals (especially p53 protein participation), and its therapeutic prospects. The most recent information regarding the healing action of resveratrol is presented and concentrated to create an updated database focused on this topic presented above.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Correspondence: (M.H.R.); (S.B.)
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.S.); (M.A.M.); (C.B.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.S.); (M.A.M.); (C.B.)
| | - Cristiana Bustea
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.S.); (M.A.M.); (C.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (M.H.R.); (S.B.)
| |
Collapse
|
10
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
11
|
Benedetti F, Sorrenti V, Buriani A, Fortinguerra S, Scapagnini G, Zella D. Resveratrol, Rapamycin and Metformin as Modulators of Antiviral Pathways. Viruses 2020; 12:v12121458. [PMID: 33348714 PMCID: PMC7766714 DOI: 10.3390/v12121458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Balanced nutrition and appropriate dietary interventions are fundamental in the prevention and management of viral infections. Additionally, accurate modulation of the inflammatory response is necessary to achieve an adequate antiviral immune response. Many studies, both in vitro with mammalian cells and in vivo with small animal models, have highlighted the antiviral properties of resveratrol, rapamycin and metformin. The current review outlines the mechanisms of action of these three important compounds on the cellular pathways involved with viral replication and the mechanisms of virus-related diseases, as well as the current status of their clinical use.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
- Bendessere™ Study Center, Via Prima Strada 23/3, 35129 Padova, Italy
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | | | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: (G.S.); (D.Z.)
| | - Davide Zella
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence: (G.S.); (D.Z.)
| |
Collapse
|
12
|
Dembic M, Andersen HS, Bastin J, Doktor TK, Corydon TJ, Sass JO, Lopes Costa A, Djouadi F, Andresen BS. Next generation sequencing of RNA reveals novel targets of resveratrol with possible implications for Canavan disease. Mol Genet Metab 2019; 126:64-76. [PMID: 30446350 DOI: 10.1016/j.ymgme.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022]
Abstract
Resveratrol (RSV) is a small compound first identified as an activator of sirtuin 1 (SIRT1), a key factor in mediating the effects of caloric restriction. Since then, RSV received great attention for its widespread beneficial effects on health and in connection to many diseases. RSV improves the metabolism and the mitochondrial function, and more recently it was shown to restore fatty acid β-oxidation (FAO) capacities in patient fibroblasts harboring mutations with residual enzyme activity. Many of RSV's beneficial effects are mediated by the transcriptional coactivator PGC-1α, a direct target of SIRT1 and a master regulator of the mitochondrial fatty acid oxidation. Despite numerous studies RSV's mechanism of action is still not completely elucidated. Our aim was to investigate the effects of RSV on gene regulation on a wide scale, possibly to detect novel genes whose up-regulation by RSV may be of interest with respect to disease treatment. We performed Next Generation Sequencing of RNA on normal fibroblasts treated with RSV. To investigate whether the effects of RSV are mediated through SIRT1 we expanded the analysis to include SIRT1-knockdown fibroblasts. We identified the aspartoacylase (ASPA) gene, mutated in Canavan disease, to be strongly up-regulated by RSV in several cell lines, including Canavan disease fibroblasts. We further link RSV to the up-regulation of other genes involved in myelination including the glial specific transcription factors POU3F1, POU3F2, and myelin basic protein (MBP). We also observe a strong up-regulation by RSV of the riboflavin transporter gene SLC52a1. Mutations in SLC52a1 cause transient multiple acyl-CoA dehydrogenase deficiency (MADD). Our analysis of alternative splicing identified novel metabolically important genes affected by RSV, among which is particularly interesting the α subunit of the stimulatory G protein (Gsα), which regulates the cellular levels of cAMP through adenylyl cyclase. We conclude that in fibroblasts RSV stimulates the PGC-1α and p53 pathways, and up-regulates genes affecting the glucose metabolism, mitochondrial β-oxidation, and mitochondrial biogenesis. We further confirm that RSV might be a relevant treatment in the correction of FAO deficiencies and we suggest that treatment in other metabolic disorders including Canavan disease and MADD might be also beneficial.
Collapse
Affiliation(s)
- Maja Dembic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Henriette S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Jean Bastin
- INSERM UMR-S 1124, Université Paris Descartes, UFR Biomédicale des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris, cedex 06, France
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Department of Natural Sciences & IFGA, University of Applied Sciences, Rheinbach, Germany.
| | - Alexandra Lopes Costa
- INSERM UMR-S 1124, Université Paris Descartes, UFR Biomédicale des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris, cedex 06, France
| | - Fatima Djouadi
- INSERM UMR-S 1124, Université Paris Descartes, UFR Biomédicale des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris, cedex 06, France
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
13
|
Koushki M, Amiri‐Dashatan N, Ahmadi N, Abbaszadeh H, Rezaei‐Tavirani M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci Nutr 2018; 6:2473-2490. [PMID: 30510749 PMCID: PMC6261232 DOI: 10.1002/fsn3.855] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (3, 5, 4'-trihydroxystilbene) is a nonflavonoid polyphenol that naturally occurs as phytoalexin. It is produced by plant sources such as grapes, apples, blueberries, plums, and peanut. This compound has critical roles in human health and is well known for its diverse biological activities such as antioxidant and anti-inflammatory properties. Nowadays, due to rising incidence of different diseases such as cancer and diabetes, efforts to find novel and effective disease-protective agents have led to the identification of plant-derived compounds such as resveratrol. Furthermore, several in vitro and in vivo studies have revealed the effectiveness of resveratrol in various diseases such as diabetes mellitus, cardiovascular disease, metabolic syndrome, obesity, inflammatory, neurodegenerative, and age-related diseases. This review presents an overview of currently available studies on preventive properties and essential molecular mechanisms involved in various diseases.
Collapse
Affiliation(s)
- Mehdi Koushki
- Department of BiochemistryFaculty of MedicineTehran University of Medical SciencesTehranIran
| | - Nasrin Amiri‐Dashatan
- Student Research CommitteeProteomics Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Nayebali Ahmadi
- Proteomics Research CenterFaculty of Paramedical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | | | - Mostafa Rezaei‐Tavirani
- Proteomics Research CenterFaculty of Paramedical SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
14
|
Hernandez-Valencia J, Garcia-Villa E, Arenas-Hernandez A, Garcia-Mena J, Diaz-Chavez J, Gariglio P. Induction of p53 Phosphorylation at Serine 20 by Resveratrol Is Required to Activate p53 Target Genes, Restoring Apoptosis in MCF-7 Cells Resistant to Cisplatin. Nutrients 2018; 10:1148. [PMID: 30142917 PMCID: PMC6163170 DOI: 10.3390/nu10091148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 01/15/2023] Open
Abstract
Resistance to cisplatin (CDDP) is a major cause of cancer treatment failure, including human breast cancer. The tumor suppressor protein p53 is a key factor in the induction of cell cycle arrest, DNA repair, and apoptosis in response to cellular stimuli. This protein is phosphorylated in serine 15 and serine 20 during DNA damage repair or in serine 46 to induce apoptosis. Resveratrol (Resv) is a natural compound representing a promising chemosensitizer for cancer treatment that has been shown to sensitize tumor cells through upregulation and phosphorylation of p53 and inhibition of RAD51. We developed a CDDP-resistant MCF-7 cell line variant (MCF-7R) to investigate the effect of Resv in vitro in combination with CDDP over the role of p53 in overcoming CDDP resistance in MCF-7R cells. We have shown that Resv induces sensitivity to CDDP in MCF-7 and MCF-7R cells and that the downregulation of p53 protein expression and inhibition of p53 protein activity enhances resistance to CDDP in both cell lines. On the other hand, we found that Resv induces serine 20 (S20) phosphorylation in chemoresistant cells to activate p53 target genes such as PUMA and BAX, restoring apoptosis. It also changed the ratio between BCL-2 and BAX, where BCL-2 protein expression was decreased and at the same time BAX protein was increased. Interestingly, Resv attenuates CDDP-induced p53 phosphorylation in serine 15 (S15) and serine 46 (S46) probably through dephosphorylation and deactivation of ATM. It also activates different kinases, such as CK1, CHK2, and AMPK to induce phosphorylation of p53 in S20, suggesting a novel mechanism of p53 activation and chemosensitization to CDDP.
Collapse
Affiliation(s)
- Jorge Hernandez-Valencia
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Enrique Garcia-Villa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Aquetzalli Arenas-Hernandez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Jaime Garcia-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Jose Diaz-Chavez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Av. San Fernando No. 22, Sección XVI, Tlalpan, Ciudad de México 14080, Mexico.
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| |
Collapse
|
15
|
Elshaer M, Chen Y, Wang XJ, Tang X. Resveratrol: An overview of its anti-cancer mechanisms. Life Sci 2018; 207:340-349. [DOI: 10.1016/j.lfs.2018.06.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
|
16
|
Gupta P, Zaidi AH, Manna SK. Suppression of IKK, but not activation of p53 is responsible for cell death mediated by naturally occurring oxidized tetranortriterpenoid. J Cell Biochem 2018; 119:6828-6841. [PMID: 29738082 DOI: 10.1002/jcb.26879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Abstract
Tetranortriterpenoids (limonoids) obtained from the neem tree (Azadirachta indica) have gained significant attention due to their anti-proliferative properties. Here we are investigating the role of a highly oxidized tetranortriterpenoid, azadirachtin on induction of the cell death. Using various apoptotic assays, we show that azadirachtin induces cell death independent of cell types. Although azadirachtin-treated cells show increased expression of p53, but no phosphorylation of p53 (at Ser15 and Ser46) is detected. In silico analysis reveals that azadirachtin interacts with Mdm2 in the p53 binding site, postulating the mutually exclusive interaction of p53 and azadirachtin with Mdm2. Surprisingly, azadirachtin potentiates cell death efficiently in both p53 wild-type and p53 negative cells. In addition, we find azadirachtin suppresses nuclear transcription factor kappaB (NF-κB) by inhibiting the phosphorylation of upstream inhibitory subunit of NF-κB (IκB) kinase (IKK). Further, azadirachtin is unable to potentiate apoptosis in NF-κB-downregulated (IκB-DN) cells, whereas ectopic expression of p65 rescues azadirachtin-mediated apoptosis, regardless of their p53 status. Hence, our data suggest that azadirachtin mediates cell death through inhibition of NF-κB, but not due to the activation of p53. In conclusion, this study proposes azadirachtin as a potential therapeutic agent where insensitivity toward chemotherapy occurs due to the inactivation or mutations in p53.
Collapse
Affiliation(s)
- Pankaj Gupta
- Laboratory of Immunology and Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Adeel H Zaidi
- Laboratory of Immunology and Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, Telangana, India
| | - Sunil K Manna
- Laboratory of Immunology and Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, Telangana, India
| |
Collapse
|
17
|
Simabuco FM, Morale MG, Pavan IC, Morelli AP, Silva FR, Tamura RE. p53 and metabolism: from mechanism to therapeutics. Oncotarget 2018; 9:23780-23823. [PMID: 29805774 PMCID: PMC5955117 DOI: 10.18632/oncotarget.25267] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics.
Collapse
Affiliation(s)
- Fernando M. Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mirian G. Morale
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Isadora C.B. Pavan
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana P. Morelli
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando R. Silva
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo E. Tamura
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Desai SJ, Prickril B, Rasooly A. Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer. Nutr Cancer 2018; 70:350-375. [PMID: 29578814 DOI: 10.1080/01635581.2018.1446091] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The link between chronic inflammation and cancer involves cytokines and mediators of inflammatory pathways. Cyclooxygenase-2 (COX-2), a key enzyme in fatty acid metabolism, is upregulated during both inflammation and cancer. COX-2 is induced by pro-inflammatory cytokines at the site of inflammation and enhanced COX-2-induced synthesis of prostaglandins stimulates cancer cell proliferation, promotes angiogenesis, inhibits apoptosis, and increases metastatic potential. As a result, COX-2 inhibitors are a subject of intense research interest toward potential clinical applications. Epidemiological studies highlight the potential benefits of diets rich in phytonutrients for cancer prevention. Plants contain numerous phytonutrient secondary metabolites shown to modulate COX-2. Studies have shown that these metabolites, some of which are used in traditional medicine, can reduce inflammation and carcinogenesis. This review describes the molecular mechanisms by which phytonutrients modulate inflammation, including studies of carotenoids, phenolic compounds, and fatty acids targeting various inflammation-related molecules and pathways associated with cancer. Examples of pathways include those of COX-2, mitogen-activated protein kinase kinase kinase, mitogen-activated protein kinase, pro-inflammatory cytokines, and transcription factors like nuclear factor kappa B. Such phytonutrient modulation of COX-2 and inflammation continue to be explored for applications in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Shreena J Desai
- a Office of Cancer Complementary and Alternative Medicine , National Cancer Institute , Rockville , Maryland , USA
| | - Ben Prickril
- a Office of Cancer Complementary and Alternative Medicine , National Cancer Institute , Rockville , Maryland , USA
| | - Avraham Rasooly
- a Office of Cancer Complementary and Alternative Medicine , National Cancer Institute , Rockville , Maryland , USA
| |
Collapse
|
19
|
Hsieh TC, Wu ST, Bennett DJ, Doonan BB, Wu E, Wu JM. Functional/activity network (FAN) analysis of gene-phenotype connectivity liaised by grape polyphenol resveratrol. Oncotarget 2018; 7:38670-38680. [PMID: 27232943 PMCID: PMC5122419 DOI: 10.18632/oncotarget.9578] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/08/2016] [Indexed: 01/09/2023] Open
Abstract
Resveratrol is a polyphenol that has witnessed an unprecedented yearly growth in PubMed citations since the late 1990s. Based on the diversity of cellular processes and diseases resveratrol reportedly affects and benefits, it is likely that the interest in resveratrol will continue, although uncertainty regarding its mechanism in different biological systems remains. We hypothesize that insights on disease-modulatory activities of resveratrol might be gleaned by systematically dissecting the publicly available published data on chemicals and drugs. In this study, we tested our hypothesis by querying DTome (Drug-Target Interactome), a web-based tool containing data compiled from open-source databases including DrugBank, PharmGSK, and Protein Interaction Network Analysis (PINA). Four direct protein targets (DPT) and 219 DPT-associated genes were identified for resveratrol. The DPT-associated genes were scrutinized by WebGestalt (WEB-based Gene SeT Analysis Toolkit). This enrichment analysis resulted in 10 identified KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Refined analysis of KEGG pathways showed that 2 — one linked to p53 and a second to prostate cancer — have functional connectivity to resveratrol and its four direct protein targets. These results suggest that a functional activity network (FAN) approach may be considered as a new paradigm for guiding future studies of resveratrol. FAN analysis resembles a BioGPS, with capability for mapping a Web-based scientific track that can productively and cost effectively connect resveratrol to its primary and secondary target proteins and to its biological functions.
Collapse
Affiliation(s)
- Tze-Chen Hsieh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, U.S.A
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Dylan John Bennett
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, U.S.A
| | - Barbara B Doonan
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, U.S.A
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott and White Health, Temple, Texas, 76508, U.S.A.,Department of Surgery, Texas A&M College of Medicine, Temple, Texas 76504, U.S.A.,Department of Pharmaceutical Sciences, Texas A&M Health Science Center, College Station, Texas 77843, U.S.A
| | - Joseph M Wu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, U.S.A
| |
Collapse
|
20
|
Lee JH, Wendorff TJ, Berger JM. Resveratrol: A novel type of topoisomerase II inhibitor. J Biol Chem 2017; 292:21011-21022. [PMID: 29074616 DOI: 10.1074/jbc.m117.810580] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/18/2017] [Indexed: 02/04/2023] Open
Abstract
Resveratrol, a polyphenol found in various plant sources, has gained attention as a possible agent responsible for the purported health benefits of certain foods, such as red wine. Despite annual multi-million dollar market sales as a nutriceutical, there is little consensus about the physiological roles of resveratrol. One suggested molecular target of resveratrol is eukaryotic topoisomerase II (topo II), an enzyme essential for chromosome segregation and DNA supercoiling homeostasis. Interestingly, resveratrol is chemically similar to ICRF-187, a clinically approved chemotherapeutic that stabilizes an ATP-dependent dimerization interface in topo II to block enzyme activity. Based on this similarity, we hypothesized that resveratrol may antagonize topo II by a similar mechanism. Using a variety of biochemical assays, we find that resveratrol indeed acts through the ICRF-187 binding locus, but that it inhibits topo II by preventing ATPase domain dimerization rather than stabilizing it. This work presents the first comprehensive analysis of the biochemical effects of both ICRF-187 and resveratrol on the human isoforms of topo II, and reveals a new mode for the allosteric regulation of topo II through modulation of ATPase status. Natural polyphenols related to resveratrol that have been shown to impact topo II function may operate in a similar manner.
Collapse
Affiliation(s)
- Joyce H Lee
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Timothy J Wendorff
- the Biophysics Graduate Program, University of California, Berkeley, California 94720
| | - James M Berger
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| |
Collapse
|
21
|
Abstract
Increasing epidemiological and experimental evidence has demonstrated an inverse relationship between the consumption of plant foods and the incidence of chronic diseases, including cancer. Microcomponents that are naturally present in such foods, especially polyphenols, are responsible for the benefits to human health. Resveratrol is a diet-derived cancer chemopreventive agent with high therapeutic potential, as demonstrated by different authors. The aim of this review is to collect and present recent evidence from the literature regarding resveratrol and its effects on cancer prevention, molecular signaling (especially regarding the involvement of p53 protein), and therapeutic perspectives with an emphasis on clinical trial results to date.
Collapse
|
22
|
Fu Y, Ye X, Lee M, Rankin G, Chen YC. Prodelphinidins isolated from Chinese bayberry leaves induces apoptosis via the p53-dependent signaling pathways in OVCAR-3 human ovarian cancer cells. Oncol Lett 2017; 13:3210-3218. [PMID: 28529565 PMCID: PMC5431737 DOI: 10.3892/ol.2017.5813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/02/2016] [Indexed: 11/05/2022] Open
Abstract
Chinese bayberry leaves are rich in prodelphinidins. Since the isolation and purification of prodelphinidins is difficult, the association between the degree of prodelphinidin polymerization and their anti-carcinogenic activity remains ambiguous. The cytotoxic and apoptotic activities of prodelphinidin Chinese bayberry leaf extracts (PCBLs), oligomeric proanthocyanidins (OPAs) and polymeric proanthocyanidins (PPAs), isolated by normal-phase preparative high-performance liquid chromatography were investigated in OVCAR-3 human ovarian cancer cells. The PCBLs, OPAs and PPAs inhibited cancer cell growth and induced apoptosis via the caspase-dependent pathway. Apoptosis was triggered through the intrinsic pathway by upregulating the expression of several B-cell lymphoma-2 (Bcl-2) family proapoptotic proteins, including p53-upregulated modulator of apoptosis (PUMA), Bcl-2-associated X protein and Bcl-2-associated agonist of cell death, and by downregulating the antiapoptotic protein Bcl-extra large. Apoptosis was also triggered through the extrinsic pathway via the upregulation of death receptor 5 (DR5) and Fas expression. In addition, OPAs and PPAs induced caspase-dependent apoptosis at least partially through the inhibition of the protein kinase B signaling pathway. The knockdown of p53 by specific small interfering RNA resulted in the depletion of p53, and inhibited the OPA and PPA treatment-induced increases in p53, which led to a decrease in the expression of p21, DR5, Fas, PUMA and phosphatase and tensin homolog proteins. These observations demonstrate that p53 is a mediator of OPA and PPA-induced apoptosis in OVCAR-3 cells. The PPAs exhibited stronger anti-proliferative and pro-apoptotic activities compared with OPAs and PCBLs. These results suggest that PCBLs, OPAs and PPAs may be useful for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yu Fu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Malcolm Lee
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Gary Rankin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Yi Charlie Chen
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| |
Collapse
|
23
|
Resveratrol suppresses breast cancer cell invasion by inactivating a RhoA/YAP signaling axis. Exp Mol Med 2017; 49:e296. [PMID: 28232662 PMCID: PMC5336560 DOI: 10.1038/emm.2016.151] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 12/26/2022] Open
Abstract
Hippo/YAP signaling is implicated in tumorigenesis and progression of various cancers. By inhibiting a plethora signaling cascades, resveratrol has strong anti-tumorigenic and anti-metastatic activity. In the present study, we demonstrate that resveratrol decreases the expression of YAP target genes. In addition, our data showed that resveratrol attenuates breast cancer cell invasion through the activation of Lats1 and consequent inactivation of YAP. Strikingly, we also demonstrate that resveratrol inactivates RhoA, leading to the activation of Lats1 and induction of YAP phosphorylation. Further, resveratrol in combination with other agents that inactivate RhoA or YAP showed more marked suppression of breast cancer cell invasion compared with single treatment. Collectively, these findings indicate the beneficial effects of resveratrol on breast cancer patients by suppressing the RhoA/Lats1/YAP signaling axis and subsequently inhibiting breast cancer cell invasion.
Collapse
|
24
|
Tangeretin induces cell cycle arrest and apoptosis through upregulation of PTEN expression in glioma cells. Biomed Pharmacother 2017; 81:491-496. [PMID: 27261630 DOI: 10.1016/j.biopha.2016.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022] Open
Abstract
Tangeretin (TANG), present in peel of citrus fruits, has been shown to various medicinal properties such as chemopreventive and neuroprotective. However, the chemopreventive effect of TANG on glioblastoma cells has not been examined. The present study was designed to explore the anticancer potential of TANG in glioblastoma cells and to investigate the related mechanism. Human glioblastoma U-87MG and LN-18 cells were treated with 45μM concentration of TANG and cell growth was measured by MTT assay. The cell cycle distribution and cell death were measured by flow cytometry. The expression of cell cycle and apoptosis related genes were analyzed by quantitative RT-PCR and western blot. The cells treated with TANG were significantly increased cell growth suppression and cell death effects than vehicle treated cells. Further, TANG treatment increases G2/M arrest and apoptosis by modulating PTEN and cell-cycle regulated genes such as cyclin-D and cdc-2 mRNA and protein expressions. Moreover, the ability of TANG to decrease cell growth and to induce cell death was compromised when PTEN was knockdown by siRNA. Taken together, the chemopreventive effect of TANG is associated with regulation of cell-cycle and apoptosis in glioblastoma, thereby attenuating glioblastoma cell growth. Hence, the present findings suggest that TANG may be a therapeutic agent for glioblastoma treatment.
Collapse
|
25
|
Takashina M, Inoue S, Tomihara K, Tomita K, Hattori K, Zhao QL, Suzuki T, Noguchi M, Ohashi W, Hattori Y. Different effect of resveratrol to induction of apoptosis depending on the type of human cancer cells. Int J Oncol 2017; 50:787-797. [DOI: 10.3892/ijo.2017.3859] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/19/2017] [Indexed: 11/06/2022] Open
|
26
|
Faridi U, Dhawan SS, Pal S, Gupta S, Shukla AK, Darokar MP, Sharma A, Shasany AK. Repurposing L-Menthol for Systems Medicine and Cancer Therapeutics? L-Menthol Induces Apoptosis through Caspase 10 and by Suppressing HSP90. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:53-64. [PMID: 26760959 DOI: 10.1089/omi.2015.0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The objective of the present study was to repurpose L-menthol, which is frequently used in oral health and topical formulations, for cancer therapeutics. In this article, we argue that monoterpenes such as L-menthol might offer veritable potentials in systems medicine, for example, as cheaper anti-cancer compounds. Other monoterpenes such as limonene, perillyl alcohol, and geraniol have been shown to induce apoptosis in various cancer cell lines, but their mechanisms of action are yet to be completely elucidated. Earlier, we showed that L-menthol modulates tubulin polymerization and apoptosis to inhibit cancer cell proliferation. In the present report, we used an apoptosis-related gene microarray in conjunction with proteomics analyses, as well as in silico interpretations, to study gene expression modulation in human adenocarcinoma Caco-2 cell line in response to L-menthol treatment. The microarray analysis identified caspase 10 as the important initiator caspase, instead of caspase 8. The proteomics analyses showed downregulation of HSP90 protein (also corroborated by its low transcript abundance), which in turn indicated inhibition of AKT-mediated survival pathway, release of pro-apoptotic factor BAD from BAD and BCLxL complex, besides regulation of other factors related to apoptosis. Based on the combined microarray, proteomics, and in silico data, a signaling pathway for L-menthol-induced apoptosis is being presented for the first time here. These data and literature analysis have significant implications for "repurposing" L-menthol beyond oral medicine, and in understanding the mode of action of plant-derived monoterpenes towards development of cheaper anticancer drugs in future.
Collapse
Affiliation(s)
- Uzma Faridi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Sunita S Dhawan
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Shaifali Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Sanchita Gupta
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ashutosh K Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ajit K Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| |
Collapse
|
27
|
Mukherjee N, Parida PK, Santra A, Ghosh T, Dutta A, Jana K, Misra AK, Sinha Babu SP. Oxidative stress plays major role in mediating apoptosis in filarial nematode Setaria cervi in the presence of trans-stilbene derivatives. Free Radic Biol Med 2016; 93:130-44. [PMID: 26849945 DOI: 10.1016/j.freeradbiomed.2016.01.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 01/15/2016] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Abstract
Lymphatic filariasis, affecting around 120 million people in 80 countries worldwide, is an extremely painful disease and caused permanent and long term disability. Owing to its alarming prevalence there is immediate need for development of new therapeutics. A series of trans-stilbene derivatives were synthesized using aqueous reaction condition showing potential as antifilarial agents demonstrated in vitro. MTT reduction assay and dye exclusion test were performed to evaluate the micro and macrofilaricidal potential of these compounds. Amid 20 trans-stilbene derivatives together with Resveratrol (RSV), a multifunctional natural product was screened; nine compounds (28, 29, 33, 35, 36, 38, 39, 41 and 42) have showed promising micro and macrofilaricidal activities and four of them (28, 39, 41 and 42) showed better effectiveness than RSV. In the treated parasites apoptosis was established by DNA laddering, in situ DNA fragmentation and FACS analysis. The generation of ROS in the treated parasites was indicated by the depletion in the level of GSH, GR and GST activity and elevation of SOD, catalase, GPx activity and superoxide anion and H2O2 level. Along with the ROS generation and oxidative stress, the decreased expression of anti-apoptotic ced-9 gene and increased expression of nematode specific pro-apoptotic genes, egl-1, ced-4 and ced-3 at the level of transcription and translation level; the up-regulation of caspase-3 activity and involvement of caspase-8,9,3, cytochrome-c and PARP were also observed and which denotes the probable existence of both extrinsic and intrinsic pathways apoptosis in parasitic nematodes. This observation is reported first time and thus it confirmed the mode of action and effectiveness of the compounds. Further, the comparative bioavailability-pharmacokinetics studies showed that compound 28 possesses comparable properties with Ivermectin. This study will certainly intensify our understanding of the pharmacological importance of trans-stilbenes as an anti-filarial agent.
Collapse
Affiliation(s)
- Niladri Mukherjee
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan 731 235, West Bengal, India
| | - Pravat Kumar Parida
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India
| | - Abhishek Santra
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India
| | - Tamashree Ghosh
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India
| | - Ananya Dutta
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India
| | - Kuladip Jana
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India.
| | - Anup Kumar Misra
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India.
| | - Santi P Sinha Babu
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan 731 235, West Bengal, India.
| |
Collapse
|
28
|
Uchiumi F, Shoji K, Sasaki Y, Sasaki M, Sasaki Y, Oyama T, Sugisawa K, Tanuma SI. Characterization of the 5'-flanking region of the human TP53 gene and its response to the natural compound, Resveratrol. J Biochem 2016; 159:437-47. [PMID: 26684585 PMCID: PMC4885937 DOI: 10.1093/jb/mvv126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/02/2015] [Indexed: 01/19/2023] Open
Abstract
Tumour suppressor p53, which is encoded by theTP53gene, is widely known to play an important role in response to DNA damage and various stresses. It has recently been reported that p53 regulates glucose metabolism and that an increase in p53 protein level is induced after serum deprivation or treatments with a natural compound,trans-Resveratrol (Rsv). In this study, we constructed a Luciferase expression vector, pGL4-TP53-551, containing 551 bp of the 5'-upstream region of the humanTP53gene, which was then transfected into HeLa S3 cells. A Luciferase assay showed that Rsv treatment increased the promoter activity of theTP53gene in comparison to that ofPIF1 Detailed deletion and mutation analyses revealed that Nkx-2.5 and E2F-binding elements are required in addition to duplicated GGAA (TTCC), for the regulation ofTP53promoter activity. In this study, it is suggested that the transient induction ofTP53gene expression by Rsv treatment might be partly involved in its anti-aging effect through maintenance of chromosomal DNAs.
Collapse
Affiliation(s)
- Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences; Research Center for RNA Science, RIST;
| | - Koichiro Shoji
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences
| | - Yuki Sasaki
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences
| | - Moe Sasaki
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences
| | - Yamato Sasaki
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences
| | - Takahiro Oyama
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences
| | - Kyoko Sugisawa
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences
| | - Sei-ichi Tanuma
- Research Center for RNA Science, RIST; Biochemistry, Faculty of Pharmaceutical Sciences; and Drug Creation Frontier Research Center, RIST, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
| |
Collapse
|
29
|
Sonnemann J, Kahl M, Siranjeevi PM, Blumrich A, Blümel L, Becker S, Wittig S, Winkler R, Krämer OH, Beck JF. Reverse chemomodulatory effects of the SIRT1 activators resveratrol and SRT1720 in Ewing's sarcoma cells: resveratrol suppresses and SRT1720 enhances etoposide- and vincristine-induced anticancer activity. J Cancer Res Clin Oncol 2016; 142:17-26. [PMID: 26055805 DOI: 10.1007/s00432-015-1994-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 11/27/2022]
Abstract
PURPOSE SIRT1-activating compounds (STACs) may have potential in the management of cancer. However, the best-studied STAC, the naturally occurring compound resveratrol, is reported to have contradictory effects in combination chemotherapy regimens: It has been shown both to increase and to decrease the action of anticancer agents. To shed more light on this issue, we comparatively investigated the impact of resveratrol and the synthetic STAC SRT1720 on the responsiveness of Ewing's sarcoma (ES) cells to the chemotherapeutic drugs etoposide and vincristine. METHODS Because the effects of STACs can depend on the functionality of the tumor suppressor protein p53, we used three ES cell lines differing in their p53 status, i.e., wild-type p53 WE-68 cells, mutant p53 SK-ES-1 cells and p53 null SK-N-MC cells. Single agent and combination therapy effects were assessed by flow cytometric analyses of propidium iodide uptake and mitochondrial depolarization, by measuring caspase 3/7 activity and by gene expression profiling. RESULTS When applied as single agents, both STACs were effective in ES cells irrespective of their p53 status. Strikingly, however, when applied in conjunction with cytostatic agents, the STACs displayed reverse effects: SRT1720 largely enhanced etoposide- and vincristine-induced cell death, while resveratrol inhibited it. Combination index analyses validated the antipodal impact of the STACs on the effectiveness of the chemotherapeutics. CONCLUSION These findings suggest that the synthetic STAC SRT1720 may be useful to enhance the efficacy of anticancer therapy in ES. But they also suggest that the dietary intake of the natural STAC resveratrol may be detrimental during chemotherapy of ES.
Collapse
Affiliation(s)
- Jürgen Sonnemann
- Children's Clinic, Department of Pediatric Hematology and Oncology, Jena University Hospital, Jena, Germany.
- Klinik für Kinder- und Jugendmedizin, Friedrich-Schiller-Universität Jena, Kochstr. 2, 07745, Jena, Germany.
| | - Melanie Kahl
- Children's Clinic, Department of Pediatric Hematology and Oncology, Jena University Hospital, Jena, Germany
| | - Priyanka M Siranjeevi
- Children's Clinic, Department of Pediatric Hematology and Oncology, Jena University Hospital, Jena, Germany
| | - Annelie Blumrich
- Children's Clinic, Department of Pediatric Hematology and Oncology, Jena University Hospital, Jena, Germany
| | - Lisa Blümel
- Children's Clinic, Department of Pediatric Hematology and Oncology, Jena University Hospital, Jena, Germany
| | - Sabine Becker
- Children's Clinic, Department of Pediatric Hematology and Oncology, Jena University Hospital, Jena, Germany
| | - Susan Wittig
- Children's Clinic, Department of Pediatric Hematology and Oncology, Jena University Hospital, Jena, Germany
| | - René Winkler
- Children's Clinic, Department of Pediatric Hematology and Oncology, Jena University Hospital, Jena, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| | - James F Beck
- Children's Clinic, Department of Pediatric Hematology and Oncology, Jena University Hospital, Jena, Germany
| |
Collapse
|
30
|
Amin ARMR, Karpowicz PA, Carey TE, Arbiser J, Nahta R, Chen ZG, Dong JT, Kucuk O, Khan GN, Huang GS, Mi S, Lee HY, Reichrath J, Honoki K, Georgakilas AG, Amedei A, Amin A, Helferich B, Boosani CS, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Keith WN, Bhakta D, Halicka D, Niccolai E, Fujii H, Aquilano K, Ashraf SS, Nowsheen S, Yang X, Bilsland A, Shin DM. Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol 2015; 35 Suppl:S55-S77. [PMID: 25749195 PMCID: PMC4561219 DOI: 10.1016/j.semcancer.2015.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/14/2022]
Abstract
The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting.
Collapse
Affiliation(s)
| | - Phillip A Karpowicz
- Department of Biological Sciences, University of Windsor, 401 Sunset Ave., Room 327, Windsor, Ontario, N9B 3P4, Canada
| | | | - Jack Arbiser
- Winship Cancer Institute of Emory University, Atlanta, GA, USA; Atlanta Veterans Administration Health Center, Atlanta, GA, USA
| | - Rita Nahta
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Zhuo G Chen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Jin-Tang Dong
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Omer Kucuk
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | | | - Shijun Mi
- Albert Einstein College of Medicine, New York, NY, USA
| | - Ho-Young Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | | | | | | | - Amr Amin
- UAE University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Urbana Champaign, IL, USA
| | | | | | - Sophie Chen
- Ovarian and Prostate Cancer Research Laboratory, Guildford, Surrey, United Kingdom
| | | | | | | | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | | | | | | | | | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Medical School, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Urbana Champaign, IL, USA
| | | | - Dong M Shin
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
31
|
Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G, Vasantha Rupasinghe HP, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Shantha Kumara HMC, Nowsheen S, Mohammed SI, Keith WN, Helferich WG, Yang X. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015; 35 Suppl:S151-S184. [PMID: 25951989 PMCID: PMC4635070 DOI: 10.1016/j.semcancer.2015.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Collapse
Affiliation(s)
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Asfar S Azmi
- Department of Pathology, Wayne State Univeristy, Karmanos Cancer Center, Detroit, MI, USA
| | - Bal L Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, United States; Miami Veterans Administration Medical Center, Miami, FL, United States
| | - Brendan Grue
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada.
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
32
|
Sampson VB, Vetter NS, Kamara DF, Collier AB, Gresh RC, Kolb EA. Vorinostat Enhances Cytotoxicity of SN-38 and Temozolomide in Ewing Sarcoma Cells and Activates STAT3/AKT/MAPK Pathways. PLoS One 2015; 10:e0142704. [PMID: 26571493 PMCID: PMC4646493 DOI: 10.1371/journal.pone.0142704] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/26/2015] [Indexed: 11/03/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) have been evaluated in patients with Ewing sarcoma (EWS) but demonstrated limited activity. To better understand the potential for HDACi in EWS, we evaluated the combination of the HDACi vorinostat, with DNA damaging agents SN-38 (the active metabolite of irinotecan and topoisomerase 1 inhibitor) plus the alkylating agent temozolomide (ST). Drugs were evaluated in sequential and simultaneous combinations in two EWS cell lines. Results demonstrate that cell viability, DNA damage and reactive oxygen species (ROS) production are dependent on the sequence of drug administration. Enhanced cytotoxicity is exhibited in vitro in EWS cell lines treated with ST administered before vorinostat, which was modestly higher than concomitant treatment and superior to vorinostat administered before ST. Drug combinations downregulate cyclin D1 to induce G0/G1 arrest and promote apoptosis by cleavage of caspase-3 and PARP. When ST is administered before or concomitantly with vorinostat there is activation of STAT3, MAPK and the p53 pathway. In contrast, when vorinostat is administered before ST, there is DNA repair, increased AKT phosphorylation and reduced H2B acetylation. Inhibition of AKT using the small molecule inhibitor MK-2206 did not restore H2B acetylation. Combining ST with the dual ALK and IGF-1R inhibitor, AZD3463 simultaneously inhibited STAT3 and AKT to enhance the cytotoxic effects of ST and further reduce cell growth suggesting that STAT3 and AKT activation were in part mediated by ALK and IGF-1R signaling. In summary, potent antiproliferative and proapoptotic activity were demonstrated for ST induced DNA damage before or simultaneous with HDAC inhibition and cell death was mediated through the p53 pathway. These observations may aid in designing new protocols for treating pediatric patients with high-risk EWS.
Collapse
Affiliation(s)
- Valerie B. Sampson
- Nemours Center for Cancer and Blood Disorders, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Nancy S. Vetter
- Nemours Center for Cancer and Blood Disorders, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Davida F. Kamara
- Nemours Center for Cancer and Blood Disorders, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Anderson B. Collier
- Department of Pediatrics, Division of Hematology and Oncology, Children's Healthcare of Mississippi, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Renee C. Gresh
- Nemours Center for Cancer and Blood Disorders, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- * E-mail:
| |
Collapse
|
33
|
Yang T, Li S, Zhang X, Pang X, Lin Q, Cao J. Resveratrol, sirtuins, and viruses. Rev Med Virol 2015; 25:431-45. [DOI: 10.1002/rmv.1858] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/19/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Tao Yang
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| | - Shugang Li
- Construction Corps Key Laboratory of Deep Processing on Featured Agricultural Products in South Xinjiang; Tarim University; Alar Xinjiang China
| | - Xuming Zhang
- Department of Microbiology and Immunology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Xiaowu Pang
- Departments of Oral Pathology, College of Dentistry; Howard University; Washington DC USA
| | - Qinlu Lin
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| | - Jianzhong Cao
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| |
Collapse
|
34
|
Rajmani RS, Gandham RK, Gupta SK, Sahoo AP, Singh PK, Saxena S, Kumar R, Chaturvedi U, Tiwari AK. Administration of IκB-kinase inhibitor PS1145 enhances apoptosis in DMBA-induced tumor in male Wistar rats. Cell Biol Int 2015; 39:1317-28. [DOI: 10.1002/cbin.10510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/30/2015] [Indexed: 11/11/2022]
Affiliation(s)
- R. S. Rajmani
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Ravi Kumar Gandham
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Shishir Kumar Gupta
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Aditya P. Sahoo
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Prafull Kumar Singh
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Shikha Saxena
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Rajiv Kumar
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Uttara Chaturvedi
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Ashok K. Tiwari
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| |
Collapse
|
35
|
Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015. [PMID: 26221416 PMCID: PMC4499410 DOI: 10.1155/2015/837042] [Citation(s) in RCA: 486] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plants containing resveratrol have been used effectively in traditional medicine for over 2000 years. It can be found in some plants, fruits, and derivatives, such as red wine. Therefore, it can be administered by either consuming these natural products or intaking nutraceutical pills. Resveratrol exhibits a wide range of beneficial properties, and this may be due to its molecular structure, which endow resveratrol with the ability to bind to many biomolecules. Among these properties its activity as an anticancer agent, a platelet antiaggregation agent, and an antioxidant, as well as its antiaging, antifrailty, anti-inflammatory, antiallergenic, and so forth activities, is worth highlighting. These beneficial biological properties have been extensively studied in humans and animal models, both in vitro and in vivo. The issue of bioavailability of resveratrol is of paramount importance and is determined by its rapid elimination and the fact that its absorption is highly effective, but the first hepatic step leaves little free resveratrol. Clarifying aspects like stability and pharmacokinetics of resveratrol metabolites would be fundamental to understand and apply the therapeutic properties of resveratrol.
Collapse
|
36
|
Wu Y, Meng X, Huang C, Li J. Emerging role of silent information regulator 1 (SIRT1) in hepatocellular carcinoma: a potential therapeutic target. Tumour Biol 2015; 36:4063-74. [PMID: 25926383 DOI: 10.1007/s13277-015-3488-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022] Open
|
37
|
Leung KKK, Shilton BH. Quinone reductase 2 is an adventitious target of protein kinase CK2 inhibitors TBBz (TBI) and DMAT. Biochemistry 2014; 54:47-59. [PMID: 25379648 DOI: 10.1021/bi500959t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Quinone reductase 2 (NQO2) exhibits off-target interactions with two protein kinase CK2 inhibitors, 4,5,6,7-1H-tetrabromobenzimidazole (TBBz) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT). TBBz and DMAT induce apoptosis in cells expressing an inhibitor-resistant CK2, suggesting that the interaction with NQO2 may mediate some of their pharmacological effects. In this study, we have fully characterized the binding of TBBz and DMAT to NQO2. Fluorescence titrations showed that TBBz and DMAT bind oxidized NQO2 in the low nanomolar range; in the case of TBBz, the affinity for NQO2 was 40-fold greater than its affinity for CK2. A related CK2 inhibitor, 4,5,6,7-tetrabromobenzotriazole (TBB), which failed to cause apoptosis in cells expressing inhibitor-resistant CK2, binds NQO2 with an affinity 1000-fold lower than those of TBBz and DMAT. Kinetic analysis indicated that DMAT inhibits NQO2 by binding with similar affinities to the oxidized and reduced forms. Crystal structure analysis showed that DMAT binds reduced NQO2 in a manner different from that in the oxidized state. In oxidized NQO2, TBBz and DMAT are deeply buried in the active site and make direct hydrogen and halogen bonds to the enzyme. In reduced NQO2, DMAT occupies a more peripheral region and hydrogen and halogen bonds with the enzyme are mediated through three water molecules. Therefore, although TBB, TBBz, and DMAT are all potent inhibitors of CK2, they exhibit different activity profiles toward NQO2. We conclude that the active site of NQO2 is fundamentally different from the ATP binding site of CK2 and the inhibition of NQO2 by CK2 inhibitors is adventitious.
Collapse
Affiliation(s)
- Kevin K K Leung
- Department of Biochemistry, University of Western Ontario , London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
38
|
Abstract
Peanuts are important dietary food source of resveratrol with potent antioxidant properties implicated in reducing risk of cancer, cardiovascular and Alzheimer's disease, and delaying aging. Resveratrol is a naturally occurring stilbene phytoalexin phenolic compound produced in response to a variety of biotic and abiotic stresses. This paper is a review of trans-resveratrol and related stilbenes from peanuts--their chemical structures, mechanisms for their biosynthesis, and concentrations in comparison with other major food sources. It will also discuss trans-resveratrol's absorption, bioavailability, and major health benefits; processes to enhance their biosynthesis in peanuts by biotic and abiotic stresses; process optimization for enhanced levels in peanuts and their potential food applications; and methods used for its extraction and analysis.
Collapse
Affiliation(s)
- Jocelyn M Sales
- a Department of Food Science and Technology, The University of Georgia , Griffin , GA , 30223-1797 , USA
| | | |
Collapse
|
39
|
Petkova R, Chelenkova P, Georgieva E, Chakarov S. What's your poison? Impact of individual repair capacity on the outcomes of genotoxic therapies in cancer. Part II - information content and validity of biomarkers for individual repair capacity in the assessment of outcomes of anticancer therapy. BIOTECHNOL BIOTEC EQ 2014; 28:2-7. [PMID: 26019482 PMCID: PMC4433894 DOI: 10.1080/13102818.2014.902532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The individual variance in the efficiency of repair of damage induced by genotoxic therapies may be an important factor in the assessment of eligibility for different anticancer treatments, the outcomes of various treatments and the therapy-associated complications, including acute and delayed toxicity and acquired drug resistance. The second part of this paper analyses the currently available information about the possibilities of using experimentally obtained knowledge about individual repair capacity for the purposes of personalised medicine and healthcare.
Collapse
Affiliation(s)
- Rumena Petkova
- Scientific Technological Service (STS) , Sofia , Bulgaria
| | | | | | - Stoian Chakarov
- Sofia University "St. Kliment Ohridski", Faculty of Biology , Sofia , Bulgaria
| |
Collapse
|
40
|
Psoralea corylifolia L. seed extract ameliorates streptozotocin-induced diabetes in mice by inhibition of oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:897296. [PMID: 24803987 PMCID: PMC3997102 DOI: 10.1155/2014/897296] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/04/2014] [Accepted: 03/08/2014] [Indexed: 01/04/2023]
Abstract
Pancreatic beta-cell death is known to be the cause of deficient insulin production in diabetes mellitus. Oxidative stress is one of the major causes of beta-cell death. In this study, we investigated the effects of Psoralea corylifolia L. seed (PCS) extract on beta-cell death. Oral administration of PCS extract resulted in a significant improvement of hyperglycemia in streptozotocin-induced diabetic mice. PCS extract treatment improved glucose tolerance and increased serum insulin levels. To study the mechanisms involved, we investigated the effects of PCS extract on H2O2-induced apoptosis in INS-1 cells. Treatment with PCS extract inhibited cell death. PCS extract treatment decreased reactive oxygen species level and activated antioxidative enzymes. Among the major components of PCS extract, psoralen and isopsoralen (coumarins), but not bakuchiol, showed preventive effects against H2O2-induced beta-cell death. These findings indicate that PCS extract may be a potential pharmacological agent to protect against pancreatic beta-cell damage caused by oxidative stress associated with diabetes.
Collapse
|
41
|
Abstract
The phytochemicals present in fruits and vegetables may play an important role in deceasing chronic disease risk. Grapes, one of the most popular and widely cultivated and consumed fruits in the world, are rich in phytochemicals. Epidemiological evidence has linked the consumption of grapes with reduced risk of chronic diseases, including certain types of cancer and cardiovascular disease. In vitro and in vivo studies have shown that grapes have strong antioxidant activity, inhibiting cancer cell proliferation and suppressing platelet aggregation, while also lowering cholesterol. Grapes contain a variety of phytochemicals, like phenolic acids, stilbenes, anthocyanins, and proanthocyanidins, all of which are strong antioxidants. The phytochemical composition of grapes, however, varies greatly among different varieties. While extensive research exists, a literature review of the health benefits of grapes and their phytochemicals has not been compiled to summarize this work. The aim of this paper is to critically review the most recent literature regarding the concentrations, biological activities, and mechanisms of grape phytochemicals.
Collapse
Affiliation(s)
- Jun Yang
- Frito-Lay R&D, 7701 Legacy Drive, Plano, TX 75024, USA.
| | | |
Collapse
|
42
|
Khuda-Bukhsh AR, Das S, Saha SK. Molecular Approaches Toward Targeted Cancer Prevention with Some Food Plants and Their Products: Inflammatory and Other Signal Pathways. Nutr Cancer 2013; 66:194-205. [DOI: 10.1080/01635581.2014.864420] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Synthesis and biological activity of new resveratrol derivative and molecular docking: dynamics studies on NFkB. Appl Biochem Biotechnol 2013; 171:1639-57. [PMID: 23990478 DOI: 10.1007/s12010-013-0448-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/12/2013] [Indexed: 02/07/2023]
Abstract
Resveratrol (RVS) is a naturally occurring antioxidant, able to display an array of biological activities. In the present investigation, a new derivative of RVS, RVS(a), was synthesized, and its biological activity was determined on U937 cells. It was observed that RVS(a) showed pronounced activity on U937 cells than RVS. RVS(a) is able to induce apoptosis in tumor cell lines through subsequent DNA fragmentation. From the EMSA results, it was evident that RVS(a) was able to suppress the activity of NFkB by interfering its DNA binding ability. Furthermore, the molecular interaction analysis (docking and dynamics) stated that RVS(a) has strong association with the IkB-alpha site of NFkB compared with RVS; this binding nature of RVS(a) might be prevent the NFkB binding ability with DNA. The present findings represent the potential activity of propynyl RVS on U937 cells and signifying it as a one of putative chemotherapeutic drugs against cancer.
Collapse
|
44
|
Huang FJ, Chin TY, Chan WH. Resveratrol protects against methylglyoxal-induced apoptosis and disruption of embryonic development in mouse blastocysts. ENVIRONMENTAL TOXICOLOGY 2013; 28:431-441. [PMID: 21793156 DOI: 10.1002/tox.20734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/28/2011] [Accepted: 04/30/2011] [Indexed: 05/31/2023]
Abstract
Methylglyoxal (MG) is a glucose metabolite. Diabetic patients have increased serum levels of MG, and MG is also implicated in tissue injury during embryonic development. In the present work, we show that MG induces apoptosis in the inner cell mass of mouse blastocysts and inhibits cell proliferation. Both effects are suppressed by resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties. MG-treated blastocysts displayed lower levels of implantation (compared to controls) when plated on culture dishes in vitro and a reduced ability to proceed to later stages of embryonic development. Pretreatment with resveratrol prevented MG-induced disruption of embryonic development, both in vitro and in vivo. Further investigation of these processes revealed that MG directly promotes reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential (MMP), and activation of caspase-3, whereas resveratrol effectively blocks MG-induced ROS production and the accompanying apoptotic biochemical changes. Our results collectively imply that MG triggers the mitochondrion-dependent apoptotic pathway via ROS generation, and the antioxidant activity of resveratrol prevents MG-induced toxicity.
Collapse
Affiliation(s)
- Fu-Jen Huang
- Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | |
Collapse
|
45
|
Osman AMM, Al-Harthi SE, AlArabi OM, Elshal MF, Ramadan WS, Alaama MN, Al-Kreathy HM, Damanhouri ZA, Osman OH. Chemosensetizing and cardioprotective effects of resveratrol in doxorubicin- treated animals. Cancer Cell Int 2013; 13:52. [PMID: 23714221 PMCID: PMC3680308 DOI: 10.1186/1475-2867-13-52] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/14/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Doxorubicin (DOX), an anthracycline antibiotic is one of the most effective anticancer drug used in the treatment of variety of cancers .Its use is limited by its cardiotoxicity. The present study was designed to assess the role of a natural product resveratrol (RSVL) on sensitization of mammary carcinoma (Ehrlich ascites carcinoma) to the action of DOX and at the same time its protective effect against DOX-induced cardiotoxicity in rats. METHODS Ehrlich ascites carcinoma bearing mice were used in this study. Percent survival of tumor bearing mice was used for determination of the Cytotoxic activity of DOX in presence and absence of RSVL. Uptake and cell cycle effect of DOX in tumor cells in the presence of RSVL was also determined. Histopatholgical examination of heart tissues after DOX and/or RSVL therapy was also investigated. RESULTS DOX at a dose level of 15 mg/kg increased the mean survival time of tumor bearing mice to 21 days compared with 15 days for non tumor-bearing control mice. Administration of RSVL at a dose level of 10 mg/kg simultaneously with DOX increased the mean survival time to 30 days with 70% survival of the tumor-bearing animals. RSVL increased the intracellular level of DOX and there was a strong correlation between the high cellular level of DOX and its cytotoxic activity. Moreover, RSVL treatment showed 4.8 fold inhibition in proliferation index of cells treated with DOX. Histopathological analysis of rat heart tissue after a single dose of DOX (20 mg/kg) showed myocytolysis with congestion of blood vessels, cytoplasmic vacuolization and fragmentation. Concomitant treatment with RSVL, fragmentation of the muscle fiber revealed normal muscle fiber. CONCLUSION This study suggests that RSVL could increase the cytotoxic activity of DOX and at the same time protect against its cardiotoxicity.
Collapse
Affiliation(s)
- Abdel-Moneim M Osman
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sameer E Al-Harthi
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia
| | - Ohoud M AlArabi
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F Elshal
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wafaa S Ramadan
- Molecular biology Department, Genetic engineering and Biotechniology Department, Minoufia University, Minoufia, Egypt
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed N Alaama
- Department of Medicine, Cardiology unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda M Al-Kreathy
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zoheir A Damanhouri
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osman H Osman
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
46
|
Patties I, Kortmann RD, Glasow A. Inhibitory effects of epigenetic modulators and differentiation inducers on human medulloblastoma cell lines. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:27. [PMID: 23672687 PMCID: PMC3666942 DOI: 10.1186/1756-9966-32-27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/07/2013] [Indexed: 12/20/2022]
Abstract
Background Medulloblastoma (MB) is the most common malignant brain tumor in childhood with a 5-year survival of approximately 60%. We have recently shown that treatment of human MB cells with 5-aza-2’-deoxycytidine (5-aza-dC) reduces the clonogenic survival significantly. Here, we tested combinatorial effects of 5-aza-dC with other epigenetic (valproic acid, SAHA) and differentiation-inducing drugs (resveratrol, abacavir, retinoic acid) on human MB cells in vitro to intensify the antitumor therapy further. Methods Three human MB cell lines were treated with 5-aza-dC alone or in combination for three or six days. Metabolic activity was measured by WST-1 assay. To determine long-term reproductive survival, clonogenic assays were performed. Induction of DNA double-strand break (DSB) repair was measured by γH2AX assay. Results The applied single drugs, except for ATRA, reduced the metabolic activity dose-dependently in all MB cell lines. Longer treatment times enhanced the reduction of metabolic activity by 5-aza-dC. Combinatorial treatments showed differential, cell line-dependent responses indicating an important impact of the genetic background. 5-Aza-dC together with resveratrol was found to exert the most significant inhibitory effects on metabolic activity in all cell lines. 5-aza-dC alone reduced the clonogenicity of MB cells significantly and induced DSB with no further changes after adjuvant administration of resveratrol. Conclusion The observed significant decrease in metabolic activity by combinatorial treatment of MB cells with 5-aza-dC and resveratrol does not translate into long-term reproductive survival deficiency in vitro. Further studies in animal models are needed to clarify the resveratrol-mediated anticancer mechanisms in vivo.
Collapse
Affiliation(s)
- Ina Patties
- Department of Radiation Therapy, University of Leipzig, Stephanstraße 9a, Leipzig, 04103, Germany.
| | | | | |
Collapse
|
47
|
Mulakayala C, Babajan B, Madhusudana P, Anuradha C, Rao RM, Nune RP, Manna SK, Mulakayala N, Kumar CS. Synthesis and evaluation of resveratrol derivatives as new chemical entities for cancer. J Mol Graph Model 2013; 41:43-54. [DOI: 10.1016/j.jmgm.2013.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 12/23/2022]
|
48
|
Glehr M, Fritsch-Breisach M, Lohberger B, Walzer SM, Moazedi-Fuerst F, Rinner B, Gruber G, Graninger W, Leithner A, Windhager R. Influence of resveratrol on rheumatoid fibroblast-like synoviocytes analysed with gene chip transcription. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:310-318. [PMID: 23137833 DOI: 10.1016/j.phymed.2012.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/16/2012] [Accepted: 09/21/2012] [Indexed: 06/01/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that primarily attacks joints and is therefore a common cause of chronic disability and articular destruction. The hyperplastic growth of RA-fibroblast-like synoviocytes (FLSs) and their resistance against apoptosis are considered pathological hallmarks of RA. The natural antioxidant resveratrol is known for its antiproliferative and pro-apoptotic properties. This study investigated the effect of resveratrol on RA-FLS. RA-FLS were isolated from the synovium of 10 RA patients undergoing synovectomy or joint replacement surgery. RA-FLS were first stressed by pre-incubation with interleukin 1beta (IL-1β) and then treated with 100 μM resveratrol for 24h. In order to evaluate the influence of resveratrol on the transcription of genes, a Gene Chip Human Gene 1.0 ST Array was applied. In addition, the effect of dexamethasone on proliferation and apoptosis of RA-FLS was compared with that of resveratrol. Gene array analysis showed highly significant effects of resveratrol on the expression of genes involved in mitosis, cell cycle, chromosome segregation and apoptosis. qRT-PCR, caspase-3/7 and proliferation assays confirmed the results of gene array analysis. In comparison, dexamethasone showed little to no effect on reducing cell proliferation and apoptosis. Our in vitro findings point towards resveratrol as a promising new therapeutic approach for local intra-articular application against RA, and further clinical studies will be necessary.
Collapse
Affiliation(s)
- Mathias Glehr
- Department of Orthopaedic Surgery, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Menendez JA, Joven J, Aragonès G, Barrajón-Catalán E, Beltrán-Debón R, Borrás-Linares I, Camps J, Corominas-Faja B, Cufí S, Fernández-Arroyo S, Garcia-Heredia A, Hernández-Aguilera A, Herranz-López M, Jiménez-Sánchez C, López-Bonet E, Lozano-Sánchez J, Luciano-Mateo F, Martin-Castillo B, Martin-Paredero V, Pérez-Sánchez A, Oliveras-Ferraros C, Riera-Borrull M, Rodríguez-Gallego E, Quirantes-Piné R, Rull A, Tomás-Menor L, Vazquez-Martin A, Alonso-Villaverde C, Micol V, Segura-Carretero A. Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents. Cell Cycle 2013; 12:555-78. [PMID: 23370395 DOI: 10.4161/cc.23756] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the "defective design" of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the "xenohormesis hypothesis," which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of "immortal" cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated β-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-aging transcriptomic signatures. As such, EVOO secoiridoids constitute a new family of plant-produced gerosuppressant agents that molecularly "repair" the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging and aging-related diseases, including cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Vishchuk OS, Ermakova SP, Zvyagintseva TN. The effect of sulfated (1→3)-α-l-fucan from the brown alga Saccharina cichorioides Miyabe on resveratrol-induced apoptosis in colon carcinoma Cells. Mar Drugs 2013; 11:194-212. [PMID: 23337253 PMCID: PMC3564167 DOI: 10.3390/md11010194] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/06/2013] [Accepted: 01/14/2013] [Indexed: 12/17/2022] Open
Abstract
Accumulating data clearly indicate that the induction of apoptosis by nontoxic natural compounds is a potent defense against the development and progression of many malignancies, including colon cancer. Resveratrol and the fucoidans have been shown to possess potent anti-tumor activity in vitro and in vivo. The aim of the present study was to examine whether the combination of a fucoidan from the brown alga Saccharina cichorioides Miyabe and resveratrol would be an effective preventive and/or therapeutic strategy against colon cancer. Based on NMR spectroscopy and MALDI-TOF analysis, the fucoidan isolated and purified from Saccharina cichorioides Miyabe was (1→3)-α-l-fucan with sulfate groups at C2 and C4 of the α-l-fucopyranose residues. The fucoidan enhanced the antiproliferative activity of resveratrol at nontoxic doses and facilitated resveratrol-induced apoptosis in the HCT 116 human colon cancer cell line. Apoptosis was realized by the activation of initiator caspase-9 and effector caspase-7 and -3, followed by the cleavage of PARP. Furthermore, significant inhibition of HCT 116 colony formation was associated with the sensitization of cells to resveratrol by the fucoidan. Taken together, these results demonstrate that the combination of the algal fucoidan with resveratrol may provide a potential therapy against human colon cancer.
Collapse
Affiliation(s)
- Olesia S Vishchuk
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 100-Let Vladivostoku Ave., Vladivostok 690022, Russian Federation.
| | | | | |
Collapse
|