1
|
Tao G, Xu X, Li RS, Liu F, Li N. Nonamplification Multiplexed Assay of Endonucleases and DNA Methyltransferases by Colocalized Particle Counting. ACS Sens 2021; 6:1321-1329. [PMID: 33496573 DOI: 10.1021/acssensors.0c02665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Restriction endonucleases (ENases) and DNA methyltransferases (MTases) are important enzymes in biological processes, and detection of ENases/MTases activity is significant for biological and pharmaceutical studies. However, available nonamplification methods with a versatile design, desirable sensitivity, and signal production mode of unbiased quantification toward multiple nucleases are rare. By combining deliberately designed hairpin DNA probes with the colocalized particle counting technique, we present a nonamplification, separation-free method for multiplexed detection of ENases and MTases. In the presence of target ENases, the hairpin DNA is cleaved and the resulting DNA sequence forms a sandwich structure to tie two different-colored fluorescent microbeads together to generate a colocalization signal that can be easily detected using a standard fluorescence microscope. The multiplexed assay is realized via different color combinations. For the assay of methyltransferase, methylation by MTases prevents cleavage of the hairpin by the corresponding ENase, leading to decreased colocalization events. Three ENases can be simultaneously detected with high selectivity, minimal cross-talk, and detection limits of (4.1-6.4) × 10-4 U/mL, and the corresponding MTase activity can be measured without a change of the probe design. The potential for practical application is evaluated with human serum samples and different ENase and MTase inhibitors with satisfactory results. The proposed method is separation-free, unbiased toward multiple targets, and easy to implement, and the strategy has the potential to be extended to other targets.
Collapse
Affiliation(s)
- Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiao Xu
- Environmental Metrology Center, National Institute of Metrology, Beijing 100029, China
| | - Rong Sheng Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Luo X, Kang T, Zhu J, Wu P, Cai C. Sensitivity-Improved SERS Detection of Methyltransferase Assisted by Plasmonically Engineered Nanoholes Array and Hybridization Chain Reaction. ACS Sens 2020; 5:3639-3648. [PMID: 33147006 DOI: 10.1021/acssensors.0c02016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Detection of methyltransferase (MTase) activity is of great significance in methylation-related disease diagnosis and drug screening. Herein, we present a dual-amplification sensing strategy that is assisted by plasmonically enhanced Raman intensity at engineered nanoholes array, along with signal amplification by the hybridization chain reaction (HCR) for the ultrasensitive detection of M.SssI MTase activity and inhibitor screening. An engineered surface-enhanced Raman scattering (SERS) substrate, namely, a structured nanoholes array (NHA) with wavelength-matched surface plasmon resonance (SPR) at the wavelength of laser excitation (785 nm), was rationally designed through finite-difference time-domain (FDTD) simulations, precisely fabricated through master-assisted replication, and then used as a sensing platform. Uniform and intense SERS signals were achieved by turning on the plasmonic enhancement under the excitation of SPR. Probe DNA was designed to hybridize with target DNA (a BRCA1 gene fragment), and the formed dsDNA with the recognition site of M.SssI was assembled on the NHA. In the presence of M.SssI, the HCR process was triggered upon adding DNAs labeled with the Raman reporter Cy5, leading to an amplified SERS signal of Cy5. The intensity of Cy5 increases with increasing M.SssI activity, which establishes the basis of the assay for M.SssI. The developed assay displays an ultrasensitivity that has a broad linear range (0.002-200 U/mL) and a low detection limit (2 × 10-4 U/mL), which is superior to that of the reported SERS-based detection methods. Moreover, it can selectively detect M.SssI in human serum samples and evaluate the efficiency of M.SssI inhibitors.
Collapse
Affiliation(s)
- Xiaojun Luo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Tuli Kang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Jingtian Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| |
Collapse
|
3
|
Li Y, Wang L, Ding C, Luo X. Highly selective ratiometric electrogenerated chemiluminescence assay of DNA methyltransferase activity via polyaniline and anti-fouling peptide modified electrode. Biosens Bioelectron 2019; 142:111553. [DOI: 10.1016/j.bios.2019.111553] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
|
4
|
Xue H, Chen K, Zhou Q, Pan D, Zhang Y, Shen Y. Antimony selenide/graphene oxide composite for sensitive photoelectrochemical detection of DNA methyltransferase activity. J Mater Chem B 2019; 7:6789-6795. [DOI: 10.1039/c9tb01541h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An Sb2Se3/graphene oxide composite was applied as both the photoelectrochemical probe and substrate for biomolecule conjugation for the construction of a “signal-off” sandwich-type biosensor for DNA methyltransferase activity detection.
Collapse
Affiliation(s)
- Huaijia Xue
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Kaiyang Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Qing Zhou
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Deng Pan
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| |
Collapse
|
5
|
Chen S, Lv Y, Shen Y, Ji J, Zhou Q, Liu S, Zhang Y. Highly Sensitive and Quality Self-Testable Electrochemiluminescence Assay of DNA Methyltransferase Activity Using Multifunctional Sandwich-Assembled Carbon Nitride Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6887-6894. [PMID: 29376630 DOI: 10.1021/acsami.7b17813] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA methylation catalyzed by methylase plays a key role in many biological activities. However, developing a highly sensitive, simple, and reliable way for evaluation of DNA methyltransferase (MTase) activity is still a challenge. Here, we report a sandwich-assembled electrochemiluminescence (ECL) biosensor using multifunctional carbon nitride nanosheets (CNNS) to evaluate the Dam MTase activity. The CNNS could not only be used as an excellent substrate to conjugate a large amount of hairpin probe DNA to improve the sensitivity but also be utilized as an internal reliability checker and an analyte reporter in the bottom and top layers of the biosensor, respectively. Such a unique sandwich configuration of CNNS well coupled the advantages of ECL luminophor that were generally assembled in the bottom or top layer in a conventional manner. As a result, the biosensor exhibited an ultralow detection limit down to 0.043 U/mL and a linear range between 0.05 and 80 U/mL, superior to the MTase activity assay in most previous reports. We highlighted the great potential of emerging CNNS luminophor in developing highly sensitive and smart quality self-testable ECL sensing systems using a sandwiched configuration for early disease diagnosis, treatment, and management.
Collapse
Affiliation(s)
- Shiyu Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yanqin Lv
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yanfei Shen
- Medical School, Southeast University , Nanjing 210009, China
| | - Jingjing Ji
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| |
Collapse
|
6
|
Wang Q, Pan M, Wei J, Liu X, Wang F. Evaluation of DNA Methyltransferase Activity and Inhibition via Isothermal Enzyme-Free Concatenated Hybridization Chain Reaction. ACS Sens 2017; 2:932-939. [PMID: 28750535 DOI: 10.1021/acssensors.7b00168] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methyltransferase (MTase)-catalyzed DNA methylation plays a vital role in the biological epigenetic processes of key diseases and has attracted increasing attention, making the amplified detection of MTase activity of great significance in clinical disease diagnosis and treatment. Herein, we developed an isothermal, enzyme-free, and autonomous strategy for analyzing MTase activity based on concatenated hybridization chain reaction (C-HCR)-mediated Förster resonance energy transfer (FRET). In a typical C-HCR procedure without MTase (Dam), Y-shaped initiator DNA activates upstream HCR-1 to assemble a double-stranded DNA (dsDNA) copolymeric nanowire consisting of multiple tandem DNA trigger units that motivate downstream HCR-2 to successively bring a fluorophore donor/acceptor (FAM/TAMRA) pair into close proximity, leading to the generation of an amplified FRET readout signal. The target Dam MTase and auxiliary DpnI endonuclease can sequentially and specifically recognize/methylate and cleave the Y-shaped initiator oligonucleotide, respectively, and thus prohibit the C-HCR process and FRET signal generation, resulting in the construction of a signal-on sensing platform for MTase assay. Our proposed isothermal enzyme-free C-HCR amplification approach was further utilized for screening MTase inhibitors. Furthermore, the proposed C-HCR approach can be easily adapted for probing other different MTases and for screening the corresponding inhibitors just by changing the recognition sequence of Y-shaped initiator DNA through a "plug-and-play" format. It provides a versatile and robust tool for highly sensitive detection of various biotransformations and thus holds great promise in clinical assessment and diagnosis.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Min Pan
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jie Wei
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
7
|
Jang H, Lee J, Min DH. Graphene oxide for fluorescence-mediated enzymatic activity assays. J Mater Chem B 2014; 2:2452-2460. [DOI: 10.1039/c4tb00199k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Yen EF, Pokhrel B, Bianchi LK, Roy HK, Du H, Patel A, Hall CR, Witt BL. Decreased colorectal cancer and adenoma risk in patients with microscopic colitis. Dig Dis Sci 2012; 57:161-9. [PMID: 21847567 DOI: 10.1007/s10620-011-1852-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 07/25/2011] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Microscopic colitis is currently considered to harbor no increased risk for colorectal cancer, based on a few small studies with limited long-term follow-up. Our aim was to identify patients with microscopic colitis, and to compare long-term rates of colorectal cancer or adenoma to a control group of patients without microscopic colitis. METHODS We reviewed the records of patients diagnosed with microscopic colitis, as identified by a hospital-based pathology database from January 2000 to August 2008. Clinical factors, including history of adenoma or adenocarcinoma, and all colonoscopy findings, were recorded. Age and gender-matched patients without microscopic colitis served as the control in a 1:1 fashion. RESULTS A total of 647 patients (153 male: 494 female) were identified with microscopic colitis (MC). Any history of colorectal cancer was detected in 1.92, 1.81, and 4.17% of patients with collagenous colitis (CC), lymphocytic colitis (LC), and controls, respectively (P = 0.095, P = 0.040, P = 0.015 for CC, LC, and all MC, respectively, comparing to controls). Overall, covariate-adjusted risk (odds ratio) of any history of colorectal cancer and colorectal adenoma in MC patients was 0.34 (95% confidence interval [CI] 0.16-0.73, P = 0.006) and 0.52 (95% CI 0.50-0.76, P < 0.0001), respectively. The mean duration of follow-up was 4.63 years, with 147/647 (22.7%) of patients with clinical follow-up >7 years. CONCLUSIONS In this case-control study involving a large retrospective cohort, microscopic colitis is negatively associated with the risk for colorectal cancer and adenoma. Further studies are required to determine a temporal relationship between microscopic colitis and the future development of colorectal neoplasia.
Collapse
Affiliation(s)
- Eugene F Yen
- Division of Gastroenterology, Pritzker School of Medicine, University of Chicago, NorthShore University HealthSystem, 2650 Ridge Avenue, Suite G221, Evanston, IL 60201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lee J, Kim YK, Min DH. A New Assay for Endonuclease/Methyltransferase Activities Based on Graphene Oxide. Anal Chem 2011; 83:8906-12. [DOI: 10.1021/ac201298r] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jieon Lee
- Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Young-Kwan Kim
- Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| |
Collapse
|
10
|
Sharma S, Lee J, Zhou J, Steele VE. Chemopreventive efficacy and mechanism of licofelone in a mouse lung tumor model via aspiration. Cancer Prev Res (Phila) 2011; 4:1233-42. [PMID: 21562034 PMCID: PMC3151334 DOI: 10.1158/1940-6207.capr-10-0117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our previous study comparing inhalation and aspiration to administer agents directly to lung indicated that aspiration route is as effective as inhalation while reducing costs for equipment and chemopreventive agent. This study evaluated the chemopreventive efficacy and mechanism of licofelone, a dual inhibitor of COX-2 and 5-lipoxygenase (5-Lox), via oropharyngeal aspiration against mouse lung adenoma. Eight-week-old female A/J mice were given three doses of benzo[a]pyrene (B[a]P; 2 mg/dose, gavage) to induce lung adenomas. After dysplasia developed, the mice were given licofelone (0, 0.03, 0.1, or 0.3 mg/kg) for 16 weeks, and tumor incidence and multiplicity in lung were measured. In addition, the expression of a series of biomarkers in lung cancer progression was evaluated at 2 and 16 weeks. Licofelone showed dose-related inhibition of B[a]P-induced tumor incidence and multiplicity at 0.03 and 0.1 mg/kg following 16-week treatment. Licofelone also showed dose-dependent inhibition of COX-2 (25%-41%) and 5-Lox (35%-61%) at 2 and 16 weeks and proliferating cell nuclear antigen (PCNA; 41%-61%) at 16 weeks. A dose-dependent increase in apoptosis (1.5- to 2.4-fold) was also observed in licofelone groups. A marginal inhibition of survivin was observed at one dose. In conclusion, this study showed that licofelone via aspiration showed chemopreventive efficacy against mouse lung adenoma with good correlation to early and late biomarkers of lung cancer progression. This is the first study to show that the aspiration route can be an excellent inexpensive alternative to inhalation for direct delivery of drugs to rodent lungs for efficacy testing of potential chemopreventive agents.
Collapse
Affiliation(s)
- Sheela Sharma
- Center for Preclinical Safety and Efficacy, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Jin Lee
- Center for Preclinical Safety and Efficacy, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Jianliang Zhou
- Center for Preclinical Safety and Efficacy, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Vernon E. Steele
- Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|