1
|
Izadfar F, Belyani S, Pormohammadi M, Alizadeh S, Hashempor M, Emadi E, Sangsefidi ZS, Jalilvand MR, Abdollahi S, Toupchian O. The effects of grapes and their products on immune system: a review. Immunol Med 2023; 46:158-162. [PMID: 37158605 DOI: 10.1080/25785826.2023.2207896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Immune system plays a significant role in preventing and controlling diseases. Some studies reported the beneficial effects of grapes and their products on immunity. However, their results are controversial. This review aimed to discuss the effects of grapes and their products on immune system and their mechanisms of action. Although various in-vio and in-vitro studies and some human studies suggested that grapes and their products may help to improve the immune system's function, clinical trials in this area are limited and inconsistent.In conclusions, although, consumption of grapes and their products may help to having a healthy immune syste, further studies particularly human studies are required to clarify the precise effects of them and their mechanisms regarding immune system.
Collapse
Affiliation(s)
- Fatemeh Izadfar
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Saba Belyani
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Masomeh Pormohammadi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Simin Alizadeh
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Mehrara Hashempor
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Elaheh Emadi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health ServicesYazd, Iran
| | - Zohreh Sadat Sangsefidi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Mohammad Reza Jalilvand
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Omid Toupchian
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| |
Collapse
|
2
|
Chen H, Wang W, Yu S, Wang H, Tian Z, Zhu S. Procyanidins and Their Therapeutic Potential against Oral Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092932. [PMID: 35566283 PMCID: PMC9104295 DOI: 10.3390/molecules27092932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
Procyanidins, as a kind of dietary flavonoid, have excellent pharmacological properties, such as antioxidant, antibacterial, anti-inflammatory and anti-tumor properties, and so they can be used to treat various diseases, including Alzheimer’s disease, diabetes, rheumatoid arthritis, tumors, and obesity. Given the low bioavailability of procyanidins, great efforts have been made in drug delivery systems to address their limited use. Nowadays, the heavy burden of oral diseases such as dental caries, periodontitis, endodontic infections, etc., and their consequences on the patients’ quality of life indicate a strong need for developing effective therapies. Recent years, plenty of efforts are being made to develop more effective treatments. Therefore, this review summarized the latest researches on versatile effects and enhanced bioavailability of procyanidins resulting from innovative drug delivery systems, particularly focused on its potential against oral diseases.
Collapse
Affiliation(s)
- Huan Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
| | - Wanyu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Shiyang Yu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
| | - Huimin Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
| | - Zilu Tian
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
- Correspondence: ; Tel.: +86-135-7878-5725
| |
Collapse
|
3
|
Henard C, Saraiva MR, Ściślak ME, Ruba T, McLaggan D, Noguera P, van West P. Can Ulcerative Dermal Necrosis (UDN) in Atlantic salmon be attributed to ultraviolet radiation and secondary Saprolegnia parasitica infections? FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Maheshwari S, Kumar V, Bhadauria G, Mishra A. Immunomodulatory potential of phytochemicals and other bioactive compounds of fruits: A review. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shruti Maheshwari
- Department of Food Technology Harcourt Butler Technical University Kanpur Uttar Pradesh 208002 India
| | - Vivek Kumar
- Department of Food Technology Harcourt Butler Technical University Kanpur Uttar Pradesh 208002 India
| | - Geeta Bhadauria
- Kendriya Vidyalaya Kanpur Cantt Kanpur Uttar Pradesh 208004 India
| | - Abhinandan Mishra
- Department of Food Technology Harcourt Butler Technical University Kanpur Uttar Pradesh 208002 India
| |
Collapse
|
5
|
Pihl C, Togsverd-Bo K, Andersen F, Haedersdal M, Bjerring P, Lerche CM. Keratinocyte Carcinoma and Photoprevention: The Protective Actions of Repurposed Pharmaceuticals, Phytochemicals and Vitamins. Cancers (Basel) 2021; 13:cancers13153684. [PMID: 34359586 PMCID: PMC8345172 DOI: 10.3390/cancers13153684] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Keratinocyte carcinoma is the most common type of cancer. Sun exposure and ultraviolet radiation are significant contributors to the development of carcinogenesis, mediated by DNA damage, increased oxidative stress, inflammation, immunosuppression and dysregulated signal transduction. Photoprevention involves using different compounds to delay or prevent ultraviolet radiation-induced skin cancer. In this review, we look at new avenues for systemic photoprevention that are based on pharmaceuticals, plant-derived phytochemicals and vitamins. We also investigate the mechanisms underlying these strategies for preventing the onset of carcinogenesis. Abstract Ultraviolet radiation (UVR) arising from sun exposure represents a major risk factor in the development of keratinocyte carcinomas (KCs). UVR exposure induces dysregulated signal transduction, oxidative stress, inflammation, immunosuppression and DNA damage, all of which promote the induction and development of photocarcinogenesis. Because the incidence of KCs is increasing, better prevention strategies are necessary. In the concept of photoprevention, protective compounds are administered either topically or systemically to prevent the effects of UVR and the development of skin cancer. In this review, we provide descriptions of the pathways underlying photocarcinogenesis and an overview of selected photoprotective compounds, such as repurposed pharmaceuticals, plant-derived phytochemicals and vitamins. We discuss the protective potential of these compounds and their effects in pre-clinical and human trials, summarising the mechanisms of action involved in preventing photocarcinogenesis.
Collapse
Affiliation(s)
- Celina Pihl
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence:
| | - Katrine Togsverd-Bo
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Flemming Andersen
- Department of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark; (F.A.); (P.B.)
- Private Hospital Molholm, 7100 Vejle, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Peter Bjerring
- Department of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark; (F.A.); (P.B.)
| | - Catharina Margrethe Lerche
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Taranu I, Hermenean A, Bulgaru C, Pistol GC, Ciceu A, Grosu IA, Marin DE. Diet containing grape seed meal by-product counteracts AFB1 toxicity in liver of pig after weaning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110899. [PMID: 32678747 DOI: 10.1016/j.ecoenv.2020.110899] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Liver is the earliest target for AFB1 toxicity in both human and animals. In the last decade, plant derived by-products have been used in animal feed to reduce AFB1 induced toxicity. In the present study we investigated whether the presence of 8% grape seed meal by-product is able to counteract the hepatotoxic effects produced by AFB1 in liver of pig after weaning exposed to the toxin through the contaminated feed for 28 days. Twenty four weaned cross-bred TOPIGS-40 piglets with an average body weight of 9.13±0.03 were allocated to the following experimentally treatments: control diet without AFB1 (normal compound feed for weaned pigs); contaminated diet with 320 mg kg-1 AFB1; GSM diet (compound feed plus 8% grape seed meal) and AFB1+GSM diet (320 mg kg-1 AFB1 contaminated feed plus 8% grape seed meal). Pigs fed AFB1 diet had altered performance, body weight decreasing with 25.1% (b.w.: 17.17 kg for AFB1 vs 22.92 kg for control). Exposure of piglets to AFB1 contaminated diet caused liver oxidative stress as well as liver histological damage, manly characterized by inflammatory infiltrate, fibrosis and parenchyma cells vacuolation when compared to control and GSM meal group. 94.12% of the total analysed genes (34) related to inflammation and immune response was up-regulated. The addition of GSM into the AFB1 diet diminished the gene overexpression and ameliorate histological liver injuries and oxidative stress. The protective effect of GSM diet in diminishing the AFB1 harmful effect was mediated through the decreasing of gene and protein expression of MAPKs and NF-κB signalling overexpressed by AFB1 diet. The inclusion of grape seed by-products in the diet of pigs after weaning might be used as a novel nutritional intervention to reduce aflatoxin toxicity.
Collapse
Affiliation(s)
- Ionelia Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania.
| | - Anca Hermenean
- Aurel Ardelean Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Cristina Bulgaru
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Gina Cecilia Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Alina Ciceu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Iulian Alexandru Grosu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| |
Collapse
|
7
|
The Evaluation of Proanthocyanidins/Chitosan/Lecithin Microspheres as Sustained Drug Delivery System. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9073420. [PMID: 30140704 PMCID: PMC6081580 DOI: 10.1155/2018/9073420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/03/2018] [Accepted: 06/12/2018] [Indexed: 12/23/2022]
Abstract
Proanthocyanidin (PC) has attracted wide attention on cosmetics and pharmaceutical due to its antioxidant, anticancer, antimicrobial, antiangiogenic, and anti-inflammatory activities. However, PC applications are limited because of its sensitivity to thermal treatment, light, and oxidation and the poor absorption in the gastrointestinal tract. Thus, a novel dosage form of PC needs to be designed to improve its stability and bioavailability for drug delivery. The objective of this study is to fabricate proanthocyanidins/chitosan/lecithin (PC/CTS/LEC) microspheres and investigate various characteristics. In the current study, PC/CTS/LEC microspheres were prepared by spray-drying technology. The yield (61.68%), encapsulation efficiency (68.19%), and drug loading capacity (17.05%) were found in the results. The scanning electron microscope demonstrated that the microspheres were spherical in shape with wrinkled surfaces. DSC study displayed that the microspheres stability was greatly improved when comparing with bare PC. The in vitro release study showed that the 76.92% of PC was released from microspheres within 48 h. The moisture contents of microspheres ranged from 8% to 13%. The swelling rate and tapped density of microspheres were elevated with increasing the concentration of chitosan in the formulations. The moisture uptake of microspheres was saturated at 40°C/RH75% within 12 h. Our results indicated that the stability of PC/CTS/LEC microspheres was enhanced, and it is a promising carrier for sustained drug delivery system.
Collapse
|
8
|
Dietary grape seed proanthocyanidins inactivate regulatory T cells by promoting NER-dependent DNA repair in dendritic cells in UVB-exposed skin. Oncotarget 2018; 8:49625-49636. [PMID: 28548949 PMCID: PMC5564793 DOI: 10.18632/oncotarget.17867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/29/2017] [Indexed: 11/25/2022] Open
Abstract
Ultraviolet B (UVB) radiation induces regulatory T cells (Treg cells) and depletion of these Treg cells alleviates immunosuppression and inhibits photocarcinogenesis in mice. Here, we determined the effects of dietary grape seed proanthocyanidins (GSPs) on the development and activity of UVB-induced Treg cells. C3H/HeN mice fed a GSPs (0.5%, w/w)-supplemented or control diet were exposed to UVB (150 mJ/cm2) radiation, sensitized to 2,4-dinitrofluorobenzene (DNFB) and sacrificed 5 days later. FACS analysis indicated that dietary GSPs decrease the numbers of UVB-induced Treg cells. ELISA analysis of cultured sorted Treg cells indicated that secretion of immunosuppressive cytokines (interleukin-10, TGF-β) was significantly lower in Treg cells from GSPs-fed mice. Dietary GSPs also enhanced the ability of Treg cells from wild-type mice to stimulate production of IFNγ by T cells. These effects of dietary GSPs on Treg cell function were not found in XPA-deficient mice, which are incapable of repairing UVB-induced DNA damage. Adoptive transfer experiments revealed that naïve recipients that received Treg cells from GSPs-fed UVB-irradiated wild-type donors that had been sensitized to DNFB exhibited a significantly higher contact hypersensitivity (CHS) response to DNFB than mice that received Treg cells from UVB-exposed mice fed the control diet. There was no significant difference in the CHS response between mice that received Treg cells from UVB-irradiated XPA-deficient donors fed GSPs or the control diet. Furthermore, dietary GSPs significantly inhibited UVB-induced skin tumor development in wild-type mice but not in XPA-deficient mice. These results suggest that GSPs inactivate Treg cells by promoting DNA repair in dendritic cells in UVB-exposed skin.
Collapse
|
9
|
Flavan-3-ols consumption and cancer risk: A meta-analysis of epidemiologic studies. Oncotarget 2018; 7:73573-73592. [PMID: 27634884 PMCID: PMC5342000 DOI: 10.18632/oncotarget.12017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023] Open
Abstract
Although numerous in vitro studies and animal model data have suggested that flavan-3-ols, the most common subclass of flavonoids in the diet, may exert protective effects against cancer, epidemiologic studies have reported inconclusive results for the association between flavan-3-ols intake and cancer risk. Therefore, we conducted this meta-analysis of epidemiologic studies to investigate the preventive effects of flavan-3-ols on various types of cancers. A total of 43 epidemiologic studies, consisting of 25 case-control and 18 prospective cohort studies, were included. A significant inverse association was shown between flavan-3-ols intake and the risk of overall cancer (relative risk (RR) 0.935, 95%CI: 0.891-0.981). When cancer types were separately analyzed, a statistically significant protective effect of flavan-3-ols consumption was observed in rectal cancer (RR 0.838, 95%CI: 0.733-0.958), oropharyngeal and laryngeal cancer (RR 0.759, 95%CI: 0.581-0.993), breast (RR 0.885, 95%CI: 0.790-0.991) in case-control studies and stomach cancer in women (RR 0.633, 95%CI: 0.468-0.858). Our analysis indicates the potential benefits of flavan-3-ols in cancer prevention.
Collapse
|
10
|
Dietary proanthocyanidins prevent ultraviolet radiation-induced non-melanoma skin cancer through enhanced repair of damaged DNA-dependent activation of immune sensitivity. Semin Cancer Biol 2017; 46:138-145. [PMID: 28412456 DOI: 10.1016/j.semcancer.2017.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/22/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
Abstract
Numerous plant products have been used to prevent and manage a wide variety of diseases for centuries. These products are now considered as promising options for the development of more effective and less toxic alternatives to the systems of medicine developed primarily in developed countries in the modern era. Grape seed proanthocyanidins (GSPs) are of great interest due to their anti-carcinogenic effects that have been demonstrated using various tumor models including ultraviolet (UV) radiation-induced non-melanoma skin cancer. In a pre-clinical mouse model supplementation of a control diet (AIN76A) with GSPs at concentrations of 0.2% and 0.5% (w/w) significantly inhibits the growth and multiplicity of UVB radiation-induced skin tumors. In this review, we summarize the evidence that this inhibition of UVB-induced skin tumor development by dietary GSPs is mediated by a multiplicity of coordinated effects including: (i) Promotion of the repair of damaged DNA by nuclear excision repair mechanisms, and (ii) DNA repair-dependent stimulation of the immune system following the functional activation of dendritic cells and effector T cells. Dietary GSPs hold promise for the development of an effective alternative strategy for the prevention of excessive solar UVB radiation exposure-induced skin diseases including the risk of non-melanoma skin cancer in humans.
Collapse
|
11
|
Katiyar SK. Dietary proanthocyanidins inhibit UV radiation-induced skin tumor development through functional activation of the immune system. Mol Nutr Food Res 2016; 60:1374-82. [PMID: 26991736 DOI: 10.1002/mnfr.201501026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/01/2016] [Accepted: 03/02/2016] [Indexed: 11/10/2022]
Abstract
The incidence of skin cancer is equivalent to the incidence of malignancies in all other organs combined. The main risk factor for this disease is overexposure of the skin to solar ultraviolet (UV) radiation. UV irradiation induces inflammation, oxidative stress, DNA damage, and suppression of the immune system in the skin, which together contribute to carcinogenesis. The use of dietary phytochemicals shows great promise as a complementary and alternative strategy for skin cancer prevention. Grape seed proanthocyanidins (GSPs) have been tested extensively for their anti-skin cancer effect using in vivo animal models. Supplementation of an AIN76A control diet with GSPs (0.2 and 0.5%, w/w) significantly inhibits UV radiation-induced skin tumor development as well as malignant transformation of papillomas to carcinoma in mice. The inhibition of UVB-induced skin tumor development by GSPs is mediated through interrelated mechanisms of action including: (i) inhibition of inflammation, (ii) rapid repair of damaged DNA, and (iii) stimulation of immune system. Additionally, the chemopreventive effects of GSPs involve DNA repair-dependent functional activation of antigen-presenting cells and stimulation of CD8(+) effector T cells. These effects of GSPs could be useful in attenuation of the adverse effects of UV radiation and may have health benefits in humans.
Collapse
Affiliation(s)
- Santosh K Katiyar
- Departments of Dermatology and Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center and Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| |
Collapse
|
12
|
Katiyar SK. Proanthocyanidins from grape seeds inhibit UV-radiation-induced immune suppression in mice: detection and analysis of molecular and cellular targets. Photochem Photobiol 2014; 91:156-62. [PMID: 25112437 DOI: 10.1111/php.12330] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/06/2014] [Indexed: 01/09/2023]
Abstract
Ultraviolet (UV)-radiation-induced immunosuppression has been linked with the risk of skin carcinogenesis. Approximately, 2 million new cases of skin cancers, including melanoma and nonmelanoma, diagnosed each year in the USA and therefore have a tremendous bad impact on public health. Dietary phytochemicals are promising options for the development of effective strategy for the prevention of photodamaging effects of UV radiation including the risk of skin cancer. Grape seed proanthocyanidins (GSPs) are such phytochemicals. Dietary administration of GSPs with AIN76A control diet significantly inhibits UV-induced skin tumor development as well as suppression of immune system. UV-induced suppression of immune system is commonly determined using contact hypersensitivity (CHS) model which is a prototype of T-cell-mediated immune response. We present evidence that inhibition of UV-induced suppression of immune system by GSPs is mediated through: (i) the alterations in immunoregulatory cytokines, interleukin (IL)-10 and IL-12, (ii) DNA repair, (iii) stimulation of effector T cells and (iv) DNA repair-dependent functional activation of dendritic cells in mouse model. These information have important implications for the use of GSPs as a dietary supplement in chemoprevention of UV-induced immunosuppression as well as photocarcinogenesis.
Collapse
Affiliation(s)
- Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL; Birmingham Veterans Affairs Medical Center, Birmingham, AL
| |
Collapse
|
13
|
Abstract
The discipline that investigates the biologic effects of ultraviolet radiation on the immune system is called photoimmunology. Photoimmunology evolved from an interest in understanding the role of the immune system in skin cancer development and why immunosuppressed organ transplant recipients are at a greatly increased risk for cutaneous neoplasms. In addition to contributing to an understanding of the pathogenesis of nonmelanoma skin cancer, the knowledge acquired about the immunologic effects of ultraviolet radiation exposure has provided an understanding of its role in the pathogenesis of other photodermatologic diseases.
Collapse
Affiliation(s)
- Craig A Elmets
- Department of Dermatology, UAB Skin Diseases Research Center, UAB Comprehensive Cancer Center, Birmingham VA Medical Center, University of Alabama at Birmingham, EFH 414, 1720 2nd Avenue South, Birmingham, AL 35294-0009, USA.
| | - Cather M Cala
- Department of Dermatology, University of Alabama at Birmingham, EFH 414, 1720 2nd Avenue South, Birmingham, AL 35294-0009, USA
| | - Hui Xu
- Department of Dermatology, UAB Skin Diseases Research Center, UAB Comprehensive Cancer Center, Birmingham VA Medical Center, University of Alabama at Birmingham, EFH 414, 1720 2nd Avenue South, Birmingham, AL 35294-0009, USA
| |
Collapse
|
14
|
|
15
|
Abstract
A wide variety of phytochemicals, mostly flavonoids or polyphenolics, have been shown to possess anticarcinogenic activities. Among these are the grape seed proanthocyanidins (GSPs), which are the active ingredients of grape seed extract (GSE). Substantial in vitro and preclinical in vivo studies have shown the chemopreventive efficacy of GSPs against various forms of cancers in different tumor models. In this issue of the journal, Derry and colleagues show that administration of GSE in the diet reduces azoxymethane-induced colon carcinogenesis in an A/J mouse model. The results of this innovative and comprehensive study indicate that inhibition of azoxymethane-induced colon cancer by dietary GSE is mediated through the induction of apoptosis that is associated with alterations in microRNA (miRNA) and cytokine expression profiles as well as β-catenin signaling. Notably, the demonstration that miRNA expression is affected by dietary GSE suggests a novel underlying mechanism for the chemopreventive action of GSE in colon cancer and, potentially, other cancers.
Collapse
Affiliation(s)
- Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | |
Collapse
|
16
|
Silymarin inhibits ultraviolet radiation-induced immune suppression through DNA repair-dependent activation of dendritic cells and stimulation of effector T cells. Biochem Pharmacol 2013; 85:1066-76. [PMID: 23395695 DOI: 10.1016/j.bcp.2013.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 11/21/2022]
Abstract
Silymarin inhibits UVB-induced immunosuppression in mouse skin. To identify the molecular mechanisms underlying this effect, we used an adoptive transfer approach in which dendritic cells (DCs) from the draining lymph nodes of donor mice that had been UVB-exposed and sensitized to 2,4,-dinitrofluorobenzene (DNFB) were transferred into naïve recipient mice. The contact hypersensitivity (CHS) response of the recipient mice to DNFB was then measured. When DCs were obtained from UVB-exposed donor mice that were not treated with silymarin, the CHS response was suppressed confirming the role of DCs in the UVB-induced immunosuppression. Silymarin treatment of UVB-exposed donor mice relieved this suppression of the CHS response in the recipients. Silymarin treatment was associated with rapid repair of UVB-induced cyclobutane pyrimidine dimers (CPDs) in DCs and silymarin treatment did not prevent UV-induced immunosuppression in XPA-deficient mice which are unable to repair UV-induced DNA damage. The CHS response in mice receiving DCs from silymarin-treated UV-exposed donor mice also was associated with enhanced secretion of Th1-type cytokines and stimulation of T cells. Adoptive transfer of T cells revealed that transfer of either CD8(+) or CD4(+) cells from silymarin-treated, UVB-exposed donors resulted in enhancement of the CHS response. Cell culture study showed enhanced secretion of IL-2 and IFNγ by CD8(+) T cells, and reduced secretion of Th2 cytokines by CD4(+) T cells, obtained from silymarin-treated UVB-exposed mice. These data suggest that DNA repair-dependent functional activation of DCs, a reduction in CD4(+) regulatory T-cell activity, and stimulation of CD8(+) effector T cells contribute to silymarin-mediated inhibition of UVB-induced immunosuppression.
Collapse
|
17
|
Vaid M, Singh T, Prasad R, Elmets CA, Xu H, Katiyar SK. Bioactive grape proanthocyanidins enhance immune reactivity in UV-irradiated skin through functional activation of dendritic cells in mice. Cancer Prev Res (Phila) 2013; 6:242-52. [PMID: 23321928 DOI: 10.1158/1940-6207.capr-12-0320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ultraviolet (UV) radiation-induced immunosuppression has been implicated in skin carcinogenesis. Grape seed proanthocyanidins (GSPs) have anti-skin carcinogenic effects in mice and GSPs-fed mice exhibit a reduction in UV-induced suppression of allergic contact hypersensitivity (CHS), a prototypic T-cell-mediated response. Here, we report that dietary GSPs did not inhibit UVB-induced suppression of CHS in xeroderma pigmentosum complementation group A (XPA)-deficient mice, which lack nucleotide excision repair mechanisms. GSPs enhanced repair of UVB-induced DNA damage (cyclobutane pyrimidine dimers) in wild-type, but not XPA-deficient, dendritic cells (DC). Co-culture of CD4(+) T cells with DCs from UVB-irradiated wild-type mice resulted in suppression of T-cell proliferation and secretion of T-helper (TH) 1-type cytokines that was ameliorated when the DCs were obtained from GSP-fed mice, whereas DCs obtained from GSP-fed XPA-KO mice failed to restore T-cell proliferation. In adoptive transfer experiments, donor DCs were positively selected from the draining lymph nodes of UVB-exposed donor mice that were sensitized to 2,4,-dinitrofluorobenzene were transferred into naïve recipient mice and the CHS response assessed. Naïve recipients that received DCs from UVB-exposed wild-type donors that had been fed GSPs exhibited a full CHS response, whereas no significant CHS was observed in mice that received DCs from XPA-KO mice fed GSPs. These results suggest that GSPs prevent UVB-induced immunosuppression through DNA repair-dependent functional activation of dendritic cells in mice. Cancer Prev Res; 6(3); 242-52. ©2013 AACR.
Collapse
Affiliation(s)
- Mudit Vaid
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall 557, Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Yuan XY, Liu W, Hao JC, Gu WJ, Zhao YS. Topical Grape Seed Proanthocyandin Extract Reduces Sunburn Cells and Mutant p53 Positive Epidermal Cell Formation, and Prevents Depletion of Langerhans Cells in an Acute Sunburn Model. Photomed Laser Surg 2012; 30:20-5. [PMID: 22103910 DOI: 10.1089/pho.2011.3043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Affiliation(s)
- Xiao-Ying Yuan
- Department of Dermatology, the General Hospital of the Air Force, Beijing, China
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, China
| | - Wei Liu
- Department of Dermatology, the General Hospital of the Air Force, Beijing, China
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, China
| | - Jian-Chun Hao
- Department of Dermatology, the General Hospital of the Air Force, Beijing, China
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, China
| | - Wei-Jie Gu
- Department of Dermatology, the General Hospital of the Air Force, Beijing, China
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, China
| | - Yan-Shuang Zhao
- Department of Dermatology, the General Hospital of the Air Force, Beijing, China
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Afaq F, Katiyar SK. Polyphenols: skin photoprotection and inhibition of photocarcinogenesis. Mini Rev Med Chem 2011; 11:1200-15. [PMID: 22070679 PMCID: PMC3288507 DOI: 10.2174/13895575111091200] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/05/2011] [Accepted: 08/21/2011] [Indexed: 01/02/2023]
Abstract
Polyphenols are a large family of naturally occurring plant products and are widely distributed in plant foods, such as, fruits, vegetables, nuts, flowers, bark and seeds, etc. These polyphenols contribute to the beneficial health effects of dietary products. Clinical and epidemiological studies suggest that exposure of the skin to environmental factors/pollutants, such as solar ultraviolet (UV) radiation induce harmful effects and leads to various skin diseases including the risk of melanoma and non-melanoma skin cancers. The incidence of non-melanoma skin cancer, comprising of squamous cell carcinoma and basal cell carcinoma, is a significant public health concern world-wide. Exposure of the skin to solar UV radiation results in inflammation, oxidative stress, DNA damage, dysregulation of cellular signaling pathways and immunosuppression thereby resulting in skin cancer. The regular intake of natural plant products, especially polyphenols, which are widely present in fruits, vegetables, dry legumes and beverages have gained considerable attention as protective agents against the adverse effects of UV radiation. In this article, we first discussed the impact of polyphenols on human health based on their structure-activity relationship and bioavailability. We then discussed in detail the photoprotective effects of some selected polyphenols on UV-induced skin inflammation, proliferation, immunosuppression, DNA damage and dysregulation of important cellular signaling pathways and their implications in skin cancer management. The selected polyphenols include: green tea polyphenols, pomegranate fruit extract, grape seed proanthocyanidins, resveratrol, silymarin, genistein and delphinidin. The new information on the mechanisms of action of these polyphenols supports their potential use in skin photoprotection and prevention of photocarcinogenesis in humans.
Collapse
Affiliation(s)
- Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, 35294, AL, USA
| | - Santosh K. Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, 35294, AL, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
20
|
Afaq F. Natural agents: cellular and molecular mechanisms of photoprotection. Arch Biochem Biophys 2011; 508:144-51. [PMID: 21147060 PMCID: PMC3060948 DOI: 10.1016/j.abb.2010.12.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 12/21/2022]
Abstract
The skin is the largest organ of the body that produces a flexible and self-repairing barrier and protects the body from most common potentially harmful physical, environmental, and biological insults. Solar ultraviolet (UV) radiation is one of the major environmental insults to the skin and causes multi-tiered cellular and molecular events eventually leading to skin cancer. The past decade has seen a surge in the incidence of skin cancer due to changes in life style patterns that have led to a significant increase in the amount of UV radiation that people receive. Reducing excessive exposure to UV radiation is desirable; nevertheless this approach is not easy to implement. Therefore, there is an urgent need to develop novel strategies to reduce the adverse biological effects of UV radiation on the skin. A wide variety of natural agents have been reported to possess substantial skin photoprotective effects. Numerous preclinical and clinical studies have elucidated that natural agents act by several cellular and molecular mechanisms to delay or prevent skin cancer. In this review article, we have summarized and discussed some of the selected natural agents for skin photoprotection.
Collapse
Affiliation(s)
- Farrukh Afaq
- Department of Dermatology, University of Alabama, Birmingham, AL 35294, USA.
| |
Collapse
|
21
|
Vaid M, Singh T, Li A, Katiyar N, Sharma S, Elmets CA, Xu H, Katiyar SK. Proanthocyanidins inhibit UV-induced immunosuppression through IL-12-dependent stimulation of CD8+ effector T cells and inactivation of CD4+ T cells. Cancer Prev Res (Phila) 2011; 4:238-47. [PMID: 21075976 PMCID: PMC3033965 DOI: 10.1158/1940-6207.capr-10-0224] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inhibition of UVB-induced immunosuppression by dietary grape seed proanthocyanidins (GSP) has been associated with the induction of interleukin (IL)-12 in mice, and we now confirm that GSPs do not inhibit UVB-induced immunosuppression in IL-12p40 knockout (IL-12 KO) mice and that treatment of these mice with recombinant IL-12 restores the inhibitory effect. To characterize the cell population responsible for the GSP-mediated inhibition of UVB-induced immunosuppression and the role of IL-12 in this process, we used an adoptive transfer approach. Splenocytes and draining lymph nodes were harvested from mice that had been administered dietary GSPs (0.5%-1.0%, w/w), exposed to UVB, and sensitized by the application of 2,4-dinitrofluorobenzene (DNFB) onto the UVB-exposed skin. CD8(+) and CD4(+) T cells were positively selected and transferred into naive mice that were subsequently challenged by application of DNFB on the ear skin. Naive recipients that received CD8(+) T cells from GSP-treated, UVB-irradiated donors exhibited full contact hypersensitivity (CHS) response. Naive mice that received CD4(+) suppressor T cells from GSP-treated, UVB-exposed mice could mount a CHS response after sensitization and subsequent challenge with DNFB. On culture, the CD8(+) T cells from GSP-treated, UVB-exposed mice secreted higher levels (5- to 8-fold) of Th1 cytokines than CD8(+) T cells from UVB-irradiated mice not treated with GSPs. CD4(+) T cells from GSP-treated, UVB-exposed mice secreted significantly lower levels (80%-100%) of Th2 cytokines than CD4(+) T cells from UVB-exposed mice not treated with GSPs. These data suggest that GSPs inhibit UVB-induced immunosuppression by stimulating CD8(+) effector T cells and diminishing regulatory CD4(+) T cells.
Collapse
Affiliation(s)
- Mudit Vaid
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Tripti Singh
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Anna Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Nandan Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Samriti Sharma
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
- Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL
- Birmingham Veteran Affairs Medical Center, Birmingham, AL, 35294
| | - Hui Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
- Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Santosh K. Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
- Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL
- Birmingham Veteran Affairs Medical Center, Birmingham, AL, 35294
| |
Collapse
|
22
|
Vaid M, Sharma SD, Katiyar SK. Proanthocyanidins inhibit photocarcinogenesis through enhancement of DNA repair and xeroderma pigmentosum group A-dependent mechanism. Cancer Prev Res (Phila) 2010; 3:1621-9. [PMID: 20947490 DOI: 10.1158/1940-6207.capr-10-0137] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dietary grape seed proanthocyanidins (GSP) inhibit photocarcinogenesis in mice; however, the molecular mechanisms underlying this effect have not been fully elucidated. As ultraviolet B (UVB)-induced DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) has been implicated in skin cancer risk, we studied whether dietary GSPs enhance repair of UVB-induced DNA damage and, if so, what is the potential mechanism? Supplementation of GSPs (0.5%, w/w) with AIN76A control diet significantly reduced the levels of CPD(+) cells in UVB-exposed mouse skin; however, GSPs did not significantly reduce UVB-induced CPD(+) cells in the skin of interleukin-12p40 (IL-12) knockout (KO) mice, suggesting that IL-12 is required for the repair of CPDs by GSPs. Using IL-12 KO mice and their wild-type counterparts and standard photocarcinogenesis protocol, we found that supplementation of control diet with GSPs (0.5%, w/w) significantly reduced UVB-induced skin tumor development in wild-type mice, which was associated with the elevated mRNA levels of nucleotide excision repair genes, such as XPA, XPC, DDB2, and RPA1; however, this effect of GSPs was less pronounced in IL-12 KO mice. Cytostaining analysis revealed that GSPs repaired UV-induced CPD(+) cells in xeroderma pigmentosum complementation group A (XPA)-proficient fibroblasts from a healthy individual but did not repair in XPA-deficient fibroblasts from XPA patients. Furthermore, GSPs enhance nuclear translocation of XPA and enhanced its interactions with other DNA repair protein ERCC1. Together, our findings reveal that prevention of photocarcinogenesis by GSPs is mediated through enhanced DNA repair in epidermal cells by IL-12- and XPA-dependent mechanisms.
Collapse
Affiliation(s)
- Mudit Vaid
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
23
|
Katiyar SK, Vaid M, van Steeg H, Meeran SM. Green tea polyphenols prevent UV-induced immunosuppression by rapid repair of DNA damage and enhancement of nucleotide excision repair genes. Cancer Prev Res (Phila) 2010; 3:179-89. [PMID: 20103727 DOI: 10.1158/1940-6207.capr-09-0044] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UV radiation-induced immunosuppression has been implicated in the development of skin cancers. Green tea polyphenols (GTP) in drinking water prevent photocarcinogenesis in the skin of mice. We studied whether GTPs in drinking water (0.1-0.5%, w/v) prevent UV-induced immunosuppression and (if so) potential mechanisms of this effect in mice. GTPs (0.2% and 0.5%, w/v) reduced UV-induced suppression of contact hypersensitivity (CHS) in response to a contact sensitizer in local (58-62% reductions; P < 0.001) and systemic (51-55% reductions; P < 0.005) models of CHS. Compared with untreated mice, GTP-treated mice (0.2%, w/v) had a reduced number of cyclobutane pyrimidine dimer-positive (CPD(+)) cells (59%; P < 0.001) in the skin, showing faster repair of UV-induced DNA damage, and had a reduced (2-fold) migration of CPD(+) cells from the skin to draining lymph nodes, which was associated with elevated levels of nucleotide excision repair (NER) genes. GTPs did not prevent UV-induced immunosuppression in NER-deficient mice but significantly prevented it in NER-proficient mice (P < 0.001); immunohistochemical analysis of CPD(+) cells indicated that GTPs reduced the numbers of UV-induced CPD(+) cells in NER-proficient mice (P < 0.001) but not in NER-deficient mice. Southwestern dot-blot analysis revealed that GTPs repaired UV-induced CPDs in xeroderma pigmentosum complementation group A (XPA)-proficient cells of a healthy person but did not in XPA-deficient cells obtained from XPA patients, indicating that a NER mechanism is involved in DNA repair. This study is the first to show a novel NER mechanism by which drinking GTPs prevents UV-induced immunosuppression and that inhibiting UV-induced immunosuppression may underlie the chemopreventive activity of GTPs against photocarcinogenesis.
Collapse
Affiliation(s)
- Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, 35294, USA.
| | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
All nutrients play a role in maintaining the immune system and providing substrate for the response. gammadelta T cells, on the other hand, seem to have a unique response to certain dietary bioactive components found in the plant family. Although the identification of those components is not well known yet, members of the proanthocyanidin family and the anthocyanin family of compounds are candidates. Because grapes and grape products contain both of these types of compounds, I hypothesized that grapes may help maintain or support the immune response, specifically the gammadelta T cell. Data from intact animal studies show that immune function is supported by grape products. In humans, relatively little research has been conducted using the food as an intervention; however, a study currently in progress showed that Concord grape juice supported circulating gammadelta T cells and maintained immune function, whereas participants receiving the placebo juice had changes associated with reduced immunity. After an overview of immunity, this paper will focus on reviewing the literature on grapes and other food products made from grapes and their potential for interaction with the gammadelta T cell in whole-body systems.
Collapse
Affiliation(s)
- Susan S Percival
- Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
26
|
Cho HS, Kwak DH, Choi IS, Park HK, Kang SJ, Yoo HS, Lee MS, Oh KW, Hong JT. Inhibitory effect of proanthocyanidin on ultraviolet B irradiation-induced melanogenesis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:1475-1483. [PMID: 20077221 DOI: 10.1080/15287390903213038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Repetitive exposure of the skin to ultraviolet (UV) radiation induces various adverse effects, including skin thickening, wrinkle formation, inflammation, and pigmentation. Various natural and synthetic compounds were studied to determine whether they might prevent UV induction of these adverse effects. In particular, naturally occurring antioxidants were used for regulating skin damage induced by UV radiation since several antioxidants were found to inhibit photoaging through prevention of collagen synthesis via inhibition of matrix metalloproteinases (MMP) and/or decrease of melanin synthesis. The L values in pigmented skin were lower at 4 wk (52.97 +/- 2.09) than at the start of this study (0 wk, 62.89 +/- 0.56) in the control. In the proanthocyanidin mixture group, the L value was increased (56.83 +/- 1.71) similar to the control (52.97 +/- 2.09). Proanthocyanidin also suppressed the expression levels of tyrosinase by 20-40%, and blocked the expression of MITF, TRP-1, and TRP-2, which are factors implicated in the control of melanogenesis. Taken together, these data indicate that proanthocyanidin may be useful to attenuate UVB-induced melanogenesis.
Collapse
Affiliation(s)
- Ho-Song Cho
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Katiyar SK. Grape seed proanthocyanidines and skin cancer prevention: inhibition of oxidative stress and protection of immune system. Mol Nutr Food Res 2008; 52 Suppl 1:S71-6. [PMID: 18384090 DOI: 10.1002/mnfr.200700198] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Overexposure of the skin to UV radiation has a variety of adverse effects on human health, including the development of skin cancers. There is a need to develop nutrition-based efficient chemopreventive strategies. The proanthocyanidins present in grape seeds (Vitis vinifera) have been shown to have some biological effects, including prevention of photocarcinogenesis. The present communication discusses the in vitro and in vivo studies of the possible protective effect of grape seed proanthocyanidins (GSPs) and the molecular mechanism for these effects. In SKH-1 hairless mice, dietary supplementation with GSPs is associated with a decrease of UVB-induced skin tumor development in terms of tumor incidence, tumor multiplicity, and a decrease in the malignant transformation of papillomas to carcinomas. It is suggested that the chemopreventive effects of dietary GSPs are mediated through the attenuation of UV-induced: (i) oxidative stress; (ii) activation of mitogen-activated protein kinases and nuclear factor-kappa B (NF-kappaB) signaling pathways; and (iii) immunosuppression through alterations in immunoregulatory cytokines. Collectively, these studies indicate protective potential of GSPs against experimental photocarcinogenesis in SKH-1 hairless mice, and the possible mechanisms of action of GSPs, and suggest that dietary GSPs could be useful in the attenuation of the adverse UV-induced health effects in human skin.
Collapse
Affiliation(s)
- Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
28
|
Yiasemides E, Sivapirabu G, Halliday GM, Park J, Damian DL. Oral nicotinamide protects against ultraviolet radiation-induced immunosuppression in humans. Carcinogenesis 2008; 30:101-5. [DOI: 10.1093/carcin/bgn248] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Nandakumar V, Singh T, Katiyar SK. Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett 2008; 269:378-87. [PMID: 18457915 DOI: 10.1016/j.canlet.2008.03.049] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 01/10/2008] [Accepted: 03/28/2008] [Indexed: 12/26/2022]
Abstract
In recent years, a considerable emphasis has been focused on the importance of the naturally available botanicals that can be consumed in an individual's everyday diet and that can also be useful as a chemopreventive or chemotherapeutic agent for certain diseases, including cancers. A wide variety of botanicals, mostly dietary flavonoids or polyphenolic substances, have been reported to possess substantial anti-carcinogenic and antimutagenic activities because of their antioxidant and anti-inflammatory properties. Proanthocyanidins are considered as one of them, and are abundantly available in various parts of the plants, such as fruits, berries, bark and seeds. Their modes of action were evaluated through a number of in vitro and in vivo studies which showed their potential role as anti-carcinogenic agent. We summarize and highlight the latest developments on anti-carcinogenic activities of proanthocyanidins from different sources, specifically from grape seeds, and their molecular targets, such as NF-kappaB, mitogen-activated protein kinases, PI3K/Akt, caspases, cytokines, angiogenesis and cell cycle regulatory proteins and other check points, etc. Although the bioavailability and metabolism data on proanthocyanidins is still largely unavailable, certain reports indicate that at least monomers and smaller oligomeric procyanidins are absorbed in the gut. The modulation of various molecular targets by proanthocyanidins in vitro and in vivo tumor models suggests their importance, contribution and mechanism of action to the prevention of cancers of different organs.
Collapse
Affiliation(s)
- Vijayalakshmi Nandakumar
- Department of Dermatology, University of Alabama at Birmingham, 1670, University Boulevard, Volker Hall 557, PO Box 202, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
30
|
Abstract
Representing the most common flavonoid consumed in the American diet, the flavan-3-ols and their polymeric condensation products, the proanthocyanidins, are regarded as functional ingredients in various beverages, whole and processed foods, herbal remedies and supplements. Their presence in food affects food quality parameters such as astringency, bitterness, sourness, sweetness, salivary viscosity, aroma, and color formation. The ability of flavan-3-ols to aid food functionality has also been established in terms of microbial stability, foamability, oxidative stability, and heat stability. While some foods only contain monomeric flavan-3-ols [(-)-epicatechin predominates] and dimeric proanthocyanidins, most foods contain oligomers of degree of polymerization values ranging from 1-10 or greater than 10. Flavan-3-ols have been reported to exhibit several health beneficial effects by acting as antioxidant, anticarcinogen, cardiopreventive, antimicrobial, anti-viral, and neuro-protective agents. This review summarizes the distribution and health effects of these compounds.
Collapse
Affiliation(s)
- Patricia M Aron
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
31
|
Properties of grape seed proanthocyanidins and quercetin in human lymphocytes. ARCH BIOL SCI 2008. [DOI: 10.2298/abs0803367s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study addresses the in vitro protective effects of proanthocyanidins and quercetin on the frequency of micronuclei with reference to the antioxidant status of cultured human lymphocytes also subjected to 2 Gy of ?-radiation. Treatment of lymphocytes with proanthocyanidins induced a significant decrease in the frequency of micronuclei and reduction of malonyldialdehyde production, as well as increased catalase and glutathione S-transferase activity. Quercetin induces a higher incidence of micronuclei and production of malonyldialdehyde. The seven-fold increase of micronuclei frequency induced by a therapeutic dose of ?-radiation was decreased in the presence of proanthocyanidins. These results demonstrate that proanthocyanidins may be important in the prevention of ROS-induced oxidative lymphocyte damage by decreasing DNA damage, lowering membrane lipid peroxidation, and increasing the activity AOP enzymes, as well as by reducing the level of ?-radiation-induced DNA damage. Our results support the potential benefits of proanthocyanidins as efficient antioxidants and radioprotectors.
Collapse
|
32
|
Katiyar SK. UV-induced immune suppression and photocarcinogenesis: chemoprevention by dietary botanical agents. Cancer Lett 2007; 255:1-11. [PMID: 17382466 PMCID: PMC1995595 DOI: 10.1016/j.canlet.2007.02.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/26/2022]
Abstract
Studies of immune-suppressed transplant recipients and patients with biopsy-proven skin cancer have confirmed that ultraviolet (UV) radiation-induced immune suppression is a risk factor for the development of skin cancer in humans. UV radiation suppresses the immune system in several ways. The UVB spectrum inhibits antigen presentation, induces the release of immunosuppressive cytokines, and elicits DNA damage that is a molecular trigger of UV-mediated immunosuppression. It is therefore important to elucidate the mechanisms underlying UV-induced immunosuppression as a basis for developing strategies to protect individuals from this effect and subsequent development of skin cancer. Dietary botanicals are of particular interest as they have been shown to inhibit UV-induced immune suppression and photocarcinogenesis. In this review, we summarize the most recent investigations and mechanistic studies regarding the photoprotective efficacy of selected dietary agents, including, green tea polyphenols, grape seed proanthocyanidins and silymarin. We present evidence that these chemopreventive agents prevent UVB-induced immunosuppression and photocarcinogenesis through: (i) the induction of immunoregulatory cytokine interleukin (IL)-12; (ii) IL-12-dependent DNA repair; and (iii) stimulation of cytotoxic T cells in the tumor microenvironment. The new information regarding the mechanisms of action of these agents supports their potential use as adjuncts in the prevention of photocarcinogenesis.
Collapse
Affiliation(s)
- Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
33
|
Katiyar SK. Interleukin-12 and photocarcinogenesis. Toxicol Appl Pharmacol 2006; 224:220-7. [PMID: 17239911 PMCID: PMC2080793 DOI: 10.1016/j.taap.2006.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 11/10/2006] [Accepted: 11/13/2006] [Indexed: 11/30/2022]
Abstract
UV radiation induces immunosuppression and inflammatory responses, as well as oxidative stress and DNA damage, in skin cells and these various effects have been implicated in melanoma and nonmelanoma skin cancers, i.e., photocarcinogenesis. The cytokine interleukin (IL)-12 has been shown to possess potent antitumor activity in a wide variety of murine tumor models. In this review, we summarize the evidence that IL-12 plays a role in preventing photocarcinogenesis, and present a model of its possible mechanisms of action. Treatment of mice with IL-12 prevents UV-induced immunosuppression in a process mediated by repair of UV-induced damaged DNA. After exposure to the photocarcinogenesis protocol, the development of UV-induced tumors is more rapid and the tumor multiplicity and tumor size are significantly greater in IL-12-deficient or knockout (KO) mice than their wild-type counterparts. IL-12-deficiency in mice enhances the proliferation potential of tumor cells, and this may be one of the reasons for the rapid growth of the tumors and their greater size. The rate of malignant transformation of UV-induced papillomas to carcinomas also is higher in the IL-12 KO mice than in their wild-type counterparts in terms of carcinoma incidence and carcinoma multiplicity. UV-induced DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) and sunburn cells is lower, or repaired more rapidly, in wild-type mice than IL-12 KO mice. The IL-12-associated reduction in UV-specific CPDs is due to induction of DNA repair, and particularly enhancement of nucleotide-excision repair. We suggest that endogenous stimulation of IL-12 may protect the skin from UV-induced immunosuppression, DNA damage, and, ultimately, the risk of photocarcinogenesis. Taken together, this information suggests that augmentation of IL-12 should be considered as a strategy for the prevention and treatment of photocarcinogenesis.
Collapse
Affiliation(s)
- Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, 1670, University Boulevard, Volker Hall 557, P.O. Box 202, Birmingham, AL 35294, USA.
| |
Collapse
|
34
|
Meeran SM, Mantena SK, Meleth S, Elmets CA, Katiyar SK. Interleukin-12-deficient mice are at greater risk of UV radiation-induced skin tumors and malignant transformation of papillomas to carcinomas. Mol Cancer Ther 2006; 5:825-32. [PMID: 16648552 DOI: 10.1158/1535-7163.mct-06-0003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Solar UV radiation-induced immunosuppression is a risk factor for nonmelanoma skin cancer. Interleukin (IL)-12 has been shown to possess antitumor activity and inhibit the immunosuppressive effects of UV radiation in mice. In this study, we generated IL-12 knockout (KO) mice on a C3H/HeN background to characterize the role of IL-12 in photocarcinogenesis. After exposure of the mice to UVB (180 mJ/cm2) radiation thrice a week for 35 weeks, the development of UV-induced tumors was more rapid and the tumor multiplicity and tumor size were significantly higher in IL-12 KO mice than their wild-type (WT) counterparts (P < 0.05-0.001). Moreover, the malignant transformation of UVB-induced papillomas to carcinomas was higher in IL-12 KO mice in terms of carcinoma incidence (55%, P < 0.001), carcinoma multiplicity (77%, P < 0.001), and carcinoma size (81%, P < 0.001). As IL-12 has the ability to repair UV-induced DNA damage, we determined this effect in our in vivo IL-12 KO mouse model. We found that UVB-induced DNA damage in the form of cyclobutane pyrimidine dimers was removed or repaired more rapidly in WT mice than IL-12 KO mice. Similarly, the UVB-induced sunburn cell formation is primarily a consequence of DNA damage. It was observed that UVB-induced sunburn cells were repaired rapidly in WT mice compared with IL-12 KO mice. The rapid removal or repair of UV-induced cyclobutane pyrimidine dimers or sunburn cells will result in reduced risk of photocarcinogenesis. Taken together, our data show that IL-12 deficiency is associated with the greater risk of photocarcinogenesis in mice, and this may be due to reduction in damaged DNA repair ability.
Collapse
Affiliation(s)
- Syed M Meeran
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall 557, P.O. Box 202, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
35
|
Meeran SM, Mantena SK, Katiyar SK. Prevention of ultraviolet radiation-induced immunosuppression by (-)-epigallocatechin-3-gallate in mice is mediated through interleukin 12-dependent DNA repair. Clin Cancer Res 2006; 12:2272-80. [PMID: 16609044 DOI: 10.1158/1078-0432.ccr-05-2672] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Solar UV radiation-induced immunosuppression is considered to be a risk factor for melanoma and nonmelanoma skin cancers. We previously have shown that topical application of (-)-epigallocatechin-3-gallate (EGCG) prevents UV-induced immunosuppression in mice. We studied whether prevention of UV-induced immunosuppression by EGCG is mediated through interleukin 12 (IL-12)-dependent DNA repair. EXPERIMENTAL DESIGN IL-12 knockout (KO) mice on C3H/HeN background and DNA repair-deficient cells from xeroderma pigmentosum complementation group A (XPA) patients were used in this study. The effect of EGCG was determined on UV-induced suppression of contact hypersensitivity and UV-induced DNA damage in the form of cyclobutane pyrimidine dimers (CPD) in mice and XPA-deficient cells using immunohistochemistry and dot-blot analysis. RESULTS Topical treatment with EGCG prevented UV-induced suppression of the contact hypersensitivity in wild-type (WT) mice but did not prevent it in IL-12 KO mice. Injection of anti-IL-12 monoclonal antibody to WT mice blocked the preventive effect of EGCG on UV-induced immunosuppression. EGCG reduced or repaired UV-induced DNA damage in skin faster in WT mice as shown by reduced number of CPDs(+) cells and reduced the migration of CPD(+) antigen-presenting cells from the skin to draining lymph nodes. In contrast, this effect of EGCG was not seen in IL-12 KO mice. Further, EGCG was able to repair UV-induced CPDs in XPA-proficient cells obtained from healthy person but did not repair in XPA-deficient cells, indicating that nucleotide excision repair mechanism is involved in DNA repair. CONCLUSIONS These data identify a new mechanism by which EGCG prevents UV-induced immunosuppression, and this may contribute to the chemopreventive activity of EGCG in prevention of photocarcinogenesis.
Collapse
Affiliation(s)
- Syed M Meeran
- Department of Dermatology, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | | | | |
Collapse
|