1
|
Drake DM, Afsharian K, Or B, Shapiro AM, Lai ML, Miller L, Wells PG. BRCA1 protein dose-dependent risk for embryonic oxidative DNA damage, embryopathies and neurodevelopmental disorders with and without ethanol exposure. Redox Biol 2024; 70:103070. [PMID: 38359745 PMCID: PMC10877410 DOI: 10.1016/j.redox.2024.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Although widely known as a tumor suppressor, the breast cancer 1 susceptibility protein (BRCA1) is also important in development, where it regulates fetal DNA repair pathways that protect against DNA damage caused by physiological and drug-enhanced levels of reactive oxygen species (ROS). We previously showed that conditional heterozygous (+/-) knockout (cKO) mouse embryos with a minor 28% BRCA1 deficiency developed normally in culture, but when exposed to the ROS-initiating drug, alcohol (ethanol, EtOH), exhibited embryopathies not evident in wild-type (+/+) littermates. Herein, we characterized a directBrca1 +/- knockout (KO) model with a 2-fold greater (58%) reduction in BRCA1 protein vs. the cKO model. We also characterized and compared learning & memory deficits in both the cKO and KO models. Even saline-exposed Brca1 +/- vs. +/+ KO progeny exhibited enhanced oxidative DNA damage and embryopathies in embryo culture and learning & memory deficits in females in vivo, which were not observed in the cKO model, revealing the potential pathogenicity of physiological ROS levels. The embryopathic EtOH concentration for cultured direct KO embryos was half that for cKO embryos, and EtOH affected Brca1 +/+ embryos only in the direct KO model. The spectrum and severity of EtOH embryopathies in culture were greater in both Brca1 +/- vs. +/+ embryos, and direct KO vs. cKO +/- embryos. Motor coordination deficits were evident in both male and female Brca1 +/- KO progeny exposed in utero to EtOH. The results in our direct KO model with a greater BRCA1 deficiency vs. cKO mice provide the first evidence for BRCA1 protein dose-dependent susceptibility to developmental disorders caused by physiological and drug-enhanced oxidative stress.
Collapse
Affiliation(s)
- Danielle M Drake
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Kian Afsharian
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Or
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aaron M Shapiro
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Michelle L Lai
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lutfiya Miller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Jablonski KP, Beerenwinkel N. Coherent pathway enrichment estimation by modeling inter-pathway dependencies using regularized regression. Bioinformatics 2023; 39:btad522. [PMID: 37610338 PMCID: PMC10471899 DOI: 10.1093/bioinformatics/btad522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/04/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023] Open
Abstract
MOTIVATION Gene set enrichment methods are a common tool to improve the interpretability of gene lists as obtained, for example, from differential gene expression analyses. They are based on computing whether dysregulated genes are located in certain biological pathways more often than expected by chance. Gene set enrichment tools rely on pre-existing pathway databases such as KEGG, Reactome, or the Gene Ontology. These databases are increasing in size and in the number of redundancies between pathways, which complicates the statistical enrichment computation. RESULTS We address this problem and develop a novel gene set enrichment method, called pareg, which is based on a regularized generalized linear model and directly incorporates dependencies between gene sets related to certain biological functions, for example, due to shared genes, in the enrichment computation. We show that pareg is more robust to noise than competing methods. Additionally, we demonstrate the ability of our method to recover known pathways as well as to suggest novel treatment targets in an exploratory analysis using breast cancer samples from TCGA. AVAILABILITY AND IMPLEMENTATION pareg is freely available as an R package on Bioconductor (https://bioconductor.org/packages/release/bioc/html/pareg.html) as well as on https://github.com/cbg-ethz/pareg. The GitHub repository also contains the Snakemake workflows needed to reproduce all results presented here.
Collapse
Affiliation(s)
- Kim Philipp Jablonski
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel 4058, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel 4058, Switzerland
| |
Collapse
|
3
|
Bacon B, Repin M, Shuryak I, Wu HC, Santella RM, Terry MB, Brenner DJ, Turner HC. High-throughput measurement of double strand break global repair phenotype in peripheral blood mononuclear cells after long-term cryopreservation. Cytometry A 2023; 103:575-583. [PMID: 36823754 PMCID: PMC10680149 DOI: 10.1002/cyto.a.24725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/02/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) are a useful model for biochemical assays, particularly for etiological studies. We describe here a method for measuring DNA repair capacity (DRC) in archival cryogenically preserved PBMCs. To model DRC, we measured γ-H2AX repair kinetics in thawed PBMCs after irradiation with 3 Gy gamma rays. Time-dependent fluorescently labeled γ-H2AX levels were measured at five time points from 1 to 20 h, yielding an estimate of global DRC repair kinetics as well as a measure of unrepaired double strand breaks at 20 h. While γ-H2AX levels are traditionally measured by either microscopy or flow-cytometry, we developed a protocol for imaging flow cytometry (IFC) that combines the detailed information of microscopy with the statistical power of flow methods. The visual imaging component of the IFC allows for monitoring aspects such as cellular health and apoptosis as well as fluorescence localization of the γ-H2AX signal, which ensures the power and significance of this technique. Application of a machine-learning based image classification improved flow cytometry fluorescent measurements by identifying apoptotic cells unable to undergo DNA repair. We present here DRC repair parameters from 18 frozen archival PBMCs and 28 fresh blood samples collected from a demographically diverse cohort of women measured in a high-throughput IFC format. This thaw method and assay can be used alone or in conjunction with other assays to measure etiological phenotypes in cryogenic biobanks of PBMCs.
Collapse
Affiliation(s)
- Bezalel Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
| | - Mary Beth Terry
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
- Department of Epidemiology, Mailman School of Public Health, Columbia University, Irving Medical Center, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| |
Collapse
|
4
|
Tsai CW, Shih LC, Chang WS, Hsu CL, He JL, Hsia TC, Wang YC, Gu J, Bau DT. Non-Homologous End-Joining Pathway Genotypes Significantly Associated with Nasopharyngeal Carcinoma Susceptibility. Biomedicines 2023; 11:1648. [PMID: 37371742 DOI: 10.3390/biomedicines11061648] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Defects in the non-homologous end-joining (NHEJ) DNA repair pathway lead to genomic instability and carcinogenesis. However, the roles of individual NHEJ genes in nasopharyngeal carcinoma (NPC) etiology are not well-understood. The aim of this study was to assess the contribution of NHEJ genotypes, including XRCC4 (rs6869366, rs3734091, rs28360071, rs28360317, rs1805377), XRCC5 (rs828907, rs11685387, rs9288518), XRCC6 (rs5751129, rs2267437, rs132770, rs132774), XRCC7 rs7003908, and Ligase4 rs1805388, to NPC risk, with 208 NPC patients and 416 controls. Genotype-phenotype correlations were also investigated by measuring mRNA and protein expression in adjacent normal tissues and assessing the NHEJ repair capacity in blood lymphocytes from 43 NPC patients. The results showed significant differences in the distributions of variant genotypes at XRCC4 rs3734091, rs28360071, and XRCC6 rs2267437 between the cases and controls. The variant genotypes of these three polymorphisms were associated with significantly increased NPC risks. NPC patients with the risk genotypes at XRCC6 rs2267437 had significantly reduced expression levels of both mRNA and protein, as well as a lower NHEJ repair capacity, than those with the wild-type genotype. In conclusion, XRCC4 rs3734091, rs28360071, and XRCC6 rs2267437 in the NHEJ pathway were associated with NPC susceptibility. XRCC6 rs2267437 can modulate mRNA and protein expression and the NHEJ repair capacity.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Liang-Chun Shih
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Che-Lun Hsu
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Jie-Long He
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung 413305, Taiwan
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Yun-Chi Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
5
|
Wu HC, Kehm R, Santella RM, Brenner DJ, Terry MB. DNA repair phenotype and cancer risk: a systematic review and meta-analysis of 55 case-control studies. Sci Rep 2022; 12:3405. [PMID: 35233009 PMCID: PMC8888613 DOI: 10.1038/s41598-022-07256-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/15/2022] [Indexed: 01/01/2023] Open
Abstract
DNA repair phenotype can be measured in blood and may be a potential biomarker of cancer risk. We conducted a systematic review and meta-analysis of epidemiological studies of DNA repair phenotype and cancer through March 2021. We used random-effects models to calculate pooled odds ratios (ORs) of cancer risk for those with the lowest DNA repair capacity compared with those with the highest capacity. We included 55 case–control studies that evaluated 12 different cancers using 10 different DNA repair assays. The pooled OR of cancer risk (all cancer types combined) was 2.92 (95% Confidence Interval (CI) 2.49, 3.43) for the lowest DNA repair. Lower DNA repair was associated with all studied cancer types, and pooled ORs (95% CI) ranged from 2.02 (1.43, 2.85) for skin cancer to 7.60 (3.26, 17.72) for liver cancer. All assays, except the homologous recombination repair assay, showed statistically significant associations with cancer. The effect size ranged from 1.90 (1.00, 3.60) for the etoposide-induced double-strand break assay to 5.06 (3.67, 6.99) for the γ-H2AX assay. The consistency and strength of the associations support the use of these phenotypic biomarkers; however large-scale prospective studies will be important for understanding their use related to age and screening initiation.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, 630 West 168th St., Room P&S 16-421E, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.
| | - Rebecca Kehm
- Department of Epidemiology, Mailman School of Public Health of Columbia University, New York, NY, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, 630 West 168th St., Room P&S 16-421E, New York, NY, 10032, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - Mary Beth Terry
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, 630 West 168th St., Room P&S 16-421E, New York, NY, 10032, USA.,Department of Epidemiology, Mailman School of Public Health of Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Prajapati S, Locatelli M, Sawyer C, Holmes J, Bonin K, Black P, Vidi PA. Characterization and implementation of a miniature X-ray system for live cell microscopy. Mutat Res 2021; 824:111772. [PMID: 34923215 DOI: 10.1016/j.mrfmmm.2021.111772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022]
Abstract
The study of radiation effects on biological tissues is a diverse field of research with direct applications to improve human health, in particular in the contexts of radiation therapy and space exploration. Understanding the DNA damage response following radiation exposure, which is a key determinant for mutagenesis, requires reproducible methods for delivering known doses of ionizing radiation (IR) in a controlled environment. Multiple IR sources, including research X-ray and gamma-ray irradiators are routinely used in basic and translational research with cell and animal models. These systems are however not ideal when a high temporal resolution is needed, for example to study early DNA damage responses with live cell microscopy. Here, we characterize the dose rate and beam properties of a commercial, miniature, affordable, and versatile X-ray source (Mini-X). We describe how to use Mini-X on the stage of a fluorescence microscope to deliver high IR dose rates (up to 29 Gy/min) or lower dose rates (≤ 0.1 Gy/min) in live cell imaging experiments. This article provides a blueprint for radiation biology applications with high temporal resolution, with a step-by-step guide to implement a miniature X-ray system on an imaging platform, and the information needed to characterize the system.
Collapse
Affiliation(s)
- Surendra Prajapati
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maëlle Locatelli
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Caleb Sawyer
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Julia Holmes
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA; Comprehensive Cancer Center of Wake Forest University, USA
| | - Paul Black
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA; Comprehensive Cancer Center of Wake Forest University, USA.
| | - Pierre-Alexandre Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA; Institut de Cancérologie de l'Ouest, 49055, Angers, France; Comprehensive Cancer Center of Wake Forest University, USA.
| |
Collapse
|
7
|
Drake DM, Wells PG. Novel mechanisms in alcohol neurodevelopmental disorders via BRCA1 depletion and BRCA1-dependent NADPH oxidase regulation. Redox Biol 2021; 48:102148. [PMID: 34736119 PMCID: PMC8577473 DOI: 10.1016/j.redox.2021.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/27/2022] Open
Abstract
The breast cancer 1 protein (BRCA1) facilitates DNA repair, preventing embryolethality and protecting the fetus from reactive oxygen species (ROS)-induced developmental disorders mediated by oxidatively damaged DNA. Alcohol (ethanol, EtOH) exposure during pregnancy causes fetal alcohol spectrum disorders (FASD), characterized by aberrant behaviour and enhanced ROS formation and proteasomal protein degradation. Herein, ROS-producing NADPH oxidase (NOX) activity was higher in Brca1 +/- vs. +/+ fetal and adult brains, and further enhanced by a single EtOH exposure. EtOH also enhanced catalase and proteasomal activities, while conversely reducing BRCA1 protein levels without affecting Brca1 gene expression. EtOH-initiated adaptive postnatal freezing behaviour was lost in Brca1 +/- progeny. Pretreatment with the free radical spin trap and ROS inhibitor phenylbutylnitrone blocked all EtOH effects, suggesting ROS-dependent mechanisms. This is the first in vivo evidence of NOX regulation by BRCA1, and of EtOH-induced, ROS-mediated depletion of BRCA1, revealing novel mechanisms of BRCA1 protection in FASD.
Collapse
Affiliation(s)
- Danielle M Drake
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
9
|
Namvaran MR, Beyzaei Z, Mokhtari MJ, Geramizadeh B. Association between genetic polymorphism of XRCC6 T-991C and risk of varicocele. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The DNA non-homologous end-joining repair gene XRCC6 (Ku70) plays an essential role in the DNA double-strand break (DSB) repairs. Defects in the DSB repair pathway results in genomic instability. Varicocele is characterized by high pressure and stasis in the veins of the testis. There is little knowledge about the molecular mechanisms underlying varicocele. One of the reasons for increased spermatozoa DNA damage is high concentrations of reactive oxygen species (ROS), which leads to DNA-DSBs. We assumed that a promoter T-991C (rs5751129) polymorphism in the XRCC6 gene was associated with susceptibility to varicocele in infertile men. Therefore, 63 infertile varicocele men and 150 healthy controls were recruited in our study. The healthy controls had no history of varicocele, and they were matched with patients by age.
Results
Our results showed that infertile varicocele patients and control groups had significant differences in the distribution of their genotypic and allelic frequency (p = 0.00) in the XRCC6 promoter T-991C polymorphism. Men who carried CC genotype had a 5.22-fold increased odds ratio of developing infertile varicocele compared to those who carried the wild-type TT genotype (95% CI 2.31–11.81, P < 0.001).
Conclusions
Our results suggested that the CC genotype and the C allele in the promoter region of XRCC6 gene might play an important role in developing infertility in the varicocele men. Further research is needed to provide the effect of this polymorphism.
Collapse
|
10
|
Pashayan N, Antoniou AC, Ivanus U, Esserman LJ, Easton DF, French D, Sroczynski G, Hall P, Cuzick J, Evans DG, Simard J, Garcia-Closas M, Schmutzler R, Wegwarth O, Pharoah P, Moorthie S, De Montgolfier S, Baron C, Herceg Z, Turnbull C, Balleyguier C, Rossi PG, Wesseling J, Ritchie D, Tischkowitz M, Broeders M, Reisel D, Metspalu A, Callender T, de Koning H, Devilee P, Delaloge S, Schmidt MK, Widschwendter M. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat Rev Clin Oncol 2020; 17:687-705. [PMID: 32555420 PMCID: PMC7567644 DOI: 10.1038/s41571-020-0388-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
The European Collaborative on Personalized Early Detection and Prevention of Breast Cancer (ENVISION) brings together several international research consortia working on different aspects of the personalized early detection and prevention of breast cancer. In a consensus conference held in 2019, the members of this network identified research areas requiring development to enable evidence-based personalized interventions that might improve the benefits and reduce the harms of existing breast cancer screening and prevention programmes. The priority areas identified were: 1) breast cancer subtype-specific risk assessment tools applicable to women of all ancestries; 2) intermediate surrogate markers of response to preventive measures; 3) novel non-surgical preventive measures to reduce the incidence of breast cancer of poor prognosis; and 4) hybrid effectiveness-implementation research combined with modelling studies to evaluate the long-term population outcomes of risk-based early detection strategies. The implementation of such programmes would require health-care systems to be open to learning and adapting, the engagement of a diverse range of stakeholders and tailoring to societal norms and values, while also addressing the ethical and legal issues. In this Consensus Statement, we discuss the current state of breast cancer risk prediction, risk-stratified prevention and early detection strategies, and their implementation. Throughout, we highlight priorities for advancing each of these areas.
Collapse
Affiliation(s)
- Nora Pashayan
- Department of Applied Health Research, Institute of Epidemiology and Healthcare, University College London, London, UK
| | - Antonis C Antoniou
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Urska Ivanus
- Epidemiology and Cancer Registry, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Laura J Esserman
- Carol Franc Buck Breast Care Center, University of California, San Francisco, CA, USA
| | - Douglas F Easton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - David French
- Division of Psychology & Mental Health, School of Health Sciences, University of Manchester, Manchester, UK
| | - Gaby Sroczynski
- Department of Public Health, Health Services Research and Health Technology Assessment, Institute of Public Health, Medical Decision Making and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
- Division of Health Technology Assessment, Oncotyrol - Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Jack Cuzick
- Wolfson Institute of Preventive Medicine, Barts and The London, Centre for Cancer Prevention, Queen Mary University of London, London, UK
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Jacques Simard
- Genomics Center, CHU de Québec - Université Laval Research Center, Québec, Canada
| | | | - Rita Schmutzler
- Center of Family Breast and Ovarian Cancer, University Hospital Cologne, Cologne, Germany
| | - Odette Wegwarth
- Max Planck Institute for Human Development, Center for Adaptive Rationality, Harding Center for Risk Literacy, Berlin, Germany
| | - Paul Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | | | | | | - Zdenko Herceg
- Epigenetic Group, International Agency for Research on Cancer (IARC), WHO, Lyon, France
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - Paolo Giorgi Rossi
- Epidemiology Unit, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - David Ritchie
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Mireille Broeders
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dan Reisel
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Andres Metspalu
- The Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Thomas Callender
- Department of Applied Health Research, Institute of Epidemiology and Healthcare, University College London, London, UK
| | - Harry de Koning
- Department of Public Health, Erasmus MC, Rotterdam, Netherlands
| | - Peter Devilee
- Department of Human Genetics, Department of Pathology, Leiden University Medical Centre, Leiden, Netherlands
| | - Suzette Delaloge
- Breast Cancer Department, Gustave Roussy Institute, Paris, France
| | - Marjanka K Schmidt
- Division of Molecular Pathology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - Martin Widschwendter
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK.
- Universität Innsbruck, Innsbruck, Austria.
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Hall in Tirol, Austria.
| |
Collapse
|
11
|
Wang LP, Chen TY, Kang CK, Huang HP, Chen SL. BCAS2, a protein enriched in advanced prostate cancer, interacts with NBS1 to enhance DNA double-strand break repair. Br J Cancer 2020; 123:1796-1807. [PMID: 32963349 PMCID: PMC7723048 DOI: 10.1038/s41416-020-01086-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
Background Breast cancer amplified sequence 2 (BCAS2) plays crucial roles in pre-mRNA splicing and androgen receptor transcription. Previous studies suggested that BCAS2 is involved in double-strand breaks (DSB); therefore, we aimed to characterise its mechanism and role in prostate cancer (PCa). Methods Western blotting and immunofluorescence microscopy were used to assay the roles of BCAS2 in the DSBs of PCa cells and apoptosis in Drosophila, respectively. The effect of BCAS2 dosage on non-homologous end joining (NHEJ) and homologous recombination (HR) were assayed by precise end-joining assay and flow cytometry, respectively. Glutathione-S-transferase pulldown and co-immunoprecipitation assays were used to determine whether and how BCAS2 interacts with NBS1. The expression of BCAS2 and other proteins in human PCa was determined by immunohistochemistry. Results BCAS2 helped repair radiation-induced DSBs efficiently in both human PCa cells and Drosophila. BCAS2 enhanced both NHEJ and HR, possibly by interacting with NBS1, which involved the BCAS2 N-terminus as well as both the NBS1 N- and C-termini. The overexpression of BCAS2 was significantly associated with higher Gleason and pathology grades and shorter survival in patients with PCa. Conclusion BCAS2 promotes two DSB repair pathways by interacting with NBS1, and it may affect PCa progression.
Collapse
Affiliation(s)
- Li-Po Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Yu Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Kai Kang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Paz-Elizur T, Leitner-Dagan Y, Meyer KB, Markus B, Giorgi FM, O’Reilly M, Kim H, Evgy Y, Fluss R, Freedman LS, Rintoul RC, Ponder B, Livneh Z. DNA Repair Biomarker for Lung Cancer Risk and its Correlation With Airway Cells Gene Expression. JNCI Cancer Spectr 2020; 4:pkz067. [PMID: 32064457 PMCID: PMC7012022 DOI: 10.1093/jncics/pkz067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/23/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Improving lung cancer risk assessment is required because current early-detection screening criteria miss most cases. We therefore examined the utility for lung cancer risk assessment of a DNA Repair score obtained from OGG1, MPG, and APE1 blood tests. In addition, we examined the relationship between the level of DNA repair and global gene expression. METHODS We conducted a blinded case-control study with 150 non-small cell lung cancer case patients and 143 control individuals. DNA Repair activity was measured in peripheral blood mononuclear cells, and the transcriptome of nasal and bronchial cells was determined by RNA sequencing. A combined DNA Repair score was formed using logistic regression, and its correlation with disease was assessed using cross-validation; correlation of expression to DNA Repair was analyzed using Gene Ontology enrichment. RESULTS DNA Repair score was lower in case patients than in control individuals, regardless of the case's disease stage. Individuals at the lowest tertile of DNA Repair score had an increased risk of lung cancer compared to individuals at the highest tertile, with an odds ratio (OR) of 7.2 (95% confidence interval [CI] = 3.0 to 17.5; P < .001), and independent of smoking. Receiver operating characteristic analysis yielded an area under the curve of 0.89 (95% CI = 0.82 to 0.93). Remarkably, low DNA Repair score correlated with a broad upregulation of gene expression of immune pathways in patients but not in control individuals. CONCLUSIONS The DNA Repair score, previously shown to be a lung cancer risk factor in the Israeli population, was validated in this independent study as a mechanism-based cancer risk biomarker and can substantially improve current lung cancer risk prediction, assisting prevention and early detection by computed tomography scanning.
Collapse
Affiliation(s)
- Tamar Paz-Elizur
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Leitner-Dagan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Kerstin B Meyer
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Barak Markus
- Bioinformatics Unit, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Federico M Giorgi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Martin O’Reilly
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Hyunjin Kim
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Yentl Evgy
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Fluss
- Biostatistics Unit, Gertner Institute for Epidemiology and Public Health Policy Sheba Medical Center, Tel Hashomer, Israel
| | - Laurence S Freedman
- Biostatistics Unit, Gertner Institute for Epidemiology and Public Health Policy Sheba Medical Center, Tel Hashomer, Israel
| | - Robert C Rintoul
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Thoracic Oncology, Royal Papworth Hospital, Cambridge, UK
| | - Bruce Ponder
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Zvi Livneh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Hepatitis C Virus NS3 Protein Plays a Dual Role in WRN-Mediated Repair of Nonhomologous End Joining. J Virol 2019; 93:JVI.01273-19. [PMID: 31462559 DOI: 10.1128/jvi.01273-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) NS3 protein possesses protease and helicase activities and is considered an oncoprotein in virus-derived hepatocellular carcinoma. The NS3-associated oncogenesis has been studied but not fully understood. In this study, we have identified novel interactions of the NS3 protein with DNA repair factors, Werner syndrome protein (WRN) and Ku70, in both an HCV subgenomic replicon system and Huh7 cells expressing NS3. HCV NS3 protein inhibits WRN-mediated DNA repair and reduces the repair efficiency of nonhomologous end joining. It interferes with Ku70 recruitment to the double-strand break sites and alters the nuclear distribution of WRN-Ku repair complex. In addition, WRN is a substrate of the NS3/4A protease; the level of WRN protein is regulated by both the proteasome degradation pathway and HCV NS3/4A protease activity. The dual role of HCV NS3 and NS3/4A proteins in regulating the function and expression level of the WRN protein intensifies the effect of impairment on DNA repair. This may lead to an accumulation of DNA mutations and genome instability and, eventually, tumor development.IMPORTANCE HCV infection is a worldwide problem of public health and a major contributor to hepatocellular carcinoma. The single-stranded RNA virus with RNA-dependent RNA polymerase experiences a high error rate and develops strategies to escape the immune system and hepatocarcinogenesis. Studies have revealed the involvement of HCV proteins in the impairment of DNA repair. The present study aimed to further elucidate mechanisms by which the viral NS3 protein impairs the repair of DNA damage. Our results clearly indicate that HCV NS3/4A protease targets WRN for degradation, and, at the same time, diminishes the repair efficiency of nonhomologous end joining by interfering with the recruitment of Ku protein to the DNA double-strand break sites. The study describes a novel mechanism by which the NS3 protein influences DNA repair and provides new insight into the molecular mechanism of HCV pathogenesis.
Collapse
|
14
|
Lee Y, Wang Q, Shuryak I, Brenner DJ, Turner HC. Development of a high-throughput γ-H2AX assay based on imaging flow cytometry. Radiat Oncol 2019; 14:150. [PMID: 31438980 PMCID: PMC6704696 DOI: 10.1186/s13014-019-1344-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022] Open
Abstract
Background Measurement of γ-H2AX foci levels in cells provides a sensitive and reliable method for quantitation of the radiation-induced DNA damage response. The objective of the present study was to develop a rapid, high-throughput γ-H2AX assay based on imaging flow cytometry (IFC) using the ImageStream®X Mk II (ISX) platform to evaluate DNA double strand break (DSB) repair kinetics in human peripheral blood cells after exposure to ionizing irradiation. Methods The γ-H2AX protocol was developed and optimized for small volumes (100 μL) of human blood in Matrix™ 96-tube format. Blood cell lymphocytes were identified and captured by ISX INSPIRE™ software and analyzed by Data Exploration and Analysis Software. Results Dose- and time-dependent γ-H2AX levels corresponding to radiation exposure were measured at various time points over 24 h using the IFC system. γ-H2AX fluorescence intensity at 1 h after exposure, increased linearly with increasing radiation dose (R2 = 0.98) for the four human donors tested, whereas the dose response for the mean number of γ-H2AX foci/cell was not as robust (R2 = 0.81). Radiation-induced γ-H2AX levels rapidly increased within 30 min and reached a maximum by ~ 1 h, after which time there was fast decline by 6 h, followed by a much slower rate of disappearance up to 24 h. A mathematical approach for quantifying DNA repair kinetics using the rate of γ-H2AX decay (decay constant, Kdec), and yield of residual unrepaired breaks (Fres) demonstrated differences in individual repair capacity between the healthy donors. Conclusions The results indicate that the IFC-based γ-H2AX protocol may provide a practical and high-throughput platform for measurements of individual global DNA DSB repair capacity which can facilitate precision medicine by predicting individual radiosensitivity and risk of developing adverse effects related to radiotherapy treatment. Electronic supplementary material The online version of this article (10.1186/s13014-019-1344-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA. .,Present Address: Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.
| | - Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| |
Collapse
|
15
|
Dashti S, Taherian-Esfahani Z, Keshtkar A, Ghafouri-Fard S. Associations between XRCC3 Thr241Met polymorphisms and breast cancer risk: systematic-review and meta-analysis of 55 case-control studies. BMC MEDICAL GENETICS 2019; 20:79. [PMID: 31077156 PMCID: PMC6511159 DOI: 10.1186/s12881-019-0809-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The X-ray repair cross-complementing group 3 (XRCC3) is an efficient component of homologous recombination and is required for the preservation of chromosomal integrity in mammalian cells. The association between Thr241Met single-nucleotide polymorphism (SNP) in this gene and susceptibility to breast cancer has been assessed in several studies. Yet, reports are controversial. The present meta-analysis has been designed to identify whether this SNP is associated with susceptibility to breast cancer. METHODS We performed a systematic review and meta-analysis for retrieving the case-control studies on the associations between T241 M SNP and the risk of breast cancer. Crude odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to verify the association in dominant, recessive, and homozygote inheritance models. RESULTS We included 55 studies containing 30,966 sporadic breast cancer cases, 1174 familial breast cancer cases and 32,890 controls in the meta-analysis. In crude analyses, no association was detected between the mentioned SNP and breast cancer risk in recessive, homozygote or dominant models. However, ethnic based analysis showed that in sporadic breast cancer, the SNP was associated with breast cancer risk in Arab populations in homozygous (OR (95% CI) = 3.649 (2.029-6.563), p = 0.0001) and recessive models (OR (95% CI) = 4.092 (1.806-9.271), p = 0.001). The association was significant in Asian population in dominant model (OR (95% CI) = 1.296, p = 0.029). However, the associations was significant in familial breast cancer in mixed ethnic-based subgroup in homozygote and recessive models (OR (95% CI) = 0.451 (0.309-0.659), p = 0.0001, OR (95% CI) = 0.462 (0.298-0.716), p = 0.001 respectively). CONCLUSIONS Taken together, our results in a large sample of both sporadic and familial cases of breast cancer showed insignificant role of Thr241Met in the pathogenesis of this type of malignancy. Such results were more conclusive in sporadic cases. In familial cases, future studies are needed to verify our results.
Collapse
Affiliation(s)
- Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Taherian-Esfahani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Singh PK, Mistry KN, Chiramana H, Rank DN, Joshi CG. Exploring the deleterious SNPs in XRCC4 gene using computational approach and studying their association with breast cancer in the population of West India. Gene 2018; 655:13-19. [PMID: 29452234 DOI: 10.1016/j.gene.2018.02.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/21/2017] [Accepted: 02/12/2018] [Indexed: 01/24/2023]
Abstract
Non-homologous end joining (NHEJ) pathway has pivotal role in repair of double-strand DNA breaks that may lead to carcinogenesis. XRCC4 is one of the essential proteins of this pathway and single-nucleotide polymorphisms (SNPs) of this gene are reported to be associated with cancer risks. In our study, we first used computational approaches to predict the damaging variants of XRCC4 gene. Tools predicted rs79561451 (S110P) nsSNP as the most deleterious SNP. Along with this SNP, we analysed other two SNPs (rs3734091 and rs6869366) to study their association with breast cancer in population of West India. Variant rs3734091 was found to be significantly associated with breast cancer while rs6869366 variant did not show any association. These SNPs may influence the susceptibility of individuals to breast cancer in this population.
Collapse
Affiliation(s)
- Preety K Singh
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Affiliated to Sardar Patel University, Anand, Gujarat 388121, India
| | - Kinnari N Mistry
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Affiliated to Sardar Patel University, Anand, Gujarat 388121, India.
| | - Haritha Chiramana
- Manibhai Shivabhai Patel Cancer Centre, Shree Krishna Hospital, Karamsad, Anand, Gujarat, India
| | - Dharamshi N Rank
- Department of Animal Breeding and Genetics, Anand Agriculture University, Anand, Gujarat, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, Anand Agriculture University, Anand, Gujarat, India
| |
Collapse
|
17
|
The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. Cancers (Basel) 2017; 9:cancers9070081. [PMID: 28684677 PMCID: PMC5532617 DOI: 10.3390/cancers9070081] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious DNA lesions that if left unrepaired or are misrepaired, potentially result in chromosomal aberrations, known drivers of carcinogenesis. Pathways that direct the repair of DSBs are traditionally believed to be guardians of the genome as they protect cells from genomic instability. The prominent DSB repair pathway in human cells is the non-homologous end joining (NHEJ) pathway, which mediates template-independent re-ligation of the broken DNA molecule and is active in all phases of the cell cycle. Its role as a guardian of the genome is supported by the fact that defects in NHEJ lead to increased sensitivity to agents that induce DSBs and an increased frequency of chromosomal aberrations. Conversely, evidence from tumors and tumor cell lines has emerged that NHEJ also promotes chromosomal aberrations and genomic instability, particularly in cells that have a defect in one of the other DSB repair pathways. Collectively, the data present a conundrum: how can a single pathway both suppress and promote carcinogenesis? In this review, we will examine NHEJ's role as both a guardian and a disruptor of the genome and explain how underlying genetic context not only dictates whether NHEJ promotes or suppresses carcinogenesis, but also how it alters the response of tumors to conventional therapeutics.
Collapse
|
18
|
Majidinia M, Yousefi B. DNA repair and damage pathways in breast cancer development and therapy. DNA Repair (Amst) 2017; 54:22-29. [DOI: 10.1016/j.dnarep.2017.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/22/2022]
|
19
|
Convergent adaptation of cellular machineries in the evolution of large body masses and long life spans. Biogerontology 2017; 18:485-497. [PMID: 28573417 PMCID: PMC5514201 DOI: 10.1007/s10522-017-9713-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023]
Abstract
In evolutionary terms, life on the planet has taken the form of independently living cells for the majority of time. In comparison, the mammalian radiation is a relatively recent event. The common mammalian ancestor was probably small and short-lived. The “recent” acquisition of an extended longevity and large body mass of some species of mammals present on the earth today suggests the possibility that similar cellular mechanisms have been influenced by the forces of natural selection to create a convergent evolution of longevity. Many cellular mechanisms are potentially relevant for extending longevity; in this assay, we review the literature focusing primarily on two cellular features: (1) the capacity for extensive cellular proliferation of differentiated cells, while maintaining genome stability; and (2) the capacity to detect DNA damage. We have observed that longevity and body mass are both positively linked to these cellular mechanisms and then used statistical tools to evaluate their relative importance. Our analysis suggest that the capacity for extensive cellular proliferation while maintaining sufficient genome stability, correlates to species body mass while the capacity to correctly identify the presence of DNA damage seems more an attribute of long-lived species. Finally, our data are in support of the idea that a slower development, allowing for better DNA damage detection and handling, should associate with longer life span.
Collapse
|
20
|
Boege F. Comment on Shahadevan et al. "The relationship of single strand breaks in DNA to breast cancer risk and to tissue concentrations of oestrogens". Biomarkers 2017; 22:698-699. [PMID: 28286966 DOI: 10.1080/1354750x.2017.1306755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Fritz Boege
- a Institute of Clinical Chemistry and Laboratory Diagnostics , University Hospital , Düsseldorf , Germany
| |
Collapse
|
21
|
Huang CY, Tsai CW, Hsu CM, Shih LC, Chang WS, Shui HA, Bau DT. The role of XRCC6/Ku70 in nasopharyngeal carcinoma. Int J Oral Maxillofac Surg 2015; 44:1480-5. [PMID: 26149939 DOI: 10.1016/j.ijom.2015.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/09/2022]
Abstract
The association between XRCC6/Ku70, an upstream player in the DNA double-strand break repair system, and the risk of nasopharyngeal carcinoma (NPC) was examined. In this case-control study, 176 NPC patients and 352 cancer-free controls were genotyped, and the associations of XRCC6 promoter T-991C (rs5751129), promoter G-57C (rs2267437), promoter G-31A (rs132770), and intron 3 (rs132774) polymorphisms with NPC risk were evaluated. NPC tissue samples were also assessed for their XRCC6 mRNA and protein expression by real-time quantitative reverse transcription PCR and Western blotting, respectively. With regard to the XRCC6 promoter T-991C, the TC and CC genotypes were associated with a significantly increased risk of NPC compared with wild-type TT genotype (adjusted odds ratio 2.02 and 3.42, 95% confidence interval 1.21-3.32 and 1.28-8.94, P=0.0072 and 0.0165, respectively). The mRNA and protein expression levels for NPC tissues revealed significantly lower XRCC6 mRNA and protein expression in the NPC samples with TC/CC genotypes compared to those with the TT genotype (P=0.0210 and 0.0164, respectively). These findings suggest that XRCC6 may play an important role in the carcinogenesis of NPC and could serve as a chemotherapeutic target for personalized medicine and therapy.
Collapse
Affiliation(s)
- C-Y Huang
- Graduate Institute of Medical Sciences, National Defence Medical Centre, Taipei, Taiwan, ROC; Taichung Armed Forces General Hospital, Taichung, Taiwan, ROC
| | - C-W Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC; Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, ROC
| | - C-M Hsu
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, ROC
| | - L-C Shih
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, ROC
| | - W-S Chang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, ROC; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, ROC
| | - H-A Shui
- Graduate Institute of Medical Sciences, National Defence Medical Centre, Taipei, Taiwan, ROC
| | - D-T Bau
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC; Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, ROC; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|
22
|
Emami N, Saadat I, Omidvari S. Susceptibility to Colorectal Cancer and Two Genetic Polymorphisms of XRCC4. Pathol Oncol Res 2015; 21:881-5. [PMID: 25662981 DOI: 10.1007/s12253-015-9905-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 01/15/2015] [Indexed: 11/29/2022]
Abstract
The X-ray complementing group 4 (XRCC4, OMIM: 194363) plays a key role in non-homologous end-joining DNA repair pathway in mammalian cells. This pathway is believed to help maintain genomic stability. In the present study, it is hypothesized that genetic polymorphisms in the NHEJ repair XRCC4 gene may be associated with an increased risk in developing colorectal cancer (CRC). We genotyped two polymorphisms of XRCC4, G-1394T (rs6869366) and intron 3 insertion/deletion (I/D; rs28360071) in 200 colorectal cancer patients as well as 256 healthy individuals, and evaluated their association with CRC. We found that in G-1394T polymorphism, neither the TG nor the GG genotypes (versus the TT genotype) were associated with the risk of developing CRC. The results of our study indicate that in comparison with the II genotype, ID and DD genotypes had no significant association with the risk of developing CRC. Subjects with TT genotype and positive family history in colorectal cancer were found to be at a much lower risk of developing CRC in comparison with the reference group (OR = 0.31, 95%CI: 0.11-0.85, P = .023). It should be noted that participants having at least one G allele (TG+GG genotypes) were at a significantly higher risk to develop the disease compared with the reference group (OR = 9.10, 95%CI: 2.00-41.3, P = 0.004). In relation to I/D polymorphism, among participants, those with positive family history, either with ID (OR = .78, 95%CI: 2.26-10.0, P < 0.001) or DD genotypes (OR = 5.73, 95%CI: 1.99-16.4, P = 0.001) had a significantly association with the disease. Among participants with a positive family history in CRC, the haplotype GD dramatically increased the risk of developing CRC (OR = 10.2, 95%CI: 2.28-46, P = 0.002). The results of this study indicate that G-1394T and I/D polymorphisms of XRCC4 among individuals with positive family history for colorectal cancer substantially increase the risk factor for developing colorectal cancers.
Collapse
Affiliation(s)
- Naghmeh Emami
- Department of Biology, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | | | | |
Collapse
|
23
|
Liu JC, Shen WC, Shih TC, Tsai CW, Chang WS, Cho DY, Tsai CH, Bau DT. The current progress and future prospects of personalized radiogenomic cancer study. Biomedicine (Taipei) 2015; 5:2. [PMID: 25705582 PMCID: PMC4328115 DOI: 10.7603/s40681-015-0002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/05/2015] [Indexed: 12/14/2022] Open
Abstract
During the last twenty years, mounting studies have supported the hypothesis that there is a genetic component that plays an important role in clinically observed variability in individual tissue/organ toxicity after radiotherapy. We propose the term “Personalized Radiogenomics” for the translational study of individual genetic variations that may associate with or contribute to the responses of tissues to radiation therapy used in the treatment of all types of cancer. The missions of personalized radiogenomic research are 1) to reveal the related genes, proteins, and biological pathways responsible for non-tumor or tumor tissue toxicity resulting from radiotherapy that could be targeted with radio-sensitizing and/or radio-protective agents, and 2) to identify specific genetic markers that can be used in risk prediction and evaluation models before and after clinical cancer surgery. For the members of the Terry Fox Cancer Research Lab in China Medical University and Hospital, the long-term goal is to develop SNP-based risk models that can be used to stratify patients to more precisely tailored radiotherapy protocols. Worldwide, the field has evolved over the last two decades in parallel with rapid advances in genetic and genomic technology, moving step by step from narrowly focused candidate gene studies to large-scale, collaborative genome-wide association studies. This article will summarize the candidate gene association studies published so far from the Terry Fox Cancer Research Lab as well as worldwide on the risk of radiation-related cancers and highlight some wholegenome association studies showing feasibility in fulfilling the dream of personalized radiogenomic cancer therapy.
Collapse
Affiliation(s)
- Juhn-Cherng Liu
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Graduate Institute of Clinical Medical Science, China Medical University, 404 Taichung, Taiwan
| | - Wu-Chung Shen
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Department of Biomedical Imaging and Radiological Science, China Medical University, 404 Taichung, Taiwan
| | - Tzu-Ching Shih
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Department of Biomedical Imaging and Radiological Science, China Medical University, 404 Taichung, Taiwan
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Der-Yang Cho
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Chang-Hai Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Graduate Institute of Clinical Medical Science, China Medical University, 404 Taichung, Taiwan
| |
Collapse
|
24
|
The use of ovarian cancer cells from patients undergoing surgery to generate primary cultures capable of undergoing functional analysis. PLoS One 2014; 9:e90604. [PMID: 24603616 PMCID: PMC3948341 DOI: 10.1371/journal.pone.0090604] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/02/2014] [Indexed: 01/10/2023] Open
Abstract
The use of cell lines or animal models has significant disadvantages when dealing with a set of heterogeneous diseases such as epithelial ovarian cancer. This has clinical relevance in that biomarkers developed using cell line or animal models are often not transferable to the clinical setting. In this study, we describe the development of a robust protocol for developing primary cultures of ovarian cancer which will overcome some of these difficulties. Women undergoing surgery for ovarian cancer were recruited and samples of ascites and solid tumour deposits were used to develop primary cultures. Cells were characterised using a panel of immunofluorescent antibodies prior to use in a variety of assays including functional assessment of DNA repair pathways. During the four year study period, viable cultures, confirmed to be epithelial in origin were generated from 156 of 172 (91%) cases recruited. Characterisation was carried out using a panel of antibodies including pancytokeratin, CA125, EpCAM, MOC-31, D2-40 and vimentin. Senescence occurred between the 2nd and 8th passages in all cultures except one in which spontaneous immortalization occurred. Cells could be successfully cultured even after a period of storage at 4°C and cultured cells were capable of being used for a variety of applications including functional assays. Upon functional assessment there was minimal intra-tumour heterogeneity. It is therefore possible to derive viable ovarian cancer cell cultures in the majority of patients undergoing surgery. Cells cultured directly from patient cancers provide an accurate and highly diverse model.
Collapse
|
25
|
Wu HC, Delgado-Cruzata L, Machella N, Wang Q, Santella RM, Terry MB. DNA double-strand break repair genotype and phenotype and breast cancer risk within sisters from the New York site of the Breast Cancer Family Registry (BCFR). Cancer Causes Control 2013; 24:2157-68. [PMID: 24062231 DOI: 10.1007/s10552-013-0292-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/13/2013] [Indexed: 12/11/2022]
Abstract
PURPOSE We previously observed that poor DNA repair phenotype is associated with increased breast cancer (BC) risk within families. Here, we examined whether genetic variation in double-strand break repair (DSBR) genes is associated with BC risk and if genotypes are related to phenotype in unaffected women. METHODS Using data from the New York site of the Breast Cancer Family Registry, we investigated 25 single-nucleotide polymorphism (SNPs) involved in DSBR using biospecimens from 337 BC cases and 410 unaffected sister controls. RESULTS Genotypes in XRCC4 were associated with BC risk, with ORs of 1.67 (95 % CI 1.01-2.76) for the combined GA/AA of rs1805377 and 1.69 (95 % CI 1.03-2.77) for rs1056503 TG/GG; these associations were no longer statistically significant in multivariable conditional logistic regression models. When examining the association of SNPs with phenotype, we found that genotypes of XRCC5 rs3834 and rs1051685, which were highly correlated with each other, were associated with end-joining (EJ) capacity; women with the XRCC5 rs3834 GA genotype had better DNA repair as measured by higher levels of EJ capacity (37.8 ± 14.1 % for GA vs. 27.9 ± 11.8 % for GG carriers p = 0.0006). Women with the AA genotype of BRCA1 rs799917 also had higher EJ capacity (35.1 ± 9.2 %) than those with GG (26.4 ± 10.1 %, p = 0.02). CONCLUSIONS Overall, we found that selected DSBR genotypes were associated with phenotype, although they were not associated with BC risk itself, suggesting that phenotypic measures are influenced by endogenous and exogenous factors across the life course and may be better markers than genotypic measures for ascertaining BC risk.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Epidemiology, Mailman School of Public Health of Columbia University, 722 West 168th St., 724A, New York, NY, 10032, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wang LE, Gorlova OY, Ying J, Qiao Y, Weng SF, Lee AT, Gregersen PK, Spitz MR, Amos CI, Wei Q. Genome-wide association study reveals novel genetic determinants of DNA repair capacity in lung cancer. Cancer Res 2012; 73:256-64. [PMID: 23108145 DOI: 10.1158/0008-5472.can-12-1915] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Suboptimal cellular DNA repair capacity (DRC) has been shown to be associated with enhanced cancer risk, but genetic variants affecting the DRC phenotype have not been comprehensively investigated. In this study, with the available DRC phenotype data, we analyzed correlations between the DRC phenotype and genotypes detected by the Illumina 317K platform in 1,774 individuals of European ancestry from a Texas lung cancer genome-wide association study. The discovery phase was followed by a replication in an independent set of 1,374 cases and controls of European ancestry. We applied a generalized linear model with single nucleotide polymorphisms as predictors and DRC (a continuous variable) as the outcome. Covariates of age, sex, pack-years of smoking, DRC assay-related variables, and case-control status of the study participants were adjusted in the model. We validated that reduced DRC was associated with an increased risk of lung cancer in both independent datasets. Several suggestive loci that contributed to the DRC phenotype were defined in ERCC2/XPD, PHACTR2, and DUSP1. In summary, we determined that DRC is an independent risk factor for lung cancer, and we defined several genetic loci contributing to DRC phenotype.
Collapse
Affiliation(s)
- Li-E Wang
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang W, Pan X, Huo X, Yan F, Wang M, Wang D, Gao Y, Cao Q, Luo D, Qin C, Yin C, Zhang Z. A functional polymorphism C-1310G in the promoter region of Ku70/XRCC6 is associated with risk of renal cell carcinoma. Mol Carcinog 2012; 51 Suppl 1:E183-90. [PMID: 22593040 DOI: 10.1002/mc.21914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/13/2012] [Accepted: 03/19/2012] [Indexed: 11/11/2022]
Abstract
The DNA repair gene Ku70 plays a key role in the DNA double strand break (DSB) repair system. Defects in DSB repair capacity can lead to genomic instability. We hypothesized that the Ku70 C-1310G polymorphism (rs2267437) was associated with risk of renal cell carcinoma (RCC). We genotyped the Ku70 C-1310G polymorphism in a case-control study of 620 patients and 623 controls in a Chinese population and assessed the effects of C-1310G polymorphism on RCC susceptibility and survival. We then examined the functionality of this polymorphism. Compared with the Ku70-1310CC genotype, the CG and CG/GG genotypes had a significantly increased risk of RCC [adjusted odds ratio (OR) = 1.47, 95% confidence interval (CI) = 1.16-1.87 for CG and OR = 1.47, 95% CI = 1.16-1.86 for CG/GG]. However, the C-1310G polymorphism did not influence the survival of RCC. The in vivo experiments with normal renal tissues revealed statistically significantly lower Ku70 mRNA expression in samples with CG/GG genotypes relative to those with the CC genotype (P < 0.05). In vitro luciferase assays in various cell lines showed lower luciferase activity for the -1310G allele than for the -1310C allele. These results suggest that the Ku70 C-1310G polymorphism is involved in the etiology of RCC and thus may be a marker for genetic susceptibility to RCC in Chinese populations. Larger studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Nanjing Medical University, Yizheng, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang W, Gao Y, Yan F, Wang M, Hu F, Wang D, Cao Q, Qin C, Yin C, Zhang Z, Pan X. Association of Ku70 A-31G polymorphism and risk of renal cell carcinoma in a Chinese population. DNA Cell Biol 2012; 31:1314-20. [PMID: 22455395 DOI: 10.1089/dna.2011.1540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The DNA repair gene Ku70 plays a key role in the DNA double-strand breaks (DSBs) repair system. Defects in DSBs repair capacity can lead to genomic instability. We hypothesized that the Ku70 A-31G polymorphism (rs132770) was associated with the risk of renal cell carcinoma (RCC). In a hospital-based case-control study of 620 RCC patients and 623 cancer-free controls frequency matched by age and sex, we genotyped the functional polymorphism Ku70 A-31G (rs132770). Thirty-eight normal renal tissue samples with different genotypes were tested to estimate the Ku70 mRNA expression by real-time quantitative reverse transcription. Compared with the GG genotype, the GA and GA/AA genotypes had a significantly decreased risk of RCC [adjusted odds ratio (OR) = 0.62, 95% confidence interval (CI) = 0.44-0.87 for GA, and OR = 0.62, 95% CI = 0.45-0.86 for GA/AA]. The in vivo experiments with normal renal tissues revealed that a statistically significantly higher Ku70 mRNA expression was identified in samples with GA/AA genotypes compared with those with GG genotypes (p = 0.001). These results suggested that the Ku70 A-31G polymorphism is involved in the etiology of RCC and, thus, may be a marker for genetic susceptibility to RCC in the Chinese populations.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bau DT, Lin CC, Chiu CF, Tsai MH. Role of nonhomologous end-joining in oral cancer and personalized pharmacogenomics. Biomedicine (Taipei) 2012. [DOI: 10.1016/j.biomed.2011.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Yang MD, Tsai CW, Chang WS, Tsou YA, Wu CN, Bau DT. Predictive role of XRCC5/ XRCC6 genotypes in digestive system cancers. World J Gastrointest Oncol 2011; 3:175-81. [PMID: 22224172 PMCID: PMC3251741 DOI: 10.4251/wjgo.v3.i12.175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 10/06/2011] [Accepted: 10/14/2011] [Indexed: 02/05/2023] Open
Abstract
Cancers are a worldwide concern; oral, esophageal and gastrointestinal cancers represent important causes of cancer-related mortality and contribute to a significant burden of human health. The DNA repair systems are the genome caretakers, playing a critical role in the initiation and progression of cancers. However, the association between the genomic variations of DNA repair genes and cancer susceptibility is not well understood. This review focuses on the polymorphic genotypes of the non-homologous end-joining DNA repair system, highlighting the role of two genes of this pathway, XRCC5 and XRCC6, in the susceptibility to digestive system cancers and discussing their potential contributions to personalized medicine.
Collapse
Affiliation(s)
- Mei-Due Yang
- Mei-Due Yang, Chia-Wen Tsai, Wen-Shin Chang, Yung-An Tsou, Cheng-Nan Wu, Da-Tian Bau, Terry Fox Cancer Research Laboratory, China Medical University Hospital, 2 Yuh-Der Road, Taichung 40402, Taiwan, China
| | | | | | | | | | | |
Collapse
|
31
|
Abdel-Rahman SZ, El-Zein RA. Evaluating the effects of genetic variants of DNA repair genes using cytogenetic mutagen sensitivity approaches. Biomarkers 2011; 16:393-404. [PMID: 21595606 DOI: 10.3109/1354750x.2011.577237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutagen sensitivity, measured in short-term cultures of peripheral blood lymphocytes by cytogenetic endpoints, is an indirect measure for DNA repair capacity and has been used for many years as a biomarker for intrinsic susceptibility for cancer. In this article, we briefly give an overview of the different cytogenetic mutagen sensitivity approaches that have been used successfully to evaluate the biological effects of polymorphisms in DNA repair genes based on a current review of the literature and based on the need for biomarkers that would allow the characterization of the biological and functional significance of such polymorphisms. We also address some of the future challenges facing this emerging area of research.
Collapse
Affiliation(s)
- Sherif Z Abdel-Rahman
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, 77555-1062, USA.
| | | |
Collapse
|
32
|
Yang MD, Wang HC, Chang WS, Tsai CW, Bau DT. Genetic polymorphisms of DNA double strand break gene Ku70 and gastric cancer in Taiwan. BMC Cancer 2011; 11:174. [PMID: 21575261 PMCID: PMC3111404 DOI: 10.1186/1471-2407-11-174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 05/17/2011] [Indexed: 11/23/2022] Open
Abstract
Background and aim The DNA repair gene Ku70, an important member of non-homologous end-joining repair system, is thought to play an important role in the repairing of DNA double strand breaks. It is known that defects in double strand break repair capacity can lead to irreversible genomic instability. However, the polymorphic variants of Ku70, have never been reported about their association with gastric cancer susceptibility. Methods In this hospital-based case-control study, the associations of Ku70 promoter T-991C (rs5751129), promoter G-57C (rs2267437), promoter A-31G (rs132770), and intron 3 (rs132774) polymorphisms with gastric cancer risk in a Taiwanese population were investigated. In total, 136 patients with gastric cancer and 560 age- and gender-matched healthy controls recruited from the China Medical Hospital in Taiwan were genotyped. Results As for Ku70 promoter T-991C, the ORs after adjusted by age and gender of the people carrying TC and CC genotypes were 2.41 (95% CI = 1.53-3.88) and 3.21 (95% CI = 0.96-9.41) respectively, compared to those carrying TT wild-type genotype. The P for trend was significant (P < 0.0001). In the dominant model (TC plus CC versus TT), the association between Ku70 promoter T-991C polymorphism and the risk for gastric cancer was also significant (adjusted OR = 2.48, 95% CI = 1.74-3.92). When stratified by age and gender, the association was restricted to those at the age of 55 or elder of age (TC vs TT: adjusted OR = 2.52, 95% CI = 1.37-4.68, P = 0.0139) and male (TC vs TT: adjusted OR = 2.58, 95% CI = 1.33-4.47, P = 0.0085). As for the other three polymorphisms, there was no difference between both groups in the distributions of their genotype frequencies. Conclusion In conclusion, the Ku70 promoter T-991C (rs5751129), but not the Ku70 promoter C-57G (rs2267437), promoter A-31G (rs132770) or intron 3 (rs132774), is associated with gastric cancer susceptibility. This polymorphism may be a novel useful marker for gastric carcinogenesis.
Collapse
Affiliation(s)
- Mei-Due Yang
- Terry Fox Cancer Research Lab, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | | | | | | | | |
Collapse
|
33
|
Zhang Z, Hu W. A single nucleotide polymorphism in XRCC4 gene is associated with reduced colorectal cancer susceptibility in female. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1000-1948(11)60030-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Bau DT, Tsai CW, Wu CN. Role of the XRCC5/XRCC6 dimer in carcinogenesis and pharmacogenomics. Pharmacogenomics 2011; 12:515-34. [PMID: 21521024 DOI: 10.2217/pgs.10.209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Over the past few decades, the incidence of cancer has rapidly increased all over the world and cancer remains a major threat to public health. It is believed that cancer results from a series of genetic alterations that lead to the progressive disorder of the normal mechanisms controlling cell proliferation, differentiation, death and/or genomic stability. The response of the cell to genetic injury and its ability to maintain genomic stability by means of a variety of DNA repair mechanisms are therefore essential in preventing tumor initiation and progression. From the same viewpoint, the relative role of DNA repair as a biomarker for prognosis, predictor of drug and therapy responses or indeed as a target for novel gene therapy, is very promising. In this article, we have summarized the studies investigating the association between the XRCC5/XRCC6 dimer and the susceptibility to multiple cancers and discuss its role in carcinogenesis and its potential application to anticancer drug discovery.
Collapse
Affiliation(s)
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404 Taiwan, Republic of China
| | - Cheng-Nan Wu
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404 Taiwan, Republic of China
- Department of Medical Laboratory Science & Biotechnology, Central-Taiwan University of Science & Technology, Taichung, Taiwan, Republic of China
| |
Collapse
|
35
|
El-Zein R, Vral A, Etzel CJ. Cytokinesis-blocked micronucleus assay and cancer risk assessment. Mutagenesis 2011; 26:101-6. [PMID: 21164189 DOI: 10.1093/mutage/geq071] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer risk assessment is a multidisciplinary process that goes beyond the scope of classical epidemiology to include the biological evaluation of individual differences to carcinogenic exposures. The inclusion of genetic biomarkers such as mutagen sensitivity or cytokinesis-blocked micronucleus (CBMN) assay end points into risk assessment models allows for a more comprehensive determination of cancer risk that includes known demographic (age and gender), lifestyle exposures (smoking and alcohol) and occupational or environmental exposures. The CBMN assay generates multiple correlated end points that, after applying data reduction methods, could be combined into a summary measure that incorporates information from each individual variable into a single (or possible multiple, uncorrelated) measure of risk. In this article, we highlight the use of the CBMN assay in radiosensitivity assessment. In addition, we demonstrate the potential use of the combined summary measures in cancer risk assessment as a result of chronic exposure to tobacco carcinogens. The simplicity, rapidity and sensitivity of the CBMN assay not only make it a valuable tool for screening but also the multiple end points simultaneously generated lead to a better understanding of the underlying mechanisms involved in the carcinogenic process that could in turn substantially improve risk predictions.
Collapse
Affiliation(s)
- Randa El-Zein
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, 1155 Pressler Street, Unit 1340, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
36
|
Turner HC, Brenner DJ, Chen Y, Bertucci A, Zhang J, Wang H, Lyulko OV, Xu Y, Shuryak I, Schaefer J, Simaan N, Randers-Pehrson G, Yao YL, Amundson SA, Garty G. Adapting the γ-H2AX assay for automated processing in human lymphocytes. 1. Technological aspects. Radiat Res 2010; 175:282-90. [PMID: 21388271 DOI: 10.1667/rr2125.1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The immunofluorescence-based detection of γ-H2AX is a reliable and sensitive method for quantitatively measuring DNA double-strand breaks (DSBs) in irradiated samples. Since H2AX phosphorylation is highly linear with radiation dose, this well-established biomarker is in current use in radiation biodosimetry. At the Center for High-Throughput Minimally Invasive Radiation Biodosimetry, we have developed a fully automated high-throughput system, the RABIT (Rapid Automated Biodosimetry Tool), that can be used to measure γ-H2AX yields from fingerstick-derived samples of blood. The RABIT workstation has been designed to fully automate the γ-H2AX immunocytochemical protocol, from the isolation of human blood lymphocytes in heparin-coated PVC capillaries to the immunolabeling of γ-H2AX protein and image acquisition to determine fluorescence yield. High throughput is achieved through the use of purpose-built robotics, lymphocyte handling in 96-well filter-bottomed plates, and high-speed imaging. The goal of the present study was to optimize and validate the performance of the RABIT system for the reproducible and quantitative detection of γ-H2AX total fluorescence in lymphocytes in a multiwell format. Validation of our biodosimetry platform was achieved by the linear detection of a dose-dependent increase in γ-H2AX fluorescence in peripheral blood samples irradiated ex vivo with γ rays over the range 0 to 8 Gy. This study demonstrates for the first time the optimization and use of our robotically based biodosimetry workstation to successfully quantify γ-H2AX total fluorescence in irradiated peripheral lymphocytes.
Collapse
Affiliation(s)
- Helen C Turner
- Center for Radiological Research, Columbia University Medical Center, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bau DT, Chang CH, Tsai MH, Chiu CF, Tsou YA, Wang RF, Tsai CW, Tsai RY. Association between DNA repair gene ATM polymorphisms and oral cancer susceptibility. Laryngoscope 2010; 120:2417-22. [DOI: 10.1002/lary.21009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Haghighi MM, Taleghani MY, Mohebbi SR, Vahedi M, Fatemi SR, Zali N, Shemirani AI, Zali MR. Impact of EXO1 polymorphism in susceptibility to colorectal cancer. Genet Test Mol Biomarkers 2010; 14:649-52. [PMID: 20854105 DOI: 10.1089/gtmb.2010.0034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIM One candidate gene for colorectal cancer (CRC) susceptibility is exonuclease 1 (EXO1). It is a member of RAD2 nuclease family, which plays a major role in mismatch repair, DNA replication, and recombination. Single-nucleotide polymorphisms are shown to be related with cancer incidence. The aim of the present study was to examine the association between the L757P polymorphism at exon 13 of the EXO1 gene and the risk of CRC in Iranian patients. METHODS In this case-control study, 90 cases and 98 healthy control samples were analyzed genetically. The EXO1 polymorphism, P757L, was analyzed by polymerase chain reaction-restriction fragment length polymorphism. The obtained polymorphisms were examined for the relationship with CRC risk and also clinicopathological characteristics. RESULTS Our findings showed that patients with the Leu/Leu genotype have a reduced risk of CRC (adjusted odds ratio [OR] = 0.192, 95% confidence interval [CI]: 0.040-0.921) when the Pro/Leu and Pro/Pro genotypes were blended and they were considered as the reference. The Leu/Leu genotype also showed a reduced risk (adjusted OR = 0.168, 95% CI: 0.034-0.816) when the Pro/Pro genotype was a reference; nevertheless, the Pro/Leu genotype did not reveal a significant association with CRC at the same status (adjusted OR = 0.686, 95% CI: 0.367-1.284). CONCLUSIONS Our results provide evidence diagnosing that the Leu/Leu genotype of EXO1 showed an inverse association with CRC. In addition, despite other investigations, we could define a significant association between the Leu allele and CRC (p = 0.001).
Collapse
Affiliation(s)
- Mahdi Montazer Haghighi
- Research Center for Gastroenterology and Liver Diseases, Taleghani Hospital, Shaheed Beheshti Medical University, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Loizidou MA, Cariolou MA, Neuhausen SL, Newbold RF, Bashiardes E, Marcou Y, Michael T, Daniel M, Kakouri E, Papadopoulos P, Malas S, Hadjisavvas A, Kyriacou K. Genetic variation in genes interacting with BRCA1/2 and risk of breast cancer in the Cypriot population. Breast Cancer Res Treat 2009; 121:147-56. [PMID: 19714462 DOI: 10.1007/s10549-009-0518-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 08/13/2009] [Indexed: 01/05/2023]
Abstract
Inability to correctly repair DNA damage is known to play a role in the development of breast cancer. Single nucleotide polymorphisms (SNPs) of DNA repair genes have been identified, which modify the DNA repair capacity, which in turn may affect the risk of developing breast cancer. To assess whether alterations in DNA repair genes contribute to breast cancer, we genotyped 62 SNPs in 29 genes in 1,109 Cypriot women with breast cancer and 1,177 age-matched healthy controls. Five SNPs were associated with breast cancer. SNPs rs13312840 and rs769416 in the NBS1 gene were associated with a decrease in breast cancer risk (OR TT vs. TC/CC = 0.58; 95% CI, 0.37-0.92; P = 0.019 and OR GG vs. GT/TT = 0.23, 95% CI 0.06-0.85, P = 0.017, respectively). The variant allele of MRE11A rs556477 was also associated with a reduced risk of developing the disease (OR AA vs. AG/GG = 0.76; 95% CI, 0.64-0.91; P = 0.0022). MUS81 rs545500 and PBOV1 rs6927706 SNPs were associated with an increased risk of developing breast cancer (OR GG vs. GC/CC = 1.21, 95% CI, 1.02-1.45; P = 0.031; OR AA vs. AG/GG = 1.53, 95% CI, 1.07-2.18; P = 0.019, respectively). Finally, haplotype-based tests identified significant associations between specific haplotypes in MRE11A and NBS1 genes and breast cancer risk. Further large-scale studies are needed to confirm these results.
Collapse
Affiliation(s)
- Maria A Loizidou
- Department of Electron Microscope/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tsai MH, Tseng HC, Liu CS, Chang CL, Tsai CW, Tsou YA, Wang RF, Lin CC, Wang HC, Chiu CF, Bau DT. Interaction of Exo1 genotypes and smoking habit in oral cancer in Taiwan. Oral Oncol 2009; 45:e90-4. [PMID: 19515603 DOI: 10.1016/j.oraloncology.2009.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/19/2009] [Accepted: 03/23/2009] [Indexed: 12/15/2022]
Abstract
Exonuclease 1 (Exo1) is an important nuclease involved in the mismatch repair system that helps to maintain genomic stability, to modulate DNA recombination, and to mediate cell cycle arrest. Potential polymorphisms in Exo1 may alter cancer risks by influencing the repair activity of Exo1. Therefore, we hypothesized that single-nucleotide polymorphisms in Exo1 were associated with the risk of oral cancer. In this hospital-based study, the associations of Exo1 A-1419G (rs3754093), C-908G (rs10802996), A238G (rs1776177), C498T (rs1635517), K589E (rs1047840), G670E (rs1776148), C723R (rs1635498), L757P (rs9350) and C3114T (rs851797) polymorphisms with oral cancer risk in a central Taiwan population were investigated. In total, 680 patients with oral cancer and 680 age- and gender-matched healthy controls recruited from the China Medical University Hospital were genotyped. A significantly different distribution is found in the frequency of the Exo1 K589E genotype, but not the other genotypes, between the oral cancer and control groups. The A allele Exo1 K589E conferred a significant (P=6.18E-8) increased risk of oral cancer. Gene-environment interactions with smoking were significant for Exo1 K589E polymorphism (OR=2.509, 95% CI=1.914-3.287). Our results provide evidence that the A allele of the Exo1 K589E may be associated with the development of oral cancer.
Collapse
Affiliation(s)
- Ming-Hsui Tsai
- China Medical University Hospital, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Willems P, De Ruyck K, Van den Broecke R, Makar A, Perletti G, Thierens H, Vral A. A polymorphism in the promoter region of Ku70/XRCC6, associated with breast cancer risk and oestrogen exposure. J Cancer Res Clin Oncol 2009; 135:1159-68. [DOI: 10.1007/s00432-009-0556-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 01/26/2009] [Indexed: 01/09/2023]
|
42
|
Hsu CF, Tseng HC, Chiu CF, Liang SY, Tsai CW, Tsai MH, Bau DT. Association between DNA double strand break gene Ku80 polymorphisms and oral cancer susceptibility. Oral Oncol 2009; 45:789-93. [PMID: 19217823 DOI: 10.1016/j.oraloncology.2008.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 11/18/2022]
Abstract
The DNA double strand break repair gene Ku80 is thought to play a major role in the caretaking of the overall genome stability. It is very possible that defective in double strand break repair capacity can lead to human carcinogenesis. Thus, the polymorphic variants of Ku80 were firstly investigated regarding their association with oral cancer susceptibility. In this hospital-based case-control study, the association of Ku80 promoter G-1401T (rs828907), promoter C-319T (rs11685387), and intron19 (rs9288518) polymorphisms with oral cancer risk in a Taiwanese population was investigated. 600 patients with oral cancer and 600 age- and gender-matched healthy controls recruited were genotyped and analyzed by PCR-RFLP method. There were significant differences between oral cancer and control groups in the distributions of their genotypes (P=0.0038) and allelic frequencies (P=0.0044) in the Ku80 promoter G-1401T polymorphism. In the other two polymorphisms, there was no difference between both groups in the distribution of either genotype or allelic frequency. There is a synergistic gene-environmental interaction between Ku80 and areca chewing. Compared with G/G genotype in Ku80 promoter G-1401T, the G/T plus T/T significantly enhanced the risk only in the areca chewers (odds ratio=1.603; 95% confidence interval=1.053-2.011), not in the non-areca chewers. In conclusion, the Ku80 promoter G-1401T is correlated with oral cancer susceptibility and this polymorphism may be a useful marker for oral cancer prevention and early detection.
Collapse
Affiliation(s)
- Chia-Fang Hsu
- Department of Terry Fox Cancer Research Lab, China Medical University Hospital, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
43
|
Pastwa E, Somiari RI, Malinowski M, Somiari SB, Winters TA. In vitro non-homologous DNA end joining assays--the 20th anniversary. Int J Biochem Cell Biol 2008; 41:1254-60. [PMID: 19110069 DOI: 10.1016/j.biocel.2008.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/20/2008] [Accepted: 11/28/2008] [Indexed: 11/16/2022]
Abstract
DNA double-strand breaks (DSBs) are the most serious forms of DNA damage in cells. Unrepaired or misrepaired DSBs account for some of the genetic instabilities that lead to mutations or cell death, and consequently, to cancer predisposition. In human cells non-homologous DNA end joining (NHEJ) is the main repair mechanism of these breaks. Systems for DNA end joining study have been developing during the last 20 years. New assays have some advantages over earlier in vitro DSBs repair assays because they are less time-consuming, allow the use of clinical material and examination of the joining DNA ends produced physiologically in mammalian cells. Proteins involved in NHEJ repair pathway can serve as biomarkers or molecular targets for anticancer drugs. Results of studies on NHEJ in cancer could help to select potent repair inhibitors that may selectively sensitize tumor cells to ionizing radiation (IR) and chemotherapy. Here, we review the principles and practice of in vitro NHEJ assays and provide some insights into the future prospects of this assay in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Elzbieta Pastwa
- Department of Molecular Genetics, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| | | | | | | | | |
Collapse
|
44
|
Chistiakov DA, Voronova NV, Chistiakov PA. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncol 2008; 47:809-24. [PMID: 18568480 DOI: 10.1080/02841860801885969] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population.
Collapse
|
45
|
Willems P, Claes K, Baeyens A, Vandersickel V, Werbrouck J, De Ruyck K, Poppe B, Van den Broecke R, Makar A, Marras E, Perletti G, Thierens H, Vral A. Polymorphisms in nonhomologous end-joining genes associated with breast cancer risk and chromosomal radiosensitivity. Genes Chromosomes Cancer 2008; 47:137-48. [PMID: 18000863 DOI: 10.1002/gcc.20515] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
As enhanced chromosomal radiosensitivity (CRS) results from non- or misrepaired double strand breaks (DSBs) and is a hallmark for breast cancer and single nucleotide polymorphisms (SNPs) in DSB repair genes, such as non homologous end-joining (NHEJ) genes, could be involved in CRS and genetic predisposition to breast cancer. In this study, we investigated the association of five SNPs in three different NHEJ genes with breast cancer in a population-based case-control setting. The total patient population composed of a selected group of patients with a family history of the disease and an unselected group, consisting mainly of sporadic cases. SNP analysis showed that the c.2099-2408G>A SNP (XRCC5Ku80) [corrected] has a significant, positive odds ratio (OR) of 2.81 (95% confidence interval (CI): 1.30-6.05) for the heterozygous (He) and homozygous variant (HV) genotypes in the selected patient group. For the c.-1310 C>G SNP (XRCC6Ku70)[corrected] a significant OR of 1.85 (95%CI: 1.01-3.41) was found for the He genotype in the unselected patient group. On the contrary, the HV genotype of c.1781G>T (XRCC6Ku70) [corrected] displays a significant, negative OR of 0.43 (95%CI: 0.18-0.99) in the total patient population. The He+HV genotypes of the c.2099-2408G>A SNP (XRCC5Ku80) [corrected] also showed high and significant ORs in the group of "radiosensitive," familial breast cancer patients. In conclusion, our results provide preliminary evidence that the variant allele of c.-1310C>G (XRCC6Ku70) [corrected]and c.2099-2408G>A (XRCC5Ku80) [corrected] are risk alleles for breast cancer as well as CRS. The HV genotype of c.1781G>T (XRCC6Ku70) [corrected] on the contrary, seems to protect against breast cancer and ionizing radiation induced micronuclei.
Collapse
Affiliation(s)
- Petra Willems
- Department of Anatomy, Embryology, Histology and Medical Physics, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Machella N, Terry MB, Zipprich J, Gurvich I, Liao Y, Senie RT, Kennedy DO, Santella RM. Double-strand breaks repair in lymphoblastoid cell lines from sisters discordant for breast cancer from the New York site of the BCFR. Carcinogenesis 2008; 29:1367-72. [PMID: 18566018 DOI: 10.1093/carcin/bgn140] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Unrepaired DNA double-strand breaks (DSBs) may have serious consequences for cells by inducing chromosomal aberrations, thereby increasing genetic instability and cancer risk. One's capacity to repair DSB is therefore an important factor to consider when estimating cancer risk. We assessed DNA end-joining (EJ) capacity in cell lines derived from sisters discordant for breast cancer to determine if individual differences in DSB repair are a significant risk factor. We used an in vitro phenotypic assay on nuclear extracts from lymphoblasts of 179 subjects including 86 cases and 93 controls. EJ activity was functionally estimated as the ability of extracts to join together monomers of the plasmid pUC18 linearized either with sticky (EcoRI) or blunt ends (HincII). Mean percentage of EJ capacity was slightly lower in cases than controls, both for EcoRI (cases 27.9 +/- 11.1; controls 29.6 +/- 10.7, P = 0.28) and HincII substrates (cases 28.8 +/- 12.2; controls 30.6 +/- 13.0, P = 0.36); however, no significant differences were observed. Categorizing EJ capacity into tertiles and using the highest activity as the referent, we observed elevated associations for each tertile of decreased repair [Odds ratio (OR) = 2.20, 95% confidence interval (CI) = 0.77-6.22 and OR = 4.22, 95% CI thinsp;= 1.22-14.0, P = 0.02], respectively, for EcoRI. Results were not statistically significant for HincII (OR = 1.37, 95% CI = 0.51-3.70 and OR = 2.32, 95% CI = 0.57-9.38, P = 0.24). These data suggest that individual differences in EJ capacity may represent a risk factor predisposing women to breast cancer.
Collapse
Affiliation(s)
- Nicola Machella
- Department of Environmental Health Sciences, Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
DNA-repair genetic polymorphisms and risk of breast cancer in Cyprus. Breast Cancer Res Treat 2008; 115:623-7. [PMID: 18553220 DOI: 10.1007/s10549-008-0084-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
Abstract
The DNA repair pathway is known to play a role in the etiology of breast cancer. A number of studies have demonstrated that common germline variants in genes involved in the DNA repair pathway influence breast cancer risk. To assess whether alterations in DNA repair genes contribute to breast cancer, we genotyped 12 single nucleotide polymorphisms (SNPs) in 1,109 Cypriot women with breast cancer and 1,177 age-matched healthy controls. We found significant associations with breast cancer for SNPs in the BRCA2 and MRE11A genes. Carriers of the BRCA2 rs1799944 variant (991 Asp) were found to have an increased risk of breast cancer (OR = 1.41, 95% CI 1.08-1.83, P = 0.01) with P (trend) = 0.0076. Homozygous carriers of the MRE11A rs601341 A allele had an increased risk of breast cancer (OR = 1.36, 95% CI 1.08-1.71, P = 0.009) with P (trend) = 0.0087. This study suggests that genetic variants in BRCA2 and MRE11A are associated with breast cancer risk.
Collapse
|
48
|
Bau DT, Tseng HC, Wang CH, Chiu CF, Hua CH, Wu CN, Liang SY, Wang CL, Tsai CW, Tsai MH. Oral cancer and genetic polymorphism of DNA double strand break gene Ku70 in Taiwan. Oral Oncol 2008; 44:1047-51. [PMID: 18487076 DOI: 10.1016/j.oraloncology.2008.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/16/2008] [Accepted: 02/06/2008] [Indexed: 11/28/2022]
Abstract
The DNA repair gene Ku70, an important caretaker of the overall genome stability, is thought to play a major role in the DNA double strand break repair system. It is known that defects in double strand break repair capacity can lead to irreversible genomic instability. However, the polymorphic variants of Ku70 and their association with oral cancer susceptibility has never been reported on. In this hospital-based case-control study, the association of Ku70 promoter T-991C (rs5751129), promoter G-57C (rs2267437), promoter A-31G (rs132770), and intron3 (rs132774) polymorphisms with oral cancer risk in a Taiwanese population was investigated. In total, 318 patients with oral cancer and 318 age- and gender-matched healthy controls recruited from the China Medical Hospital in Taiwan were genotyped. The results showed that there were significant differences between the oral cancer and control groups in the distribution of their genotypes (P=0.0031) and allelic frequency (P=0.0009) in the Ku70 promoter T-991C polymorphism. Individuals who carried at least one C allele (T/C or C/C) had a 2.15-fold increased risk of developing oral cancer compared to those who carried the T/T wild-type genotype (95% CI: 1.37-3.36). In the other three polymorphisms, there was no difference between both groups in the distribution of either genotype or allelic frequency. In conclusion, the Ku70 promoter T-991C, but not the Ku70 promoter C-57G, promoter A-31G or intron3, is connected to oral cancer susceptibility. This polymorphism may be a novel useful marker for primary prevention and anticancer intervention.
Collapse
Affiliation(s)
- Da-Tian Bau
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, 2 Yuh-Der Road, Taichung 404, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Szpirer C, Szpirer J. Mammary cancer susceptibility: human genes and rodent models. Mamm Genome 2007; 18:817-31. [PMID: 18060458 DOI: 10.1007/s00335-007-9073-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 10/14/2007] [Indexed: 01/18/2023]
|
50
|
Sangrajrang S, Schmezer P, Burkholder I, Waas P, Boffetta P, Brennan P, Bartsch H, Wiangnon S, Popanda O. Polymorphisms in three base excision repair genes and breast cancer risk in Thai women. Breast Cancer Res Treat 2007; 111:279-88. [PMID: 17922186 DOI: 10.1007/s10549-007-9773-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
DNA repair plays an important role in tumor development. The base excision repair (BER) pathway mainly removes DNA damage caused by ionizing radiation and reactive oxidative species. Here, we examined possible associations between polymorphisms in three important BER genes (OGG1 Ser326Cys, APEX1 Asp148Glu, XRCC1 Arg194Trp, XRCC1 Arg280His, XRCC1 Arg399Gln) and breast cancer incidence in Thai women. The study population consisted of 507 breast cancer cases and 425 controls. Odds ratios (OR) were adjusted by multivariate logistic regression analysis for age, body mass index, age at menarche, family history of breast cancer, menopausal status, reproduction parameters, use of contraceptives, tobacco smoking, involuntary tobacco smoking, alcohol drinking, and education. For homozygous carriers of the Glu allele in APEX1, a significant protective effect was found when compared to Asp/Asp carriers (odds ratio (OR) = 0.60, 95% confidence interval (CI) = 0.38-0.94). Subgroup analysis based on menopausal status revealed increased breast cancer risk in postmenopausal women and OGG1 (OR = 2.05, 95% CI 1.14-3.69). Reconstructed diplotypes for XRCC1 showed that CGA/CGA carriers had an increased risk of breast cancer compared with carriers of the wild type diplotype CGG/CGG (OR = 2.56, 95% CI 1.28-5.15). When the joint effects of XRCC1, APEX1 and OGG1 polymorphisms were evaluated, individuals homozygous for two or three risk alleles were at increased risk (OR = 1.88, 95% CI 1.26-2.82). In conclusion, our data suggest that Thai women with a certain XRCC1 diplotype or homozygous for two or three variant alleles of XRCC1, OGG1, and APEX1 are likely to have an increased susceptibility to breast cancer.
Collapse
|