1
|
Xia M, Lei L, Zhao L, Xu W, Zhang H, Li M, Hu J, Cheng R, Hu T. The dynamic oral-gastric microbial axis connects oral and gastric health: current evidence and disputes. NPJ Biofilms Microbiomes 2025; 11:1. [PMID: 39747247 DOI: 10.1038/s41522-024-00623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
Emerging evidence indicates that oral microbes are closely related to gastric microbes and gastric lesions, including gastric atrophy, intestinal metaplasia and gastric cancer (GC). Helicobacter pylori is a key pathogen involved in GC. However, the increasing prevalence of H. pylori-negative GC and gastric dysbiosis in GC patients emphasize the potential role of other microbial factors. In this review, we discussed the current evidence about the relationship between the oral-gastric microbial axis and oral and gastric health. Epidemiologic evidence indicates that poor oral hygiene is related to greater GC risk. Multiple oral-associated microbes are enriched in the stomach of GC patients. Once colonizing the stomach, oral-associated microbes Streptococcus anginosus and Prevotella melaninogenica, are involved in gastric inflammation or carcinogenesis. Microbial metabolites such as lactate, nitrite, and acetaldehyde promote malignant transformation. The stomach, as a checkpoint of microbial transmission in the digestive tract, is of great importance since the link between oral microbes and intestinal diseases has been emphasized. Still, new technologies and standardized metrics are necessary to identify potential pathogenetic microbes for GC and the core microbiota, interactions, richness, colonization, location and effect (CIRCLE). In the future, oral microbes could be candidates for noninvasive indicators to predict gastric diseases.
Collapse
Affiliation(s)
- Mengying Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Microbiology, ADA Forsyth Institute, Cambridge, USA
| | - Linyong Zhao
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenqing Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Hongyu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mingming Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiankun Hu
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Mamun TI, Younus S, Rahman MH. Gastric cancer-Epidemiology, modifiable and non-modifiable risk factors, challenges and opportunities: An updated review. Cancer Treat Res Commun 2024; 41:100845. [PMID: 39357127 DOI: 10.1016/j.ctarc.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Gastric cancer represents a significant global health challenge due to its high mortality and incidence rates, particularly in Eastern Asia, Eastern Europe, and South America. This comprehensive review synthesizes the latest epidemiological data and explores both modifiable and non-modifiable risk factors associated with gastric cancer, aiming to delineate the multifactorial etiology of this disease. Modifiable risk factors include Helicobacter pylori infection, obesity, dietary habits, smoking and alcohol consumption, whereas nonmodifiable factors comprise genetic predispositions, age, family history and male gender. The interplay of these factors significantly impacts the risk and progression of gastric cancer, suggesting potential preventive strategies. The challenges in treating gastric cancer are considerable, largely because of the late-stage diagnosis and the heterogeneity of the disease, which complicate effective treatment regimens. Current treatment strategies involve a combination of surgery, chemotherapy, radiotherapy, and targeted therapies. The FLOT regimen (5-FU, Leucovorin, Oxaliplatin and Docetaxel) is now a standard for resectable cases in Europe and the US, showing superior survival and response rates over ECF and ECX regimens. For HER2-positive gastric cancer, trastuzumab combined with chemotherapy improves overall survival, as demonstrated by the ToGA trial. Additionally, immune checkpoint inhibitors like pembrolizumab and nivolumab offer promising results. However, the five-year survival rate remains low, underscoring the urgency for improved therapeutic approaches. Recent advancements in molecular biology and cancer genomics have begun to pave the way for personalized medicine in gastric cancer care, focusing on molecular targeted therapies and immunotherapy. This review also highlights the critical need for better screening methods that could facilitate early detection and treatment, potentially improving the prognosis. By integrating epidemiological insights with new therapeutic strategies, this article aims to thoroughly understand of gastric cancer's dynamics and outline a framework for future research and clinical management, advocating for a multidisciplinary approach to tackle this formidable disease.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Sabrina Younus
- Department of Pharmacy, University of Chittagong, Chattogram 4331, Bangladesh
| | - Md Hashibur Rahman
- Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
3
|
Hatta W, Koike T, Asano N, Hatayama Y, Ogata Y, Saito M, Jin X, Uno K, Imatani A, Masamune A. The Impact of Tobacco Smoking and Alcohol Consumption on the Development of Gastric Cancers. Int J Mol Sci 2024; 25:7854. [PMID: 39063094 PMCID: PMC11276971 DOI: 10.3390/ijms25147854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Chronic infection of Helicobacter pylori is considered the principal cause of gastric cancers, but evidence has accumulated regarding the impact of tobacco smoking and alcohol consumption on the development of gastric cancers. Several possible mechanisms, including the activation of nicotinic acetylcholine receptors, have been proposed for smoking-induced gastric carcinogenesis. On the other hand, local acetaldehyde exposure and ethanol-induced mucosal inflammation have been proposed as the mechanisms involved in the development of gastric cancers in heavy alcohol drinkers. In addition, genetic polymorphisms are also considered to play a pivotal role in smoking-related and alcohol-related gastric carcinogenesis. In this review, we will discuss the molecular mechanisms involved in the development of gastric cancers in relation to tobacco smoking and alcohol consumption.
Collapse
Affiliation(s)
- Waku Hatta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293, Miyagi, Japan
- Division of Carcinogenesis and Senescence Biology, Tohoku University Graduate School of Medicine, Natori 981-1293, Miyagi, Japan
| | - Yutaka Hatayama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Yohei Ogata
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Masahiro Saito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Xiaoyi Jin
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| |
Collapse
|
4
|
Ying H, Huang RJ, Jing XM, Li Y, Tong QQ. Effect of cetuximab plus FOLFOX4 regimen on clinical outcomes in advanced gastric carcinoma patients receiving evidence-based care. World J Clin Cases 2024; 12:3360-3367. [PMID: 38983425 PMCID: PMC11229900 DOI: 10.12998/wjcc.v12.i18.3360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Although chemotherapy is effective for treating advanced gastric carcinoma (aGC), it may lead to an adverse prognosis. Establishing a highly effective and low-toxicity chemotherapy regimen is necessary for improving efficacy and outcomes in aGC patients. AIM To determine the efficacy and safety of cetuximab (CET) combined with the FOLFOX4 regimen (infusional fluorouracil, folinic acid, and oxaliplatin) as first-line therapy for patients with aGC, who received evidence-based care (EBC). METHODS A total of 117 aGC patients who received EBC from March 2019 to March 2022 were enrolled. Of these, 60 in the research group (RG) received CET + FOLFOX4 as first-line therapy, whereas 57 in the control group (CG) received FOLFOX4. The efficacy [clinical response rate (RR) and disease control rate (DCR)], safety (liver and kidney dysfunction, leukopenia, thrombocytopenia, rash, and diarrhea), serum tumor marker expression [STMs; carbohydrate antigen (CA) 19-9, CA72-4, and carcinoembryonic antigen (CEA)], inflammatory indicators [interleukin (IL)-2 and IL-10], and quality of life (QOL) of the two groups were compared. RESULTS A markedly higher RR and DCR were observed in the RG compared with the CG, with an equivalent safety profile between the two groups. RG exhibited notably reduced CA19-9, CA72-4, CEA, and IL-2 levels following treatment, which were lower than the pre-treatment levels and those in the CG. Post-treatment IL-10 was statistically increased in RG, higher than the pre-treatment level and the CG. Moreover, a significantly improved QOL was evident in the RG. CONCLUSION The CET + FOLFOX4 regimen is highly effective as first-line treatment for aGC patients receiving EBC. It facilitates the suppression of STMs, ameliorates the serum inflammatory microenvironment, and enhances QOL, without increased adverse drug effects.
Collapse
Affiliation(s)
- Hui Ying
- Department of General Surgery, Yongkang First People's Hospital, Yongkang 321300, Zhejiang Province, China
| | - Ren-Jun Huang
- Department of General Surgery, Yongkang First People's Hospital, Yongkang 321300, Zhejiang Province, China
| | - Xiao-Min Jing
- Department of Oncology, Yongkang First People's Hospital, Yongkang 321300, Zhejiang Province, China
| | - Yan Li
- Department of Oncology, Yongkang First People's Hospital, Yongkang 321300, Zhejiang Province, China
| | - Qun-Qiu Tong
- Department of Oncology, Yongkang First People's Hospital, Yongkang 321300, Zhejiang Province, China
| |
Collapse
|
5
|
Liu J, Bai X, Zhang M, Wu S, Xiao J, Zeng X, Li Y, Zhang Z. Energy metabolism: a new target for gastric cancer treatment. Clin Transl Oncol 2024; 26:338-351. [PMID: 37477784 DOI: 10.1007/s12094-023-03278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Gastric cancer is the fifth most common malignancy worldwide having the fourth highest mortality rate. Energy metabolism is key and closely linked to tumour development. Most important in the reprogramming of cancer metabolism is the Warburg effect, which suggests that tumour cells will utilise glycolysis even with normal oxygen levels. Various molecules exert their effects by acting on enzymes in the glycolytic pathway, integral to glycolysis. Second, mitochondrial abnormalities in the reprogramming of energy metabolism, with consequences for glutamine metabolism, the tricarboxylic acid cycle and oxidative phosphorylation, abnormal fatty acid oxidation and plasma lipoprotein metabolism are important components of tumour metabolism. Third, inflammation-induced oxidative stress is a danger signal for cancer. Fourth, patterns of signalling pathways involve all aspects of metabolic transduction, and many clinical drugs exert their anticancer effects through energy metabolic signalling. This review summarises research on energy metabolism genes, enzymes and proteins and transduction pathways associated with gastric cancer, and discusses the mechanisms affecting their effects on postoperative treatment resistance and prognoses of gastric cancer. We believe that an in-depth understanding of energy metabolism reprogramming will aid the diagnosis and subsequent treatment of gastric cancer.
Collapse
Affiliation(s)
- Jiangrong Liu
- Cancer Research Institute of Hengyang Medical School, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xue Bai
- Cancer Research Institute of Hengyang Medical School, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical School, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Shihua Wu
- Department of Pathology, The Second Affiliated Hospital, Shaoyang College, Shaoyang, 422000, Hunan, People's Republic of China
| | - Juan Xiao
- Department of Head and Neck Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xuemei Zeng
- Cancer Research Institute of Hengyang Medical School, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yuwei Li
- Cancer Research Institute of Hengyang Medical School, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical School, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Ye J, Feng T, Su L, Li J, Gong Y, Ma X. Interactions between Helicobacter pylori infection and host metabolic homeostasis: A comprehensive review. Helicobacter 2023; 28:e13030. [PMID: 37871913 DOI: 10.1111/hel.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
The microbiota actively and extensively participates in the regulation of human metabolism, playing a crucial role in the development of metabolic diseases. Helicobacter pylori (H. pylori), when colonizing gastric epithelial cells, not only induces local tissue inflammation or malignant transformation but also leads to systemic and partial changes in host metabolism. These shifts can be mediated through direct contact, toxic components, or indirect immune responses. Consequently, they influence various molecular metabolic events that impact nutritional status and iron absorption in the host. Unraveling the intricate and diverse molecular interaction links between H. pylori and human metabolism modulation is essential for understanding pathogenesis mechanisms and developing targeted treatments for related diseases. However, significant challenges persist in comprehensively understanding the complex association networks among H. pylori itself, the infected host's status, the host microbiome, and the immune response. Previous metabolomics research has indicated that H. pylori infection and eradication may selectively shape the metabolite and microbial profiles of gastric lesions. Yet, it remains largely unknown how these diverse metabolic pathways, including isovaleric acid, cholesterol, fatty acids, and phospholipids, specifically modulate gastric carcinogenesis or affect the host's serum metabolism, consequently leading to the development of metabolic-associated diseases. The direct contribution of H. pylori to metabolisms still lacks conclusive evidence. In this review, we summarize recent advances in clinical evidence highlighting associations between chronic H. pylori infection and metabolic diseases, as well as its potential molecular regulatory patterns.
Collapse
Affiliation(s)
- Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Ting Feng
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Lei Su
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Jin Li
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Yingying Gong
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Xiaoyi Ma
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
7
|
Chen W, Du L, Cai C, Huang L, Zheng Q, Chen J, Wang L, Zhang X, Fang X, Wang L, Zhong Q, Zhong W, Wang J, Liao Z. Take chicks as an example: Rummeliibacillus stabekisii CY2 enhances immunity and regulates intestinal microbiota by degrading LPS to promote organism growth and development. J Funct Foods 2023; 105:105583. [DOI: 10.1016/j.jff.2023.105583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
8
|
Fuchs S, Gong R, Gerhard M, Mejías-Luque R. Immune Biology and Persistence of Helicobacter pylori in Gastric Diseases. Curr Top Microbiol Immunol 2023; 444:83-115. [PMID: 38231216 DOI: 10.1007/978-3-031-47331-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori is a prevalent pathogen, which affects more than 40% of the global population. It colonizes the human stomach and persists in its host for several decades or even a lifetime, if left untreated. The persistent infection has been linked to various gastric diseases, including gastritis, peptic ulcers, and an increased risk for gastric cancer. H. pylori infection triggers a strong immune response directed against the bacterium associated with the infiltration of innate phagocytotic immune cells and the induction of a Th1/Th17 response. Even though certain immune cells seem to be capable of controlling the infection, the host is unable to eliminate the bacteria as H. pylori has developed remarkable immune evasion strategies. The bacterium avoids its killing through innate recognition mechanisms and manipulates gastric epithelial cells and immune cells to support its persistence. This chapter focuses on the innate and adaptive immune response induced by H. pylori infection, and immune evasion strategies employed by the bacterium to enable persistent infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Ruolan Gong
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany.
| |
Collapse
|
9
|
Patrad E, Khalighfard S, Amiriani T, Khori V, Alizadeh AM. Molecular mechanisms underlying the action of carcinogens in gastric cancer with a glimpse into targeted therapy. Cell Oncol 2022; 45:1073-1117. [PMID: 36149600 DOI: 10.1007/s13402-022-00715-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer imposes a substantial global health burden despite its overall incidence decrease. A broad spectrum of inherited, environmental and infectious factors contributes to the development of gastric cancer. A profound understanding of the molecular underpinnings of gastric cancer has lagged compared to several other tumors with similar incidence and morbidity rates, owing to our limited knowledge of the role of carcinogens in this malignancy. The International Agency for Research on Cancer (IARC) has classified gastric carcinogenic agents into four groups based on scientific evidence from human and experimental animal studies. This review aims to explore the potential comprehensive molecular and biological impacts of carcinogens on gastric cancer development and their interactions and interferences with various cellular signaling pathways. CONCLUSIONS In this review, we highlight recent clinical trial data reported in the literature dealing with different ways to target various carcinogens in gastric cancer. Moreover, we touch upon other multidisciplinary therapeutic approaches such as surgery, adjuvant and neoadjuvant chemotherapy. Rational clinical trials focusing on identifying suitable patient populations are imperative to the success of single-agent therapeutics. Novel insights regarding signaling pathways that regulate gastric cancer can potentially improve treatment responses to targeted therapy alone or in combination with other/conventional treatments. Preventive strategies such as control of H. pylori infection through eradication or immunization as well as dietary habit and lifestyle changes may reduce the incidence of this multifactorial disease, especially in high prevalence areas. Further in-depth understanding of the molecular mechanisms involved in the role of carcinogenic agents in gastric cancer development may offer valuable information and update state-of-the-art resources for physicians and researchers to explore novel ways to combat this disease, from bench to bedside. A schematic outlining of the interaction between gastric carcinogenic agents and intracellular pathways in gastric cancer H. pylori stimulates multiple intracellular pathways, including PI3K/AKT, NF-κB, Wnt, Shh, Ras/Raf, c-MET, and JAK/STAT, leading to epithelial cell proliferation and differentiation, apoptosis, survival, motility, and inflammatory cytokine release. EBV can stimulate intracellular pathways such as the PI3K/Akt, RAS/RAF, JAK/STAT, Notch, TGF-β, and NF-κB, leading to cell survival and motility, proliferation, invasion, metastasis, and the transcription of anti-apoptotic genes and pro-inflammatory cytokines. Nicotine and alcohol can lead to angiogenesis, metastasis, survival, proliferation, pro-inflammatory, migration, and chemotactic by stimulating various intracellular signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, ROS, and JAK/STAT. Processed meat contains numerous carcinogenic compounds that affect multiple intracellular pathways such as sGC/cGMP, p38 MAPK, ERK, and PI3K/AKT, leading to anti-apoptosis, angiogenesis, metastasis, inflammatory responses, proliferation, and invasion. Lead compounds may interact with multiple signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, DNA methylation-dependent, and epigenetic-dependent, leading to tumorigenesis, carcinogenesis, malignancy, angiogenesis, DNA hypermethylation, cell survival, and cell proliferation. Stimulating signaling pathways such as PI3K/Akt, RAS/RAF, JAK/STAT, WNT, TGF-β, EGF, FGFR2, and E-cadherin through UV ionizing radiation leads to cell survival, proliferation, and immortalization in gastric cancer. The consequence of PI3K/AKT, NF-κB, Ras/Raf, ROS, JAK/STAT, and WNT signaling stimulation by the carcinogenic component of Pickled vegetables and salted fish is the Warburg effect, tumorigenesis, angiogenesis, proliferation, inflammatory response, and migration.
Collapse
Affiliation(s)
- Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Jadidi A, Ali Shokrgozar M, Sardari S, Mohammad Maadani A. Gefitinib-loaded polydopamine-coated hollow mesoporous silica nanoparticle for gastric cancer application. Int J Pharm 2022; 629:122342. [DOI: 10.1016/j.ijpharm.2022.122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
11
|
Up-Regulation of Interleukin-10 in Splenic Immune Response Induced by Serotype A Pasteurellamultocida. Genes (Basel) 2022; 13:genes13091586. [PMID: 36140754 PMCID: PMC9498900 DOI: 10.3390/genes13091586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Pasteurella multocida (P. multocida) is an opportunistic pathogen that is common in livestock and poultry and leads to massive economic losses in the animal husbandry sector. In this study, we challenged mice with P. multocida strain HN02 by intraperitoneal injection and collected spleens to measure bacterial loads. We also performed histopathological analysis by hematoxylin and eosin (H&E) staining. Then we used RNA-sequencing (RNA-seq) to detect the mRNA expression levels in the mouse spleen and quantitative real-time PCR (qRT-PCR) to verify the sequencing data. Finally, we examined the effect of HN02 on anti-inflammatory cytokine interleukin-10 (IL-10) protein expression in the spleen through immunohistochemical analysis. The results showed that compared to those in the control group, the mouse spleens in the challenge group had lesions, and the average bacteria loads was (3.07 ± 1.09) × 106 CFU (colony-forming unit)/g. The RNA-seq results determined 3653 differentially expressed genes (DEGs), and the qRT-PCR analysis revealed immune-related genes consistent with the expression trend in the sequencing data. The number and area of IL-10 positive cells substantially increased to resist inflammation in the challenge group. In conclusion, we analyzed the spleens of mice infected with P. multocida from multiple perspectives, and our findings lay a foundation for subsequent studies on the mechanism of pathogen-host interactions.
Collapse
|
12
|
Aziz F, Li X, Chakraborty A, Zheng Y, Xin M, Liu K, Dong Z. Ubiquitination of ADRα1d/SerpinA1 complex stimulates hypoxia to induce gastric tumorigenesis with a combination of Helicobacter pylori and chronic stress through IL-1α. Gastric Cancer 2022; 25:726-740. [PMID: 35532840 DOI: 10.1007/s10120-022-01297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) has been recognized as the class I carcinogen of gastric cancer and several studies have demonstrated that chronic stress may accelerate gastric cancer progression. However, the evidence is not sufficient. METHODS Here, we developed a mouse model that combined H. pylori infection with chronic stress. Gastric inflammation promotes gastric tumor development progression. To evaluate the number of pro-inflammatory cells through observing the numbers of activated macrophages and neutrophils in mice gastric tumors compared with untreated mice or only treated with one factor. ADRα1d /SerpinA1 expression and localization were assessed under stress conditions and H. pylori infection, and evaluated by analyzing IL-1α, CD8, platelet, and RBC status using α- or β- blockers against gastritis to prevent gastric cancer. RESULTS Further mechanism study showed that stress hormones increase the number of CD8+ lymphocytes by activating ADRβ2 receptors, leading to IL-1α secretion and tumorigenicity. Gastric carcinogenesis also involves gastric muscle contraction mediated through ADRα1d/Serpina1 interaction. Specifically, we showed that the ADRα1d/SerpinA1 complex increases glucose uptake and the development of hypoxia conditions. These responses promote platelet aggregation and muscle contraction. In turn, gastric cancer cells increase lactate production and promote gastric cell proliferation through Muc-13 and IL-1α stimulation. CONCLUSION H. pylori infection in combination with chronic stress can lead to gastric cancer, and the synergistic effects of cytokine production (i.e. IL-1α), T lymphocyte dysfunction contributes to gastric carcinogenesis which will offer treatment opportunities for stress-associated gastric cancer and provide new strategies for the prevention and treatment of gastric cancer in clinics.
Collapse
Affiliation(s)
- Faisal Aziz
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, People's Republic of China.,The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiang Li
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, People's Republic of China.,Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | | | - Yaqiu Zheng
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, People's Republic of China
| | - Mingxia Xin
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, People's Republic of China
| | - Kangdong Liu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, People's Republic of China.,Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Zigang Dong
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, People's Republic of China. .,Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
13
|
Rehman AU, Olsson PO, Akhtar A, Padhiar AA, Liu H, Dai Y, Gong Y, Zhou Y, Khan N, Yang H, Tang L. Systematic molecular analysis of the human secretome and membrane proteome in gastrointestinal adenocarcinomas. J Cell Mol Med 2022; 26:3329-3342. [PMID: 35488454 PMCID: PMC9189341 DOI: 10.1111/jcmm.17338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/12/2022] [Accepted: 04/09/2022] [Indexed: 11/27/2022] Open
Abstract
The human secretome and membrane proteome are a large source of cancer biomarkers. Membrane‐bound and secreted proteins are promising targets for many clinically approved drugs, including for the treatment of tumours. Here, we report a deep systematic analysis of 957 adenocarcinomas of the oesophagus, stomach, colon and rectum to examine the cancer‐associated human secretome and membrane proteome of gastrointestinal tract adenocarcinomas (GIACs). Transcriptomic data from these GIACs were applied to an innovative majority decision‐based algorithm. We quantified significantly expressed protein‐coding genes. Interestingly, we found a consistent pattern in a small group of genes found to be overexpressed in GIACs, which were associated with a cytokine–cytokine interaction pathway (CCRI) in all four cancer subtypes. These CCRI associated genes, which spanned both one secretory and one membrane isoform were further analysed, revealing a putative biomarker, interleukin‐1 receptor accessory protein (IL1RAP), which indicated a poor overall survival, a positive correlation with cancer stemness and a negative correlation with several kinds of T cells. These results were further validated in vitro through the knockdown of IL1RAP in two human gastric carcinoma cell lines, which resulted in a reduced indication of cellular proliferation, migration and markers of invasiveness. Following IL1RAP silencing, RNA seq results showed a consistent pattern of inhibition related to CCRI, proliferation pathways and low infiltration of regulatory T cells (Tregs) and CD8 naive cells. The significance of the human secretome and membrane proteome is elucidated by these findings, which indicate IL1RAP as a potential candidate biomarker for cytokine‐mediated cancer immunotherapy in gastric carcinoma.
Collapse
Affiliation(s)
- Adeel Ur Rehman
- Department of General Surgery, Changzhou No. 2 People's Hospital affiliated with Nanjing Medical University, Changzhou, China
| | - Per Olof Olsson
- UAE Biotech Research Center, Abu Dhabi, United Arab Emirates
| | | | - Arshad Ahmed Padhiar
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Hanyang Liu
- Charité-University Medical Center, Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molecular Cancer Research Center, Berlin, Germany
| | - Yi Dai
- Department of General Surgery, Changzhou No. 2 People's Hospital affiliated with Nanjing Medical University, Changzhou, China
| | - Yu Gong
- Department of General Surgery, Changzhou No. 2 People's Hospital affiliated with Nanjing Medical University, Changzhou, China
| | - Yan Zhou
- Department of General Surgery, Changzhou No. 2 People's Hospital affiliated with Nanjing Medical University, Changzhou, China
| | - Naveed Khan
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Biological Sciences, University of Chinese Academy of Science, Chinese Academy of Science, Shanghai, China
| | - Haojun Yang
- Department of General Surgery, Changzhou No. 2 People's Hospital affiliated with Nanjing Medical University, Changzhou, China
| | - Liming Tang
- Department of General Surgery, Changzhou No. 2 People's Hospital affiliated with Nanjing Medical University, Changzhou, China
| |
Collapse
|
14
|
Factors Affecting the Intraluminal Therapy for Helicobacter pylori Infection. Microorganisms 2022; 10:microorganisms10020415. [PMID: 35208870 PMCID: PMC8876938 DOI: 10.3390/microorganisms10020415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) can be eradicated immediately while conducting an endoscopic examination. The eradication rate of intraluminal therapy for H. pylori infection (ILTHPI) is 53.7% (51/95) via local application of single-dose medicament containing amoxicillin, metronidazole, and clarithromycin. We aimed to evaluate factors affecting ILTHPI and to assess the efficacy among single antibiotics, and compared our results with combined antibiotics. We enrolled H. pylori-infected treatment-naïve symptomatic patients; 95 completed triple-antibiotic ILTHPI were evaluated for risk factors, along with 60 completed mono-antibiotic ILTHPI containing amoxicillin, clarithromycin, or metronidazole in each of the 20 patients. Univariate analysis revealed the significant influence of BMI (OR: 1.15; 95% CI: 1.03–1.27, p = 0.011) and gastric juice pH (OR: 1.35; 95% CI: 1.16–1.58, p = 0.0001). Logistic regression analysis also showed significant influence of gastric juice pH (OR: 1.30; 95% CI: 1.10–1.54, p = 0.002). The eradication rate of mono-antibiotic ILTHPI is significantly lower than triple-antibiotic ILTHPI (11.7% vs. 53.7%; p < 0.0001; α = 0.05, power = 1.0). The efficacy was 20% (4/20) for metronidazole, 10% (2/20) for amoxicillin, and 5% (1/20) for clarithromycin. In conclusion, the level of gastric juice pH is a crucial factor affecting the ILTHPI. The detection of gastric juice pH and selection of optimal intraluminal medicaments are important. Further studies with combined antibiotics for ILTHPI, perhaps metronidazole-containing medicaments, are recommended.
Collapse
|
15
|
Relevance of miR-223 as Potential Diagnostic and Prognostic Markers in Cancer. BIOLOGY 2022; 11:biology11020249. [PMID: 35205115 PMCID: PMC8869096 DOI: 10.3390/biology11020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
In 1993, the discovery of microRNAs in Caenorhabditis elegans (C. elegans) altered the paradigmatic view of RNA biology and post-transcriptional gene regulation. Further study revealed the role of microRNAs in disease development and progression. In particular, this review highlights microRNA-223 (miR-223 or miRNA-223) expression in malignant neoplastic disorders. miR-223 expression controls aspects of hematopoiesis and apoptosis, and cell proliferation, migration, and invasion. miR-223 regulates a number of gene targets, including cytoplasmic activation/proliferation-associated protein-1 (Caprin-1), insulin-like growth factor-1 receptor (IGF-1R), and other cell proliferation- and cell cycle-associated genes. Several studies have proposed miR-223 as a novel biomarker for early cancer diagnosis. Here, we emphasize miR-223′s role in the development and progression of cancer.
Collapse
|