1
|
Suzuki T, Zaima Y, Fujikawa Y, Fukushima R, Kamiya H. Paradoxical role of the major DNA repair protein, OGG1, in action-at-a-distance mutation induction by 8-oxo-7,8-dihydroguanine. DNA Repair (Amst) 2022; 111:103276. [DOI: 10.1016/j.dnarep.2022.103276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/21/2022]
|
2
|
Suzuki T, Sassa A, Grúz P, Gupta RC, Johnson F, Adachi N, Nohmi T. Error-prone bypass patch by a low-fidelity variant of DNA polymerase zeta in human cells. DNA Repair (Amst) 2021; 100:103052. [PMID: 33607474 DOI: 10.1016/j.dnarep.2021.103052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 11/15/2022]
Abstract
DNA polymerase ζ (Pol ζ) is a specialized Pol that is involved in translesion DNA synthesis (TLS), in particular, in the extension of primer DNA after bypassing DNA lesions. Previously, we established human cells that express a variant form of Pol ζ with an amino acid change of leucine 2618 to methionine (L2618M) in the catalytic subunit REV3L (DNA Repair, 45, 34-43, 2016). This amino acid change made the cells more sensitive to the mutagenicity of benzo[a]pyrene diol epoxide (BPDE). In this study, we embedded BPDE-N2-guanine at a defined position in the supF gene on the shuttle plasmid and introduced it to REV3 L2618M cells or the wild-type (WT) cells to examine how far Pol ζ L2618M extends the primer DNA after bypassing the lesion. The adduct induced primarily G to T and G to C at the adducted site in both cell lines, but generated additional sequence changes such as base substitutions, deletions and additions in the extension patch much more often in REV3 L2618M cells than in the WT cells. Mutations in the extension patch in REV3 L2618M cells occurred most often within 10 bps from the adducted site. Then, the number of mutations gradually decreased and no mutations were observed between 30 and 40 bps from the lesion. We concluded that human Pol ζ L2618M and perhaps WT Pol ζ extend the primer DNA up to approximately 30 bps from the lesion in vivo. The possibility of involvement of Pol ζ L2618M in the insertion step of TLS is discussed.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Akira Sassa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Ramesh C Gupta
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, 11794-3400, NY, United States
| | - Francis Johnson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, 11794-3400, NY, United States
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
3
|
Abstract
7,8-Dihydro-8-oxoguanine (oxoG) is the most abundant oxidative DNA lesion with dual coding properties. It forms both Watson–Crick (anti)oxoG:(anti)C and Hoogsteen (syn)oxoG:(anti)A base pairs without a significant distortion of a B-DNA helix. DNA polymerases bypass oxoG but the accuracy of nucleotide incorporation opposite the lesion varies depending on the polymerase-specific interactions with the templating oxoG and incoming nucleotides. High-fidelity replicative DNA polymerases read oxoG as a cognate base for A while treating oxoG:C as a mismatch. The mutagenic effects of oxoG in the cell are alleviated by specific systems for DNA repair and nucleotide pool sanitization, preventing mutagenesis from both direct DNA oxidation and oxodGMP incorporation. DNA translesion synthesis could provide an additional protective mechanism against oxoG mutagenesis in cells. Several human DNA polymerases of the X- and Y-families efficiently and accurately incorporate nucleotides opposite oxoG. In this review, we address the mutagenic potential of oxoG in cells and discuss the structural basis for oxoG bypass by different DNA polymerases and the mechanisms of the recognition of oxoG by DNA glycosylases and dNTP hydrolases.
Collapse
|
4
|
Zhang J, Lei W, Chen X, Wang S, Qian W. Oxidative stress response induced by chemotherapy in leukemia treatment. Mol Clin Oncol 2018; 8:391-399. [PMID: 29599981 PMCID: PMC5867396 DOI: 10.3892/mco.2018.1549] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) has been linked to the etiology and development of leukemia as reactive oxygen species (ROS) and free radicals have been implicated in leukemogenesis. OS has beneficial and deleterious effects in the pathogenesis and progression of leukemia. High-dose chemotherapy, which is frequently used in leukemia treatment, is often accompanied by ROS-induced cytotoxicity. Thus, the utilization of chemotherapy in combination with antioxidants may attenuate leukemia progression, particularly for cases of refractory or relapsed neoplasms. The present review focuses on exploring the roles of OS in leukemogenesis and characterizing the associations between ROS and chemotherapy. Certain examples of treatment regimens wherein antioxidants are combined with chemotherapy are presented, in order to highlight the importance of antioxidant application in leukemia treatment, as well as the conflicting opinions regarding this method of therapy. Understanding the underlying mechanisms of OS generation will facilitate the elucidation of novel approaches to leukemia treatment.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Wen Lei
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaohui Chen
- Department of Hematology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Shibing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Wenbin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
5
|
Ahmed T, Nawaz S, Noreen R, Bangash KS, Rauf A, Younis M, Anwar K, Khawaja MA, Azam M, Qureshi AA, Akhter S, Kiemeney LA, Qamar R, Ali SHB. A 3' untranslated region polymorphism rs2304277 in the DNA repair pathway gene OGG1 is a novel risk modulator for urothelial bladder carcinoma. Ann Hum Genet 2017; 82:74-87. [PMID: 29139108 DOI: 10.1111/ahg.12225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 08/30/2017] [Accepted: 09/16/2017] [Indexed: 12/14/2022]
Abstract
Altered DNA repair capacity may affect an individual's susceptibility to cancers due to compromised genomic integrity. This study was designed to elucidate the association of selected polymorphisms in DNA repair genes with urothelial bladder carcinoma (UBC). OGG1 rs1052133 and rs2304277, XRCC1 rs1799782 and rs25487, XRCC3 rs861539, XPC rs2228001, and XPD rs13181 were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 200 UBC cases and 200 controls. We found association of OGG1 rs2304277 [odds ratio (OR)GG = 3.55, 95% confidence interval (CI) = 1.79-7.06] and XPC rs2228001 (ORAC = 2.38, 95% CI = 1.43-3.94) with UBC. In stratified analysis with respect to smoking status, OGG1 rs2304277 and XPC rs2228001 exhibited increased risk in smokers [(rs2304277 ORGG = 4.96, 95% CI = 1.51-16.30) (rs2228001 ORAC = 2.19, 95% CI = 1.02-4.72)] as well as nonsmokers [(rs2304277 ORGG = 2.95, 95% CI = 1.26-6.90) (rs2228001 ORAC = 2.57, 95% CI = 1.31-5.04)]. These polymorphisms were also associated with both low-grade [(rs2304277 ORGG = 3.73, 95% CI = 1.72-8.09) (rs2228001 ORAC = 2.18, 95% CI = 1.21-3.92)] and high-grade tumors [(rs2304277 ORGG = 3.45, 95% CI = 1.52-7.80) (rs2228001 ORAC = 2.81, 95% CI = 1.48-5.33)] as well as with non-muscle-invasive bladder cancer [(rs2304277 ORGG = 4.03, 95% CI = 1.87-8.67) (rs2228001 ORAC = 2.14, 95% CI = 1.20-3.81)] and muscle-invasive bladder cancer [(rs2304277 ORGG = 3.06, 95%CI = 1.31-7.13) (rs2228001 ORAC = 2.95, 95%CI = 1.51-5.75)]. This is the first study on DNA repair gene polymorphisms and UBC in the Pakistani population. It identifies OGG1 rs2304277 and replicates XPC rs2228001 as significant modulators of UBC susceptibility.
Collapse
Affiliation(s)
- Tayyaba Ahmed
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Saira Nawaz
- Bahauddin Zakariya University, Multan, Pakistan
| | | | | | - Abdur Rauf
- Nishtar Medical College & Hospital, Multan, Pakistan
| | | | - Khursheed Anwar
- Pakistan Atomic Energy Commission General Hospital, Islamabad, Pakistan
| | | | - Maleeha Azam
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Abid Ali Qureshi
- Department of Radiology, The Children's Hospital & The Institute of Child Health, Lahore, Pakistan
| | - Saeed Akhter
- Department of Urology, Shifa International Hospital, Islamabad, Pakistan
| | - Lambertus A Kiemeney
- Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, Rhe Netherlands
| | - Raheel Qamar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.,Pakistan Academy of Sciences, Islamabad, Pakistan
| | | |
Collapse
|
6
|
Mutation Spectrum Induced by 8-Bromoguanine, a Base Damaged by Reactive Brominating Species, in Human Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7308501. [PMID: 29098062 PMCID: PMC5643121 DOI: 10.1155/2017/7308501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/23/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022]
Abstract
To date, the types of mutations caused by 8-bromoguanine (8BrG), a major base lesion induced by reactive brominating species during inflammation, in human cells and the 8BrG repair system remain largely unknown. In this study, we performed a supF forward mutation assay using a shuttle vector plasmid containing a single 8BrG in three kinds of human cell lines and revealed that 8BrG in DNA predominantly induces a G → T mutation but can also induce G → C, G → A, and delG mutations in human cells. Next, we tested whether eight kinds of DNA glycosylases (MUTYH, MPG, NEIL1, OGG1, SMUG1, TDG, UNG2, and NTHL1) are capable of repairing 8BrG mispairs with any of the four bases using a DNA cleavage activity assay. We found that both the SMUG1 protein and the TDG protein exhibit DNA glycosylase activity against thymine mispaired with 8BrG and that the MUTYH protein exhibits DNA glycosylase activity against adenine mispaired with 8BrG. These results suggest that 8BrG induces some types of mutations, chiefly a G → T mutation, in human cells, and some DNA glycosylases are involved in the repair of 8BrG.
Collapse
|
7
|
Suzuki T, Kamiya H. Mutations induced by 8-hydroxyguanine (8-oxo-7,8-dihydroguanine), a representative oxidized base, in mammalian cells. Genes Environ 2016; 39:2. [PMID: 27980700 PMCID: PMC5131436 DOI: 10.1186/s41021-016-0051-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/15/2016] [Indexed: 11/20/2022] Open
Abstract
Guanine oxidation occurs in both DNA and the cellular nucleotide pool, and one of the major products is 8-hydroxyguanine (8-oxo-7,8-dihydroguanine). The mutagenic potentials of this oxidized base have been examined in various experimental systems. In this review, we summarize the mutagenicity of the base in mammalian cells. We also describe the effects of specialized DNA polymerases, DNA repair proteins, and nucleotide pool sanitization enzymes.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553 Japan
| | - Hiroyuki Kamiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553 Japan
| |
Collapse
|
8
|
Kim HN, Kim NY, Yu L, Kim YK, Lee IK, Yang DH, Lee JJ, Shin MH, Park KS, Choi JS, Kim HJ. Polymorphisms in DNA repair genes and MDR1 and the risk for non-Hodgkin lymphoma. Int J Mol Sci 2014; 15:6703-16. [PMID: 24756092 PMCID: PMC4013656 DOI: 10.3390/ijms15046703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 01/22/2023] Open
Abstract
The damage caused by oxidative stress and exposure to cigarette smoke and alcohol necessitate DNA damage repair and transport by multidrug resistance-1 (MDR1). To explore the association between polymorphisms in these genes and non-Hodgkin lymphoma risk, we analyzed 15 polymorphisms of 12 genes in a population-based study in Korea (694 cases and 1700 controls). Four genotypes of DNA repair pathway genes (XRCC1 399 GA, OGG1 326 GG, BRCA1 871 TT, and WRN 787 TT) were associated with a decreased risk for NHL [odds ratio (OR)XRCC1 GA=0.80, p=0.02; OROGG1 GG=0.70, p=0.008; ORBRCA1 TT=0.71, p=0.048; ORWRN TT=0.68, p=0.01]. Conversely, the MGMT 115 CT genotype was associated with an increased risk for NHL (OR=1.25, p=0.04). In the MDR1 gene, the 1236 CC genotype was associated with a decreased risk for NHL (OR=0.74, p=0.04), and the 3435 CT and TT genotypes were associated with an increased risk (OR3435CT=1.50, p<0.0001; OR3435TT=1.43, p=0.02). These results suggest that polymorphisms in the DNA repair genes XRCC1, OGG1, BRCA1, WRN1, and MGMT and in the MDR1 gene may affect the risk for NHL in Korean patients.
Collapse
Affiliation(s)
- Hee Nam Kim
- Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 501-746, Korea; E-Mails: (H.N.K.); (M.-H.S.)
| | - Nan Young Kim
- Environmental Health Center for Childhood Leukemia and Cancer, Chonnam National University Hwasun Hospital, Jeollanamdo 519-763, Korea; E-Mails: (N.Y.K.); (L.Y.); (I.-K.L.)
| | - Li Yu
- Environmental Health Center for Childhood Leukemia and Cancer, Chonnam National University Hwasun Hospital, Jeollanamdo 519-763, Korea; E-Mails: (N.Y.K.); (L.Y.); (I.-K.L.)
| | - Yeo-Kyeoung Kim
- Department of Hematology/Oncology, Chonnam National University Hwasun Hospital 160 Ilsim-ri, Hwasun-eup, Hwasun-gun, Jellanam-do 519-809, Korea; E-Mails: (Y.-K.K.); (D.-H.Y.); (J.-J.L.)
| | - Il-Kwon Lee
- Environmental Health Center for Childhood Leukemia and Cancer, Chonnam National University Hwasun Hospital, Jeollanamdo 519-763, Korea; E-Mails: (N.Y.K.); (L.Y.); (I.-K.L.)
| | - Deok-Hwan Yang
- Department of Hematology/Oncology, Chonnam National University Hwasun Hospital 160 Ilsim-ri, Hwasun-eup, Hwasun-gun, Jellanam-do 519-809, Korea; E-Mails: (Y.-K.K.); (D.-H.Y.); (J.-J.L.)
| | - Je-Jung Lee
- Department of Hematology/Oncology, Chonnam National University Hwasun Hospital 160 Ilsim-ri, Hwasun-eup, Hwasun-gun, Jellanam-do 519-809, Korea; E-Mails: (Y.-K.K.); (D.-H.Y.); (J.-J.L.)
| | - Min-Ho Shin
- Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 501-746, Korea; E-Mails: (H.N.K.); (M.-H.S.)
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju 501-746, Korea; E-Mail:
| | - Kyeong-Soo Park
- Department of Preventive Medicine, College of Medicine, Seonam University, Namwon 590-711, Korea; E-Mail:
| | - Jin-Su Choi
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju 501-746, Korea; E-Mail:
| | - Hyeoung-Joon Kim
- Environmental Health Center for Childhood Leukemia and Cancer, Chonnam National University Hwasun Hospital, Jeollanamdo 519-763, Korea; E-Mails: (N.Y.K.); (L.Y.); (I.-K.L.)
- Department of Hematology/Oncology, Chonnam National University Hwasun Hospital 160 Ilsim-ri, Hwasun-eup, Hwasun-gun, Jellanam-do 519-809, Korea; E-Mails: (Y.-K.K.); (D.-H.Y.); (J.-J.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-61-379-7637; Fax: +82-61-379-7736
| |
Collapse
|
9
|
Sassa A, Çağlayan M, Dyrkheeva NS, Beard WA, Wilson SH. Base excision repair of tandem modifications in a methylated CpG dinucleotide. J Biol Chem 2014; 289:13996-4008. [PMID: 24695738 DOI: 10.1074/jbc.m114.557769] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylation and demethylation in tracks of CpG dinucleotides is an epigenetic mechanism for control of gene expression. The initial step in the demethylation process can be deamination of 5-methylcytosine producing the TpG alteration and T:G mispair, and this step is followed by thymine DNA glycosylase (TDG) initiated base excision repair (BER). A further consideration is that guanine in the CpG dinucleotide may become oxidized to 7,8-dihydro-8-oxoguanine (8-oxoG), and this could affect the demethylation process involving TDG-initiated BER. However, little is known about the enzymology of BER of altered in-tandem CpG dinucleotides; e.g. Tp8-oxoG. Here, we investigated interactions between this altered dinucleotide and purified BER enzymes, the DNA glycosylases TDG and 8-oxoG DNA glycosylase 1 (OGG1), apurinic/apyrimidinic (AP) endonuclease 1, DNA polymerase β, and DNA ligases. The overall TDG-initiated BER of the Tp8-oxoG dinucleotide is significantly reduced. Specifically, TDG and DNA ligase activities are reduced by a 3'-flanking 8-oxoG. In contrast, the OGG1-initiated BER pathway is blocked due to the 5'-flanking T:G mispair; this reduces OGG1, AP endonuclease 1, and DNA polymerase β activities. Furthermore, in TDG-initiated BER, TDG remains bound to its product AP site blocking OGG1 access to the adjacent 8-oxoG. These results reveal BER enzyme specificities enabling suppression of OGG1-initiated BER and coordination of TDG-initiated BER at this tandem alteration in the CpG dinucleotide.
Collapse
Affiliation(s)
- Akira Sassa
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Melike Çağlayan
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Nadezhda S Dyrkheeva
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - William A Beard
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Samuel H Wilson
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| |
Collapse
|
10
|
Sassa A, Suzuki T, Kanemaru Y, Niimi N, Fujimoto H, Katafuchi A, Grúz P, Yasui M, Gupta RC, Johnson F, Ohta T, Honma M, Adachi N, Nohmi T. In vivo evidence that phenylalanine 171 acts as a molecular brake for translesion DNA synthesis across benzo[a]pyrene DNA adducts by human DNA polymerase κ. DNA Repair (Amst) 2014; 15:21-8. [PMID: 24461735 DOI: 10.1016/j.dnarep.2013.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/10/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
Abstract
Humans possess multiple specialized DNA polymerases that continue DNA replication beyond a variety of DNA lesions. DNA polymerase kappa (Pol κ) bypasses benzo[a]pyrene diolepoxide-N(2)-deoxyguanine (BPDE-N(2)-dG) DNA adducts in an almost error-free manner. In the previous work, we changed the amino acids close to the adducts in the active site and examined the bypass efficiency. The substitution of alanine for phenylalanine 171 (F171A) enhanced by 18-fold in vitro, the efficiencies of dCMP incorporation opposite (-)- and (+)-trans-anti-BPDE-N(2)-dG. In the present study, we established human cell lines that express wild-type Pol κ (POLK+/-), F171A (POLK F171A/-) or lack expression of Pol κ (POLK-/-) to examine the in vivo significance. These cell lines were generated with Nalm-6, a human pre-B acute lymphoblastic leukemia cell line, which has high efficiency for gene targeting. Mutations were analyzed with shuttle vectors having (-)- or (+)-trans-anti-BPDE-N(2)-dG in the supF gene. The frequencies of mutations were in the order of POLK-/->POLK+/->POLK F171A/- both in (-)- and (+)-trans-anti-BPDE-N(2)-dG. These results suggest that F171 may function as a molecular brake for bypass across BPDE-N(2)-dG by Pol κ and raise the possibility that the cognate substrates for Pol κ are not BP adducts in DNA but may be lesions in DNA induced by endogenous mutagens.
Collapse
Affiliation(s)
- Akira Sassa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan; School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo 192-0392, Japan
| | - Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yuki Kanemaru
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Naoko Niimi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Hirofumi Fujimoto
- Division of Radiological Protection and Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Atsushi Katafuchi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Ramesh C Gupta
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Francis Johnson
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Toshihiro Ohta
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo 192-0392, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| |
Collapse
|
11
|
Wang Z, Gan L, Nie W, Geng Y. The OGG1 Ser326Cys polymorphism and the risk of esophageal cancer: a meta-analysis. Genet Test Mol Biomarkers 2013; 17:780-5. [PMID: 23909557 DOI: 10.1089/gtmb.2013.0224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The oxoguanine DNA glycosylase (OGG1) Ser326Cys polymorphism has been implicated in susceptibility to esophageal cancer. Several studies investigated the association of this polymorphism with esophageal cancer in different populations. However, the results were contradictory. A meta-analysis was conducted to assess the association between the OGG1 Ser326Cys polymorphism and esophageal cancer susceptibility. METHODS Databases, including PubMed, EMBASE, China National Knowledge Infrastructure (CNKI), and Weipu Database were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations. A random-effects model was used. RESULTS Twelve studies involving 2363 cases and 3621 controls were included. Overall, a significant association between the OGG1 Ser326Cys polymorphism and esophageal cancer was observed for Cys/Cys versus Cys/Ser+Ser/Ser (OR=1.40; 95% CI 1.12-1.74; p=0.003; Pheterogeneity=0.18). In the subgroup analysis by ethnicity, a significant association was found among Asians (OR=1.51; 95% CI 1.15-1.96; p=0.002; Pheterogeneity=0.22), but not among Caucasians (OR=1.21; 95% CI 0.81-1.81; p=0.35; Pheterogeneity=0.21). In the subgroup analysis by pathologic type, we found that the Cys/Cys genotype was associated with increased esophageal squamous cell carcinoma risk (OR=1.86; 95% CI 1.36-2.53; p<0.0001; Pheterogeneity=0.73). CONCLUSIONS This meta-analysis suggested that the OGG1 Ser326Cys polymorphism was a risk factor of esophageal cancer.
Collapse
Affiliation(s)
- Zhan Wang
- 1 Department of Oncology, Shanghai Changzheng Hospital, Second Military Medical University , Shanghai, China
| | | | | | | |
Collapse
|
12
|
Sassa A, Beard WA, Prasad R, Wilson SH. DNA sequence context effects on the glycosylase activity of human 8-oxoguanine DNA glycosylase. J Biol Chem 2012; 287:36702-10. [PMID: 22989888 DOI: 10.1074/jbc.m112.397786] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human 8-oxoguanine DNA glycosylase (OGG1) is a key enzyme involved in removing 7,8-dihydro-8-oxoguanine (8-oxoG), a highly mutagenic DNA lesion generated by oxidative stress. The removal of 8-oxoG by OGG1 is affected by the local DNA sequence, and this feature most likely contributes to observed mutational hot spots in genomic DNA. To elucidate the influence of local DNA sequence on 8-oxoG excision activity of OGG1, we conducted steady-state, pre-steady-state, and single turnover kinetic evaluation of OGG1 in alternate DNA sequence contexts. The sequence context effect was studied for a mutational hot spot at a CpG dinucleotide. Altering either the global DNA sequence or the 5'-flanking unmodified base pair failed to influence the excision of 8-oxoG. Methylation of the cytosine 5' to 8-oxoG also did not affect 8-oxoG excision. In contrast, a 5'-neighboring mismatch strongly decreased the rate of 8-oxoG base removal. Substituting the 5'-C in the CpG dinucleotide with T, A, or tetrahydrofuran (i.e. T:G, A:G, and tetrahydrofuran:G mispairs) resulted in a 10-, 13-, and 4-fold decrease in the rate constant for 8-oxoG excision, respectively. A greater loss in activity was observed when T:C or A:C was positioned 5' of 8-oxoG (59- and 108-fold, respectively). These results indicate that neighboring structural abnormalities 5' to 8-oxoG deter its repair thereby enhancing its mutagenic potential.
Collapse
Affiliation(s)
- Akira Sassa
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
13
|
Kim HN, Kim NY, Yu L, Tran HTT, Kim YK, Lee IK, Shin MH, Park KS, Choi JS, Kim HJ. Association ofGSTT1polymorphism with acute myeloid leukemia risk is dependent on smoking status. Leuk Lymphoma 2012; 53:681-7. [DOI: 10.3109/10428194.2011.625576] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Iwaizumi M, Tseng-Rogenski S, Carethers JM. DNA mismatch repair proficiency executing 5-fluorouracil cytotoxicity in colorectal cancer cells. Cancer Biol Ther 2011; 12:756-64. [PMID: 21814034 DOI: 10.4161/cbt.12.8.17169] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND 5-fluorouracil (5FU)-based chemotherapy is the standard treatment for advanced stage colorectal cancer (CRC) patients. Several groups including ours have reported that stage II-III colorectal cancer patients whose tumors retain DNA Mismatch repair (MMR) function derive a benefit from 5FU, but patients with tumors that lost MMR function do not. Although MMR recognition of 5FU incorporated in DNA has been demonstrated biochemically, it has not been demonstrated within cells to execute 5FU cytotoxicity. AIM To establish an efficient construction model for 5FU within DNA and demonstrate that 5FU incorporated into DNA can trigger cellular cytotoxicity executed by the DNA MMR system. METHODS We constructed a 5FdU-containing heteroduplex plasmid (5FdU plasmid) and 5FdU-containing linear dsDNA (5FdU linear DNA), and transfected these into MMR-proficient, hMLH1-/- and hMSH6-/- cells. We observed cell growth characteristics of both transfectants for 5FU-induced cytotoxicity. RESULTS MMR- proficient cells transfected with the 5FdU plasmid but not the 5FdU linear DNA showed reduced cell proliferation by MTS and clonogenic assays, and demonstrated cell morphological change consistent with apoptosis. In MMR-deficient cells, neither the 5FdU plasmid nor 5FdU linear DNA induced cell growth or morphological changes different from controls. CONCLUSION 5FdU as heteroduplex DNA in plasmid but not linear form triggered cytotoxicity in a MMR-dependent manner. Thus 5FU incorporated into DNA, separated from its effects on RNA, can be recognized by DNA MMR to trigger cell death.
Collapse
Affiliation(s)
- Moriya Iwaizumi
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
15
|
Shinmura K, Goto M, Suzuki M, Tao H, Yamada H, Igarashi H, Matsuura S, Maeda M, Konno H, Matsuda T, Sugimura H. Reduced expression of MUTYH with suppressive activity against mutations caused by 8-hydroxyguanine is a novel predictor of a poor prognosis in human gastric cancer. J Pathol 2011; 225:414-23. [PMID: 21826668 DOI: 10.1002/path.2953] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/25/2011] [Accepted: 06/05/2011] [Indexed: 12/13/2022]
Abstract
The MUTYH gene encodes a DNA glycosylase that can initiate the excision repair of adenine mispaired with 8-hydroxyguanine (8OHG) and is responsible for a susceptibility to multiple colorectal adenomas and carcinomas. To determine whether the MUTYH gene is involved in gastric carcinogenesis, we first examined the expression level of MUTYH in gastric cancer. The reduced expression of MUTYH mRNA transcript was detected in both gastric cancer cell lines and primary gastric cancers using qRT-PCR analysis. Immunohistochemical analysis also showed a significant reduction in MUTYH protein expression in gastric cancer, compared with non-cancerous gastric epithelium (immunohistochemical score, 175.5 ± 43.0 versus 281.5 ± 24.8; p < 0.0001). Among the gastric cancers, the MUTYH expression level was significantly associated with the histopathology (p < 0.0001) and the pT stage (p < 0.001). The outcome of patients with gastric cancer exhibiting low MUTYH expression was significantly worse than the outcome of patients with gastric cancer exhibiting high MUTYH expression (p = 0.0007, log-rank test) and a multivariate analysis revealed that reduced MUTYH expression was an independent predictor of a poor survival outcome among the gastric cancer patients (hazard ratio, 1.865; 95% confidence interval, 1.028-3.529; p = 0.0401). We next compared the functional effects of MUTYH on gastric cancer cells, based on their MUTYH expression levels. MUTYH-over-expressing stable clones of the gastric cancer cell line AGS showed: (a) higher DNA cleavage activity towards adenine:8OHG mispair-containing substrates; (b) higher suppressive activity against mutations caused by 8OHG in a supF forward mutation assay; and (c) higher suppressive activity for cellular proliferation than empty vector-transfected AGS clones. These results suggested that MUTYH is a suppressor of mutations caused by 8OHG in gastric cells and that its reduced expression is associated with a poor prognosis in gastric cancer.
Collapse
Affiliation(s)
- Kazuya Shinmura
- 1st Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Upadhyay R, Malik MA, Zargar SA, Mittal B. OGG1 Ser326Cys Polymorphism and Susceptibility to Esophageal Cancer in Low and High At-Risk Populations of Northern India. J Gastrointest Cancer 2010; 41:110-115. [PMID: 20069464 DOI: 10.1007/s12029-009-9124-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Liddiard K, Hills R, Burnett AK, Darley RL, Tonks A. OGG1 is a novel prognostic indicator in acute myeloid leukaemia. Oncogene 2009; 29:2005-12. [PMID: 20023702 DOI: 10.1038/onc.2009.462] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OGG1 (8-oxoguanine DNA glycosylase) constitutes a key component of the DNA base excision repair pathway, catalysing the removal of 8-oxoguanine nucleotides from DNA, thereby suppressing mutagenesis and cell death. We found that OGG1 expression was significantly downregulated by the RUNX1-ETO fusion protein product of the t(8;21) chromosome translocation in normal haematopoietic progenitor cells and in patients with acute myeloid leukaemia (AML). Further examination of OGG1 expression in 174 AML trial patients using Affymetrix microarrays showed that the prevalence rate of OGG1 expression was 33% and correlated strongly with adverse cytogenetics. OGG1-expressing patients had a worse relapse-free survival and overall survival and an increased risk of relapse at 5-years of follow-up. There remained a trend towards increased relapse rate among OGG1-expressing patients, even after adjusting for other known risk factors in comprehensive stratified analyses. We also determined a trend for OGG1 expression to have a more adverse impact on disease outcome in the context of the FLT3-ITD mutation. This study highlights OGG1 as a valuable prognostic marker that could be used to sub-stratify AML patients to predict those likely to fail conventional chemotherapies but those likely to benefit from novel therapeutic approaches that modulate DNA repair activity.
Collapse
Affiliation(s)
- K Liddiard
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | | |
Collapse
|
18
|
Park JY, Huang Y, Sellers TA. Single nucleotide polymorphisms in DNA repair genes and prostate cancer risk. Methods Mol Biol 2009; 471:361-85. [PMID: 19109789 DOI: 10.1007/978-1-59745-416-2_18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The specific causes of prostate cancer are not known. However, multiple etiologic factors, including genetic profile, metabolism of steroid hormones, nutrition, chronic inflammation, family history of prostate cancer, and environmental exposures are thought to play significant roles. Variations in exposure to these risk factors may explain interindividual differences in prostate cancer risk. However, regardless of the precise mechanism(s), a robust DNA repair capacity may mitigate any risks conferred by mutations from these risk factors. Numerous single nucleotide polymorphisms (SNPs) in DNA repair genes have been found, and studies of these SNPs and prostate cancer risk are critical to understanding the response of prostate cells to DNA damage. A few SNPs in DNA repair genes are associated with significantly increased risk of prostate cancer; however, in most cases, the effects are moderate and often depend upon interactions among the risk alleles of several genes in a pathway or with other environmental risk factors. This report reviews the published epidemiologic literature on the association of SNPs in genes involved in DNA repair pathways and prostate cancer risk.
Collapse
Affiliation(s)
- Jong Y Park
- Division of Cancer Prevention and Control, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | |
Collapse
|
19
|
Deficient repair of 8-hydroxyguanine in the BxPC-3 pancreatic cancer cell line. Biochem Biophys Res Commun 2008; 376:336-40. [PMID: 18774780 DOI: 10.1016/j.bbrc.2008.08.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 11/23/2022]
Abstract
Elevated levels of oxidatively induced DNA lesions have been reported in malignant pancreatic tissues relative to normal pancreatic tissues. However, the ability of the pancreatic cancer cells to remove these lesions has not previously been addressed. This study analyzed the effectiveness of the pancreatic cancer cell line, BxPC-3 to repair 8-hydroxyguanine (8-OH-Gua) relative to a nonmalignant cell line. We show that BxPC-3 cells repair 8-OH-Gua less effectively than the nonmalignant cells. This repair deficiency correlated with significant downregulation of the hOGG1 protein and the corresponding mRNA (30-fold lower than GAPDH) in BxPC-3 cell line. The repair defect was complemented in vivo by transient transfection of the hOGG1 gene and in vivo by recombinant hOGG1. These results are the first to show a deficiency of 8-OH-Gua repair in BxPC-3 cells, implicating this defect in the risk factor of pancreatic cancer.
Collapse
|
20
|
Hakim IA, Chow HHS, Harris RB. Green tea consumption is associated with decreased DNA damage among GSTM1-positive smokers regardless of their hOGG1 genotype. J Nutr 2008; 138:1567S-1571S. [PMID: 18641208 DOI: 10.1093/jn/138.8.1567s] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The levels of tobacco-related DNA adducts in human tissues reflect a dynamic process that is dependent on the intensity and time of exposure to tobacco smoke, the metabolic balance between activation of detoxification mechanisms, and the removal of adducts by DNA repair and/or cell turnover. Urinary 8-hydroxydeoxyguanosine (8-OHdG) is probably 1 of the most abundant DNA lesions formed during oxidative stress and is proposed as a sensitive biomarker of the overall oxidative DNA damage and repair. We performed this study to determine whether there were differences in increased oxidative stress susceptibility to smoking within the combined GSTM1 and hOGG1 genotypes and the impact of green tea drinking on this. We completed a Phase II randomized, controlled, 3-arm tea intervention trial to study the effect of high consumption of decaffeinated green or black tea or water on urinary 8-OHdG among heavy smokers and to evaluate the roles of GSTM1 and hOGG1 genotypes as effect modifiers. Assessment of urinary 8-OHdG after adjustment for baseline measurements and other potential confounders revealed a significant effect of green tea consumption (P = 0.001). The change from baseline was significant in all GSTM1-positive smokers regardless of their hOGG1 genotype. Our data show that consumption of 4 cups (960 mL) of tea/d is a feasible and safe approach and was associated with a significant decrease in urinary 8-OHdG among green tea consumers. Our finding also suggests that green tea intervention might be effective in decreasing DNA damage in the subgroup of smokers who are GSTM1 positive regardless of their hOGG1 genotype.
Collapse
Affiliation(s)
- Iman A Hakim
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
21
|
Abstract
Oxidative stress is defined as an imbalance between generation of reactive oxygen species (ROS) and decreased antioxidant defense systems. Oxidative stress develops particularly in inflammatory reactions because the inflammatory cells, neutrophils, and macrophages produce large amounts of ROS. It has been known for a long time that oxidative stress in inflamed tissue can pave the way for malignant tumors, and that it is a major pathogenetic factor for the well-established correlation between inflammatory diseases and cancer. Oxidative stress has long been associated with the pathogenesis of chronic inflammatory bowel disease (IBD)-related colorectal cancer. This article provides an overview of the pathology of ROS and presents recent advances concerning the role of ROS in IBD-related colorectal carcinogenesis (Fig. 1).
Collapse
|
22
|
Hill JW, Evans MK. A novel R229Q OGG1 polymorphism results in a thermolabile enzyme that sensitizes KG-1 leukemia cells to DNA damaging agents. ACTA ACUST UNITED AC 2007; 31:237-43. [PMID: 17651912 PMCID: PMC2699023 DOI: 10.1016/j.cdp.2007.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mutations and polymorphisms of OGG1, the major mammalian 8-oxoguanine repair activity, are associated with increased risk for several cancers. Decreased 8-oxoguanine repair capacity due to variant forms of the OGG1 gene is a common feature of numerous cancer cell lines. One such cell line, human KG-1 leukemia cells, has previously been demonstrated to be deficient in the excision of 8-oxoguanine from oxidatively damaged DNA. KG-1 cells have a homozygous R229Q amino acid substitution in OGG1 that has been presumed to alter the function of OGG1 and result in elevated levels of genomic 8-oxoG and hypersensitivity to 8-hydroxydeoxyguanosine nucleoside and ionizing radiation observed in KG-1 cells. METHODS We characterized the enzymatic activity of R229Q OGG1 and the effect of the enzyme on cell survival following treatment with DNA damaging agents. RESULTS R229Q OGG1 had activity similar to the wild-type enzyme, yet was easily heat inactivated at physiological temperature. R229Q OGG1 expressed in human cells had significantly lower activity than wild-type OGG1 and was also highly thermolabile. Expression of R229Q OGG1 sensitized KG-1 cells to killing by menadione and 8-hydroxydeoxyguanosine, but not ionizing radiation. CONCLUSIONS These results suggest that decreased 8-oxoguanine repair in KG-1 is due to thermolability of R229Q OGG1 and that the enzyme variant increases cellular susceptibility to killing resulting from oxidative DNA damage. The R229Q OGG1 variant is a validated polymorphism prevalent in world populations and not an isolated mutation in KG-1 cells, thus the R229Q OGG1 allele may be a novel marker for cancer susceptibility.
Collapse
Affiliation(s)
| | - Michele K. Evans
- Corresponding author: Michele K. Evans, M.D., 5600 Nathan Shock Drive, National Institute on Aging, National Institutes of Health, Mailbox 09, Baltimore, MD, 21224-6825, , Tel. 410-558-5873, Fax. 410-558-8268
| |
Collapse
|
23
|
Sakamoto T, Higaki Y, Hara M, Ichiba M, Horita M, Mizuta T, Eguchi Y, Yasutake T, Ozaki I, Yamamoto K, Onohara S, Kawazoe S, Shigematsu H, Koizumi S, Tanaka K. hOGG1 Ser326Cys polymorphism and risk of hepatocellular carcinoma among Japanese. J Epidemiol 2006; 16:233-9. [PMID: 17085873 PMCID: PMC7683698 DOI: 10.2188/jea.16.233] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Ser326Cys polymorphism in human oxoguanine glycosylase 1 (hOGG1), which is involved in the repair of 8-hydroxy-2-deoxyguanine in oxidatively damaged DNA, has been associated with susceptibility to certain cancers, but has not been examined in causation of hepatocellular carcinoma (HCC). METHODS We conducted a case-control study to investigate whether this polymorphism was related to HCC risk with any interaction with alcohol consumption and cigarette smoking. Genotyping was performed by a polymerase chain reaction with confronting two-pair primers among 209 newly diagnosed HCC cases, 275 hospital controls, and 381 patients with chronic liver disease (CLD) without HCC. RESULTS Overall, the hOGG1 genotype was not significantly associated with HCC; adjusted odds ratios (and 95% confidence intervals) for the Ser/Cys and Cys/Cys genotypes compared with the Ser/Ser genotype were 0.79 (0.35-1.79) and 0.48 (0.18-1.27) against hospital controls, and 1.51 (0.96-3.37) and 0.86 (0.50-1.47) against CLD patients. We could not detect any significant gene-alcohol interaction (p = 0.95 or 0.16) or gene-smoking interaction (p = 0.70 or 0.69). CONCLUTIONS These results suggest that the hOGG1 Ser326Cys polymorphism may not play a major role as an independent factor in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Tatsuhiko Sakamoto
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hill JW, Evans MK. Dimerization and opposite base-dependent catalytic impairment of polymorphic S326C OGG1 glycosylase. Nucleic Acids Res 2006; 34:1620-32. [PMID: 16549874 PMCID: PMC1405821 DOI: 10.1093/nar/gkl060] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human 8-oxoguanine-DNA glycosylase (OGG1) is the major enzyme for repairing 8-oxoguanine (8-oxoG), a mutagenic guanine base lesion produced by reactive oxygen species (ROS). A frequently occurring OGG1 polymorphism in human populations results in the substitution of serine 326 for cysteine (S326C). The 326 C/C genotype is linked to numerous cancers, although the mechanism of carcinogenesis associated with the variant is unclear. We performed detailed enzymatic studies of polymorphic OGG1 and found functional defects in the enzyme. S326C OGG1 excised 8-oxoG from duplex DNA and cleaved abasic sites at rates 2- to 6-fold lower than the wild-type enzyme, depending upon the base opposite the lesion. Binding experiments showed that the polymorphic OGG1 binds DNA damage with significantly less affinity than the wild-type enzyme. Remarkably, gel shift, chemical cross-linking and gel filtration experiments showed that S326C both exists in solution and binds damaged DNA as a dimer. S326C OGG1 enzyme expressed in human cells was also found to have reduced activity and a dimeric conformation. The glycosylase activity of S326C OGG1 was not significantly stimulated by the presence of AP-endonuclease. The altered substrate specificity, lack of stimulation by AP-endonuclease 1 (APE1) and anomalous DNA binding conformation of S326C OGG1 may contribute to its linkage to cancer incidence.
Collapse
Affiliation(s)
| | - Michele K. Evans
- To whom correspondence should be addressed. Tel: +1 410 558 8573; Fax: +1 410 558 8268;
| |
Collapse
|
25
|
Sasaki S, Sato M, Katsura Y, Kurimasa A, Chen DJ, Takeda S, Kuwano H, Yokota J, Kohno T. Rapid assessment of two major repair activities against DNA double-strand breaks in vertebrate cells. Biochem Biophys Res Commun 2006; 339:583-90. [PMID: 16310168 DOI: 10.1016/j.bbrc.2005.11.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Accepted: 11/10/2005] [Indexed: 01/06/2023]
Abstract
A linearized plasmid DNA, in which tandem repeats of 400bp flank the breakpoints, was transfected into vertebrate cells, and breakpoint junctions of plasmid DNA circularized in the cells were analyzed to assess the repair activities against DNA double-strand break (DSB) by non-homologous end joining and homology-directed repair (i.e., homologous recombinational repair and single-strand annealing). The circularization by non-homologous end joining repair of the breakpoints depended on the expression of DNA-PKcs, while that by homology-directed repair through the repeats depended on the length of the repeats, indicating that these two DSB repair activities can be rapidly assessed by this assay. Predominance in circularization by either non-homologous end joining or homology-directed repair differed among cells examined, and circularization was exclusively undertaken by homology-directed repair in DT40 cells known to show a high homologous recombination rate against gene-targeting vectors. Thus, this assay will be helpful in studies on mechanisms and inter-cellular variations of DSB repair.
Collapse
Affiliation(s)
- Shigeru Sasaki
- Biology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Koyama S, Nakahara T, Sakurai T, Komatsubara Y, Isozumi Y, Miyakoshi J. Combined exposure of ELF magnetic fields and x-rays increased mutant yields compared with x-rays alone in pTN89 plasmids. JOURNAL OF RADIATION RESEARCH 2005; 46:257-64. [PMID: 15988145 DOI: 10.1269/jrr.46.257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have examined mutations in the supF gene carried by pTN89 plasmids in Escherichia coli (E. coli) to examine the effects of extremely low frequency magnetic fields (ELFMFs) and/or X-rays to the plasmids. The plasmids were subjected to sham exposure or exposed to an ELFMF (5 mT), with or without X-ray irradiation (10 Gy). For the combined treatments, exposure to the ELFMF was immediately before or after X-ray irradiation. The mutant fractions were 0.94x10(-5 )for X-rays alone, 1.58x10(-5) for an ELFMF followed by X-rays, and 3.64x10(-5) for X-rays followed by an ELFMF. Increased mutant fraction was not detected following exposure to a magnetic field alone, or after sham exposure. The mutant fraction for X-rays followed by an ELFMF was significantly higher than those of other treatments. Sequence analysis of the supF mutant plasmids revealed that base substitutions were dominant on exposure to X-rays alone and X-rays plus an ELFMF. Several types of deletions were detected in only the combined treatments, but not with X-rays alone. We could not find any mutant colonies in sham irradiated and an ELFMF alone treatment, but exposure to ELFMFs immediately before or after X-ray irradiation may enhance the mutations. Our results indicate that an ELFMF increases mutation and alters the spectrum of mutations.
Collapse
Affiliation(s)
- Shin Koyama
- Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Hirosaki University, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Luna L, Rolseth V, Hildrestrand GA, Otterlei M, Dantzer F, Bjørås M, Seeberg E. Dynamic relocalization of hOGG1 during the cell cycle is disrupted in cells harbouring the hOGG1-Cys326 polymorphic variant. Nucleic Acids Res 2005; 33:1813-24. [PMID: 15800211 PMCID: PMC1072800 DOI: 10.1093/nar/gki325] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Numerous lines of evidence support the role of oxidative stress in different types of cancer. A major DNA lesion, 8-oxo-7,8-dihydroguanine (8-oxoG), is formed by reactive oxygen species in the genome under physiological conditions. 8-OxoG is strongly mutagenic, generating G·C→T·A transversions, a frequent somatic mutation in cancers. hOGG1 was cloned as a gene encoding a DNA glycosylase that specifically recognizes and removes 8-oxoG from 8-oxoG:C base pairs and suppresses G·C→T·A transversions. In this study, we investigated the subcellular localization and expression of hOGG1 during the cell cycle. Northern blots showed cell-cycle-dependent mRNA expression of the two major hOGG1 isoforms. By using a cell line constitutively expressing hOGG1 fused to enhanced green fluorescence protein (EGFP), we observed a dynamic relocalization of EGFP-hOGG1 to the nucleoli during the S-phase of the cell cycle, and this localization was shown to be linked to transcription. A C/G change that results in an amino acid substitution from serine to cysteine in codon 326 has been reported as a genetic polymorphism and a risk allele for a variety of cancers. We investigated the cellular localization of the corresponding protein, hOGG1-Cys326, fused to EGFP and observed a dramatic effect on its localization that is explained by a change in the phosphorylation status of hOGG1.
Collapse
Affiliation(s)
- Luisa Luna
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, University of Oslo Rikshospitalet, N-0027 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
28
|
Hu YC, Ahrendt SA. hOGG1 Ser326Cys polymorphism and G:C-to-T:A mutations: no evidence for a role in tobacco-related non small cell lung cancer. Int J Cancer 2005; 114:387-93. [PMID: 15551330 DOI: 10.1002/ijc.20730] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human 8-oxoguanine DNA glycosylase 1 (hOGG1) plays a major role in the repair of 8-hydroxyguanine, one of the major forms of DNA damage generated by reactive oxygen species in tobacco smoke. If left unrepaired by hOGG1, 8-hydroxyguanine can produce G:C-to-T:A transversions. Recent studies have suggested that the hOGG1 Ser326Cys polymorphism is associated with both a decrease in enzyme activity and an increased risk of lung cancer. To define the interaction between tobacco carcinogens, hOGG1-mediated DNA repair and DNA damage, we examined the role of the hOGG1 Ser326Cys polymorphism in mutation of the p53 gene in non small cell lung cancer (NSCLC). Tumor and nonneoplastic DNA were collected from 141 cigarette smokers with NSCLC. p53 mutations were detected by direct dideoxy sequencing and/or the GeneChip p53 assay in 74 of the 141 (52%) tumors. hOGG1 codon 326 polymorphisms were identified by polymerase chain reaction-restriction fragment length polymorphism analysis. The distribution of hOGG1 codon 326 genotypes was Ser/Ser, 90 of 141 (64%); Ser/Cys, 45 of 141 (32%); and Cys/Cys, 6 of 141 (4%). p53 mutations were significantly (p = 0.04) less common in NSCLC from patients with codon 326 Ser/Cys or Cys/Cys genotypes (21 of 51; 41%) than in NSCLC from Ser/Ser homozygotes (53 of 90; 59%). The decrease in p53 mutation frequency among carriers of the Cys allele was more evident in lung squamous cell cancer [7 of 17 (41%) for Cys/Cys and Ser/Cys vs. 27 of 38 (71%) for Ser/Ser; p = 0.04] than in nonbronchoalveolar adenocarcinoma [11 of 26 (42%) for Cys/Cys and Ser/Cys vs. 20 of 35 (57%) for Ser/Ser; p = 0.25]. The prevalence of G:C-to-T:A transversions was similar among hOGG1 codon 326 genotypes. In summary, the hOGG1 codon 326 Cys allele was associated with a decrease in p53 mutations and no effect on G:C-to-T:A transversions in NSCLC. This decrease in p53 mutations in vivo is not consistent with a decrease in the repair of 8-hydroxyguanine among carriers of the hOGG1 codon 326 Cys allele in vitro.
Collapse
Affiliation(s)
- Ying Chuan Hu
- Department of Surgery, University of Rochester Medical School, Rochester, NY 14642, USA
| | | |
Collapse
|
29
|
Park J, Chen L, Tockman MS, Elahi A, Lazarus P. The human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) DNA repair enzyme and its association with lung cancer risk. ACTA ACUST UNITED AC 2004; 14:103-9. [PMID: 15077011 DOI: 10.1097/00008571-200402000-00004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The human 8-oxoguanine DNA N-glycosylase 1 gene encodes a DNA glycosylase that is involved in the base excision repair of 8-hydroxy-2-deoxyguanine from oxidatively-damaged DNA and expressed in lung tissue. The codon 326 polymorphism in the hOGG1 gene has been suggested to reduce DNA repair enzyme activity based on in vitro functional analysis. The goal of the present study is to determine whether the codon 326 polymorphism was significantly associated with alterations in individual risk for lung cancer. METHODS To determine whether hOGG1 plays a role in risk for lung cancer, we measured the prevalence of the Ser326Cys polymorphism in incident lung cancer patients and matched non-cancer controls. hOGG1 genotyping was performed by PCR-restriction fragment length polymorphism analysis of genomic DNA isolated from 179 Caucasian lung cancer cases and 358 controls individually matched in a 1:2 ratio by race-, sex- and age (+/- 5 years). RESULTS Significantly increased risk for lung cancer was observed for both the hOGG1 326 (odds ratio [OR] = 1.9, 95% confidence interval [CI] = 1.2-2.9) and hOGG1 326 genotypes (OR = 3.8, 95% CI = 1.4-10.6). The increased risk for lung cancer was observed for subjects with both the hOGG1 326 (OR = 1.7, 95% CI = 1.1-2.8) and hOGG1 326 genotypes (OR = 4.9, 95% CI = 1.5-16.1) in ever-smokers. A significant association was found between hOGG1 genotypes and lung cancer risk with a dose-dependent effect with smoking. Significantly increased risk for variant hOGG1 genotypes was observed for all non-small cell lung cancer patients. CONCLUSION These results suggest that the hOGG1 Ser326Cys polymorphism plays an important role in the risk for lung cancer and is linked to exposure to tobacco smoke.
Collapse
Affiliation(s)
- Jong Park
- Divisions of Cancer Control and Molecular Oncology, H Lee Moffitt Cancer Center, University of South Florida, Tampa, FL 33612, USA.
| | | | | | | | | |
Collapse
|
30
|
Fraser JLA, Neill E, Davey S. Fission yeast Uve1 and Apn2 function in distinct oxidative damage repair pathways in vivo. DNA Repair (Amst) 2004; 2:1253-67. [PMID: 14599746 DOI: 10.1016/j.dnarep.2003.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Schizosaccharomyces pombe, the endonuclease Uve1 functions as the first step in an alternate UV photo-product repair pathway that is distinct from nucleotide excision repair (NER). Based upon the broad substrate specificity of Uve1 in vitro, and the observation that Uve1 mutants accumulate spontaneous mutations at an elevated rate in vivo, we and others have hypothesized that this protein might have a function in a mutation avoidance pathway other than UV photo-product repair. We show here that fission yeast Uve1 also functions in oxidative damage repair in vivo. We have determined the spectrum of spontaneous mutations that arise in uve1 null (uve1 degrees ) cells and have observed that both G-->T(C-->A) and T-->G(A-->C) transversions occur at an increased rate relative to wildtype cells. These mutations are indicative of unrepaired oxidative DNA damage and are very similar to the mutation spectrum observed in 8-oxoguanine glycosylase (OGG1) mutants in Saccharomyces cerevisiae. We have generated an apn2 null (apn2 degrees ) strain and shown that it is mildly sensitive to H(2)O(2). Furthermore we have also shown that apn2 degrees cells have an elevated rate of spontaneous mutation that is similar to uve1 degrees. The phenotype of apn2 degrees uve1 degrees double mutants indicates that these genes define distinct spontaneous mutation avoidance pathways. While uve1 degrees cells show only a modest sensitivity to the oxidizing agent hydrogen peroxide (H(2)O(2)), both uve1 degrees and apn2 degrees cells also display a marked increased in mutation rate following exposure to H(2)O(2) doses. Collectively these data demonstrate that Uve1 is a component of multiple alternate repair pathways in fission yeast and suggest a possible role for Uve1 in a general alternate incision repair pathway in eukaryotes.
Collapse
Affiliation(s)
- J Lee A Fraser
- Department of Pathology, Queen's University, ON, Kingston, Canada K7L 3N6
| | | | | |
Collapse
|
31
|
Hakim IA, Chow HHS, Harris RB, Dean M, Ali IU. hOGG1 Genotype, Green Tea and Oxidative DNA Damage among Heavy Smokers. ACTA ACUST UNITED AC 2004. [DOI: 10.2165/01197065-200401040-00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|