1
|
Prenatal Amino Acid Supplementation to Improve Fetal Growth: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12092535. [PMID: 32825593 PMCID: PMC7551332 DOI: 10.3390/nu12092535] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant fetal growth remains a leading cause of perinatal morbidity and mortality and is associated with a risk of developing non-communicable diseases later in life. We performed a systematic review and meta-analysis combining human and animal studies to assess whether prenatal amino acid (AA) supplementation could be a promising approach to promote healthy fetal growth. PubMed, Embase, and Cochrane libraries were searched to identify studies orally supplementing the following AA groups during gestation: (1) arginine family, (2) branched chain (BCAA), and (3) methyl donors. The primary outcome was fetal/birth weight. Twenty-two human and 89 animal studies were included in the systematic review. The arginine family and, especially, arginine itself were studied the most. Our meta-analysis showed beneficial effects of arginine and (N-Carbamyl) glutamate (NCG) but not aspartic acid and citrulline on fetal/birth weight. However, no effects were reported when an isonitrogenous control diet was included. BCAA and methyl donor supplementation did not affect fetal/birth weight. Arginine family supplementation, in particular arginine and NCG, improves fetal growth in complicated pregnancies. BCAA and methyl donor supplementation do not seem to be as promising in targeting fetal growth. Well-controlled research in complicated pregnancies is needed before ruling out AA supplements or preferring arginine above other AAs.
Collapse
|
2
|
Balansky R, Ganchev G, Iltcheva M, Dimitrova E, Micale RT, La Maestra S, De Flora S. Carcinogenic response and other histopathological alterations in mice exposed to cigarette smoke for varying time periods after birth. Carcinogenesis 2018; 39:580-587. [PMID: 29370344 DOI: 10.1093/carcin/bgy013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 01/01/2023] Open
Abstract
In spite of the outstanding role of tobacco smoking in human carcinogenesis, it is difficult to reproduce its effects in experimental animals. Based on the knowledge that a variety of mechanisms account for a higher susceptibility to carcinogens early in life, we have developed a murine model in which mainstream cigarette smoke becomes convincingly carcinogenic. The standard model involves exposure to smoke for 4 months, starting after birth, followed by an additional 3-4 months in filtered air. We evaluated herein the time- and dose-dependent response, at 7.5 months of life, of Swiss H mice that had been exposed to smoke for either 1, 2 or 4 months after birth. A one-month exposure, corresponding to a period of intense alveolarization, was sufficient to induce most inflammatory, degenerative and preneoplastic pulmonary lesions, including emphysema and alveolar epithelial hyperplasia, blood vessel proliferation and hemangiomas, reflecting an early proangiogenic role of smoking, and microadenomas bearing ki-67-positive proliferating cells as well as urinary bladder epithelial hyperplasia. Two months of exposure were needed to induce pulmonary adenomas and urinary bladder papillomas in males only, which highlights a protective role of estrogens in urinary bladder carcinogenesis. Four months, which in humans would correspond to the postnatal period, puberty, adolescence and early adulthood, were needed to induce other lesions, including tubular epithelial hyperplasia of kidney, bronchial epithelial hyperplasia and especially pulmonary malignant tumors. These findings highlight the concept that preneoplastic and neoplastic lesions occurring in adulthood can be induced by exposure to smoke early in life.
Collapse
Affiliation(s)
| | | | | | | | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, Genoa, Italy
- National Center of Oncology, Sofia, Bulgaria
| | - Sebastiano La Maestra
- Department of Health Sciences, University of Genoa, Genoa, Italy
- National Center of Oncology, Sofia, Bulgaria
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy
- National Center of Oncology, Sofia, Bulgaria
| |
Collapse
|
3
|
Balansky R, Ganchev G, Iltcheva M, Nikolov M, La Maestra S, Micale RT, Steele VE, De Flora S. Interactions between ethanol and cigarette smoke in a mouse lung carcinogenesis model. Toxicology 2016; 373:54-62. [PMID: 27840117 DOI: 10.1016/j.tox.2016.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 01/11/2023]
Abstract
Both ethanol and cigarette smoke are classified as human carcinogens. They can synergize, especially in tissues of the upper aerodigestive tract that are targeted by both agents. The main objective of the present study was to evaluate the individual and combined effects of ethanol and smoke in the respiratory tract, either following transplacental exposure and/or postnatal exposure. We designed two consecutive studies in mouse models by exposing Swiss H mice to oral ethanol and/or inhaled mainstream cigarette smoke for up to 4 months, at various prenatal and postnatal life stages. Clastogenic effects and histopathological alterations were evaluated after 4 and 8 months, respectively. Ethanol was per se devoid of clastogenic effects in mouse peripheral blood erythrocytes. However, especially in mice exposed both transplacentally throughout pregnancy and in the postnatal life, ethanol administration was associated not only with liver damage but also with pro-angiogenetic effects in the lung by stimulating the proliferation of blood vessels. In addition, these mice developed pulmonary emphysema, alveolar epithelial hyperplasias, microadenomas, and benign tumors. On the other hand, ethanol interfered in the lung carcinogenesis process resulting from the concomitant exposure of mice to smoke. In fact, ethanol significantly attenuated some smoke-related preneoplastic and neoplastic lesions in the respiratory tract, such as alveolar epithelial hyperplasia, microadenomas, and even malignant tumors. In addition, ethanol attenuated cigarette smoke clastogenicity. In conclusion, preclinical studies provide evidence that, in spite of its pulmonary toxicity, ethanol may mitigate some noxious effects of cigarette smoke in the respiratory tract.
Collapse
Affiliation(s)
- Roumen Balansky
- National Center of Oncology, Str. Plovdivsko pole 6, Sofia, 1756, Bulgaria; Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy.
| | - Gancho Ganchev
- National Center of Oncology, Str. Plovdivsko pole 6, Sofia, 1756, Bulgaria.
| | - Marietta Iltcheva
- National Center of Oncology, Str. Plovdivsko pole 6, Sofia, 1756, Bulgaria.
| | - Manasi Nikolov
- National Center of Oncology, Str. Plovdivsko pole 6, Sofia, 1756, Bulgaria.
| | - S La Maestra
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy.
| | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy.
| | - Vernon E Steele
- National Cancer Institute, Chemoprevention Agent Development Research Group, Division of Cancer Prevention,9609 Medical Center Drive, Bethesda, MD 20892, USA.
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy.
| |
Collapse
|
4
|
De Flora S, Ganchev G, Iltcheva M, La Maestra S, Micale RT, Steele VE, Balansky R. Pharmacological Modulation of Lung Carcinogenesis in Smokers: Preclinical and Clinical Evidence. Trends Pharmacol Sci 2015; 37:120-142. [PMID: 26726119 DOI: 10.1016/j.tips.2015.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
Many drugs in common use possess pleiotropic properties that make them capable of interfering with carcinogenesis mechanisms. We discuss here the ability of pharmacological agents to mitigate the pulmonary carcinogenicity of mainstream cigarette smoke. The evaluated agents include anti-inflammatory drugs (budesonide, celecoxib, aspirin, naproxen, licofelone), antidiabetic drugs (metformin, pioglitazone), antineoplastic agents (lapatinib, bexarotene, vorinostat), and other drugs and supplements (phenethyl isothiocyanate, myo-inositol, N-acetylcysteine, ascorbic acid, berry extracts). These drugs have been evaluated in mouse models mimicking interventions either in current smokers or in ex-smokers, or in prenatal chemoprevention. They display a broad spectrum of activities by attenuating either smoke-induced preneoplastic lesions or benign tumors and/or malignant tumors. Together with epidemiological data, these findings provide useful information to predict the potential effects of pharmacological agents in smokers.
Collapse
Affiliation(s)
- Silvio De Flora
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.
| | | | | | | | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Vernon E Steele
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20892, USA
| | - Roumen Balansky
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; National Center of Oncology, Sofia 1756, Bulgaria
| |
Collapse
|
5
|
Selective inhibition by aspirin and naproxen of mainstream cigarette smoke-induced genotoxicity and lung tumors in female mice. Arch Toxicol 2015; 90:1251-60. [DOI: 10.1007/s00204-015-1550-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
|
6
|
Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: significance of combination therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014. [PMID: 25425315 DOI: 10.1186/s13046-014-0092-7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bromelain and N-acetylcysteine are two natural, sulfhydryl-containing compounds with good safety profiles which have been investigated for their benefits and application in health and disease for more than fifty years. As such, the potential values of these agents in cancer therapy have been variably reported in the literature. In the present study, the efficacy of bromelain and N-acetylcysteine in single agent and combination treatment of human gastrointestinal carcinoma cells was evaluated in vitro and the underlying mechanisms of effect were explored. METHODS The growth-inhibitory effects of bromelain and N-acetylcysteine, on their own and in combination, on a panel of human gastrointestinal carcinoma cell lines, including MKN45, KATO-III, HT29-5F12, HT29-5M21 and LS174T, were assessed by sulforhodamine B assay. Moreover, the influence of the treatment on the expression of a range of proteins involved in the regulation of cell cycle and survival was investigated by Western blot. The presence of apoptosis was also examined by TUNEL assay. RESULTS Bromelain and N-acetylcysteine significantly inhibited cell proliferation, more potently in combination therapy. Drug-drug interaction in combination therapy was found to be predominantly synergistic or additive. Mechanistically, apoptotic bodies were detected in treated cells by TUNEL assay. Furthermore, Western blot analysis revealed diminution of cyclins A, B and D, the emergence of immunoreactive subunits of caspase-3, caspase-7, caspase-8 and cleaved PARP, withering or cleavage of procaspase-9, overexpression of cytochrome c, reduced expression of anti-apoptotic Bcl-2 and pro-survival phospho-Akt, the emergence of the autophagosomal marker LC3-II and deregulation of other autophagy-related proteins, including Atg3, Atg5, Atg7, Atg12 and Beclin 1. These results were more prominent in combination therapy. CONCLUSION We report for the first time to our knowledge the growth-inhibitory and cytotoxic effects of bromelain and N-acetylcysteine, in particular in combination, on a panel of gastrointestinal cancer cell lines with different phenotypes and characteristics. These effects apparently resulted from cell cycle arrest, apoptosis and autophagy. Towards the development of novel strategies for the enhancement of microscopic cytoreduction, our results lay the basis for further evaluation of this formulation in locoregional approaches to peritoneal surface malignancies and carcinomatosis.
Collapse
Affiliation(s)
- Afshin Amini
- Department of Surgery, St George Hospital, 4-10 South Street, Kogarah, Sydney 2217, NSW, Australia.
| | | | | | | |
Collapse
|
7
|
Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: significance of combination therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:92. [PMID: 25425315 PMCID: PMC4245783 DOI: 10.1186/s13046-014-0092-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022]
Abstract
Background Bromelain and N-acetylcysteine are two natural, sulfhydryl-containing compounds with good safety profiles which have been investigated for their benefits and application in health and disease for more than fifty years. As such, the potential values of these agents in cancer therapy have been variably reported in the literature. In the present study, the efficacy of bromelain and N-acetylcysteine in single agent and combination treatment of human gastrointestinal carcinoma cells was evaluated in vitro and the underlying mechanisms of effect were explored. Methods The growth-inhibitory effects of bromelain and N-acetylcysteine, on their own and in combination, on a panel of human gastrointestinal carcinoma cell lines, including MKN45, KATO-III, HT29-5F12, HT29-5M21 and LS174T, were assessed by sulforhodamine B assay. Moreover, the influence of the treatment on the expression of a range of proteins involved in the regulation of cell cycle and survival was investigated by Western blot. The presence of apoptosis was also examined by TUNEL assay. Results Bromelain and N-acetylcysteine significantly inhibited cell proliferation, more potently in combination therapy. Drug-drug interaction in combination therapy was found to be predominantly synergistic or additive. Mechanistically, apoptotic bodies were detected in treated cells by TUNEL assay. Furthermore, Western blot analysis revealed diminution of cyclins A, B and D, the emergence of immunoreactive subunits of caspase-3, caspase-7, caspase-8 and cleaved PARP, withering or cleavage of procaspase-9, overexpression of cytochrome c, reduced expression of anti-apoptotic Bcl-2 and pro-survival phospho-Akt, the emergence of the autophagosomal marker LC3-II and deregulation of other autophagy-related proteins, including Atg3, Atg5, Atg7, Atg12 and Beclin 1. These results were more prominent in combination therapy. Conclusion We report for the first time to our knowledge the growth-inhibitory and cytotoxic effects of bromelain and N-acetylcysteine, in particular in combination, on a panel of gastrointestinal cancer cell lines with different phenotypes and characteristics. These effects apparently resulted from cell cycle arrest, apoptosis and autophagy. Towards the development of novel strategies for the enhancement of microscopic cytoreduction, our results lay the basis for further evaluation of this formulation in locoregional approaches to peritoneal surface malignancies and carcinomatosis.
Collapse
Affiliation(s)
- Afshin Amini
- Department of Surgery, St George Hospital, 4-10 South Street, Kogarah, Sydney 2217, NSW, Australia.
| | | | | | | |
Collapse
|
8
|
Balansky R, Izzotti A, D'Agostini F, Longobardi M, Micale RT, La Maestra S, Camoirano A, Ganchev G, Iltcheva M, Steele VE, De Flora S. Assay of lapatinib in murine models of cigarette smoke carcinogenesis. Carcinogenesis 2014; 35:2300-7. [PMID: 25053627 DOI: 10.1093/carcin/bgu154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lapatinib, a dual tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), is prescribed for the treatment of patients with metastatic breast cancer overexpressing HER-2. Involvement of this drug in pulmonary carcinogenesis has been poorly investigated. We used murine models suitable to evaluate cigarette smoke-related molecular and histopathological alterations. A total of 481 Swiss H mice were used. The mice were exposed to mainstream cigarette smoke (MCS) during the first four months of life. After 10 weeks, MCS caused an elevation of bulky DNA adducts, oxidative DNA damage and an extensive downregulation of microRNAs in lung. After four months, an increase in micronucleus frequency was observed in peripheral blood erythrocytes. After 7.5 months, histopathological alterations were detected in the lung, also including benign tumors and malignant tumors, and in the urinary tract. A subchronic toxicity study assessed the non-toxic doses of lapatinib, administered daily with the diet after weaning. After 10 weeks, lapatinib significantly attenuated the MCS-related nucleotide changes and upregulated several low-intensity microRNAs in lung. The drug poorly affected the MCS systemic genotoxicity and had modest protective effects on MCS-induced preneoplastic lesions in lung and kidney, when administered under conditions that temporarily mimicked interventions either in current smokers or ex-smokers. On the other hand, it caused some toxicity to the liver. Thus, on the whole, lapatinib appears to have a low impact in the smoke-related lung carcinogenesis models used, especially in terms of tumorigenic response.
Collapse
Affiliation(s)
- Roumen Balansky
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy, National Center of Oncology, Sofia-1756, Bulgaria
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy, IRCCS AOU San Martino - IST, 16132 Genoa, Italy and
| | - Francesco D'Agostini
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Mariagrazia Longobardi
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Sebastiano La Maestra
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Anna Camoirano
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | | | | | - Vernon E Steele
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20892, USA
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy,
| |
Collapse
|
9
|
Izzotti A, Balansky R, D'Agostini F, Longobardi M, Cartiglia C, Micale RT, La Maestra S, Camoirano A, Ganchev G, Iltcheva M, Steele VE, De Flora S. Modulation by metformin of molecular and histopathological alterations in the lung of cigarette smoke-exposed mice. Cancer Med 2014; 3:719-30. [PMID: 24683044 PMCID: PMC4101764 DOI: 10.1002/cam4.234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 12/22/2022] Open
Abstract
The anti-diabetic drug metformin is endowed with anti-cancer properties. Epidemiological and experimental studies, however, did not provide univocal results regarding its role in pulmonary carcinogenesis. We used Swiss H mice of both genders in order to detect early molecular alterations and tumors induced by mainstream cigarette smoke. Based on a subchronic toxicity study, oral metformin was used at a dose of 800 mg/kg diet, which is 3.2 times higher than the therapeutic dose in humans. Exposure of mice to smoke for 4 months, starting at birth, induced a systemic clastogenic damage, formation of DNA adducts, oxidative DNA damage, and extensive downregulation of microRNAs in lung after 10 weeks. Preneoplastic lesions were detectable after 7.5 months in both lung and urinary tract along with lung tumors, both benign and malignant. Modulation by metformin of 42 of 1281 pulmonary microRNAs in smoke-free mice highlighted a variety of mechanisms, including modulation of AMPK, stress response, inflammation, NFκB, Tlr9, Tgf, p53, cell cycle, apoptosis, antioxidant pathways, Ras, Myc, Dicer, angiogenesis, stem cell recruitment, and angiogenesis. In smoke-exposed mice, metformin considerably decreased DNA adduct levels and oxidative DNA damage, and normalized the expression of several microRNAs. It did not prevent smoke-induced lung tumors but inhibited preneoplastic lesions in both lung and kidney. In conclusion, metformin was able to protect the mouse lung from smoke-induced DNA and microRNA alterations and to inhibit preneoplastic lesions in lung and kidney but failed to prevent lung adenomas and malignant tumors induced by this complex mixture.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
De Flora S, Izzotti A, D'Agostini F, La Maestra S, Micale RT, Ceccaroli C, Steele VE, Balansky R. Rationale and approaches to the prevention of smoking-related diseases: overview of recent studies on chemoprevention of smoking-induced tumors in rodent models. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2014; 32:105-120. [PMID: 24875440 DOI: 10.1080/10590501.2014.907459] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tobacco smoke plays a dominant role in the epidemiology of lung cancer, cancer at other sites, and a variety of other chronic diseases. It is the leading cause of death in developed countries, and the global burden of cancer is escalating in less developed regions. For a rational implementation of strategies exploitable for the prevention smoking-related diseases, it is crucial to elucidate both the mechanisms of action of cigarette smoke and the protective mechanisms of the host organism. The imperative primary prevention goal is to avoid any type of exposure to smoke. Epidemiological studies have shown that a decrease in the consumption of cigarettes can be successful in attenuating the epidemic of lung cancer in several countries. Chemoprevention by means of dietary and/or pharmacological agents provides a complementary strategy aimed at decreasing the risk of developing smoking-associated diseases in addicted current smokers, who are unable to quit smoking, and especially in involuntary smokers and ex-smokers. The availability of new animal models that are suitable to detect the carcinogenicity of cigarette smoke and to assess the underlying molecular mechanisms provides new tools for evaluating both safety and efficacy of putative chemopreventive agents.
Collapse
Affiliation(s)
- Silvio De Flora
- a Department of Health Sciences , University of Genoa , Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Dodmane PR, Arnold LL, Pennington KL, Cohen SM. Orally administered nicotine induces urothelial hyperplasia in rats and mice. Toxicology 2013; 315:49-54. [PMID: 24269753 DOI: 10.1016/j.tox.2013.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/30/2013] [Accepted: 11/07/2013] [Indexed: 12/31/2022]
Abstract
Tobacco smoking is a major risk factor for multiple human cancers including urinary bladder carcinoma. Tobacco smoke is a complex mixture containing chemicals that are known carcinogens in humans and/or animals. Aromatic amines a major class of DNA-reactive carcinogens in cigarette smoke, are not present at sufficiently high levels to fully explain the incidence of bladder cancer in cigarette smokers. Other agents in tobacco smoke could be excreted in urine and enhance the carcinogenic process by increasing urothelial cell proliferation. Nicotine is one such major component, as it has been shown to induce cell proliferation in multiple cell types in vitro. However, in vivo evidence specifically for the urothelium is lacking. We previously showed that cigarette smoke induces increased urothelial cell proliferation in mice. In the present study, urothelial proliferative and cytotoxic effects were examined after nicotine treatment in mice and rats. Nicotine hydrogen tartrate was administered in drinking water to rats (52 ppm nicotine) and mice (514 ppm nicotine) for 4 weeks and urothelial changes were evaluated. Histopathologically, 7/10 rats and 4/10 mice showed simple hyperplasia following nicotine treatment compared to none in the controls. Rats had an increased mean BrdU labeling index compared to controls, although it was not statistically significantly elevated in either species. Scanning electron microscopic visualization of the urothelium did not reveal significant cytotoxicity. These findings suggest that oral nicotine administration induced urothelial hyperplasia (increased cell proliferation), possibly due to a mitogenic effect of nicotine and/or its metabolites.
Collapse
Affiliation(s)
- Puttappa R Dodmane
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE 68198-3135, USA.
| | - Lora L Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE 68198-3135, USA.
| | - Karen L Pennington
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE 68198-3135, USA.
| | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE 68198-3135, USA; Havlik-Wall Professor of Oncology.
| |
Collapse
|
12
|
Izzotti A, Balansky R, D’Agostini F, Longobardi M, Cartiglia C, La Maestra S, Micale RT, Camoirano A, Ganchev G, Iltcheva M, Steele VE, De Flora S. Relationships between pulmonary micro-RNA and proteome profiles, systemic cytogenetic damage and lung tumors in cigarette smoke-exposed mice treated with chemopreventive agents. Carcinogenesis 2013; 34:2322-9. [PMID: 23708261 PMCID: PMC3786376 DOI: 10.1093/carcin/bgt178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 01/20/2023] Open
Abstract
Assessing the correlation between molecular endpoints and cancer induction or prevention aims at validating the use of intermediate biomarkers. We previously developed murine models that are suitable to detect both the carcinogenicity of mainstream cigarette smoke (MCS) and the induction of molecular alterations. In this study, we used 931 Swiss mice in two parallel experiments and in a preliminary toxicity study. The chemopreventive agents included vorinostat, myo-inositol, bexarotene, pioglitazone and a combination of bexarotene and pioglitazone. Pulmonary micro-RNAs and proteins were evaluated by microarray analyses at 10 weeks of age in male and female mice, either unexposed or exposed to MCS since birth, and either untreated or receiving each one of the five chemopreventive regimens with the diet after weaning. At 4 months of age, the frequency of micronucleated normochromatic erythrocytes was evaluated. At 7 months, the lungs were subjected to standard histopathological analysis. The results showed that exposure to MCS significantly downregulated the expression of 79 of 694 lung micro-RNAs (11.4%) and upregulated 66 of 1164 proteins (5.7%). Administration of chemopreventive agents modulated the baseline micro-RNA and proteome profiles and reversed several MCS-induced alterations, with some intergender differences. The stronger protective effects were produced by the combination of bexarotene and pioglitazone, which also inhibited the MCS-induced clastogenic damage and the yield of malignant tumors. Pioglitazone alone increased the yield of lung adenomas. Thus, micro-RNAs, proteins, cytogenetic damage and lung tumors were closely related. The molecular biomarkers contributed to evaluate both protective and adverse effects of chemopreventive agents and highlighted the mechanisms involved.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Roumen Balansky
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
- Laboratory of Chemical Mutagenesis and Carcinogenesis, National Center of Oncology, Sofia 1756, Bulgaria and
| | - Francesco D’Agostini
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Mariagrazia Longobardi
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Cristina Cartiglia
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Sebastiano La Maestra
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Rosanna T. Micale
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Anna Camoirano
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Gancho Ganchev
- Laboratory of Chemical Mutagenesis and Carcinogenesis, National Center of Oncology, Sofia 1756, Bulgaria and
| | - Marietta Iltcheva
- Laboratory of Chemical Mutagenesis and Carcinogenesis, National Center of Oncology, Sofia 1756, Bulgaria and
| | - Vernon E. Steele
- Chemoprevention Agent Development Research Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20892, USA
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| |
Collapse
|
13
|
Martinez-Outschoorn UE, Curry JM, Ko YH, Lin Z, Tuluc M, Cognetti D, Birbe RC, Pribitkin E, Bombonati A, Pestell RG, Howell A, Sotgia F, Lisanti MP. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFκB target stromal MCT4. Cell Cycle 2013; 12:2580-97. [PMID: 23860378 PMCID: PMC3865048 DOI: 10.4161/cc.25510] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of "normal" and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the "bystander" effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for "metabolic symbiosis" between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial "lactate-shuttle", to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as "partners" for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an "MCT4 inhibitor". Taken together, our data provide new strategies for achieving more effective anticancer therapy. We conclude that oncogenes enable cancer cells to behave as selfish "metabolic parasites", like foreign organisms (bacteria, fungi, viruses). Thus, we should consider treating cancer like an infectious disease, with new classes of metabolically targeted "antibiotics" to selectively starve cancer cells. Our results provide new support for the "seed and soil" hypothesis, which was first proposed in 1889 by the English surgeon, Stephen Paget.
Collapse
|
14
|
Micale RT, La Maestra S, Maestra SL, Di Pietro A, Pietro AD, Visalli G, Baluce B, Balansky R, Steele VE, De Flora S. Oxidative stress in the lung of mice exposed to cigarette smoke either early in life or in adulthood. Arch Toxicol 2013; 87:915-8. [PMID: 23423711 DOI: 10.1007/s00204-012-0993-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/27/2012] [Indexed: 12/11/2022]
Abstract
Birth and early life stages are critical periods characterized by severe alterations of the redox balance and by "physiological" genomic changes in lung cells, which may be responsible for cancer and other diseases in adulthood. Oxidative stress is a major mechanism accounting for the carcinogenicity of cigarette smoke (CS), which becomes more potently carcinogenic in mice when exposure starts at birth and continues early in life. We compared herewith a variety of end-points related to oxidative stress, mitochondrial alterations, and cell turnover in the lung of Swiss H mice, either sham-exposed or CS-exposed for 4 weeks, starting either at birth or at 4 months of age. The results showed that the physiological levels of certain end-points are affected by age. In fact, the baseline proportion of hypodiploid cells and the mitochondrial potential and mass were higher in adults, whereas 8-hydroxy-2'-deoxyguanosine (8-oxo-dGuo) levels, the proportion of necrotic cells, and the extent of autophagy were higher early in life. Adult mice were more responsive to CS by increasing the proportion of necrotic cells and of cells in S/G2 phase, whereas young mice maintained a high extent of autophagy, exhibited a greater increase of lipid peroxidation products and 8-oxo-dGuo levels, and had a higher frequency of micronucleated cells. In addition, exposure to CS affected the mitochondrial potential/mass, especially in young mice. In conclusion, these data provide evidence that oxidative stress and the resulting DNA damage provide a major contribution to the high susceptibility of mice to CS early in life.
Collapse
Affiliation(s)
- Rosanna T Micale
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liang H, Kowalczyk P, Junco JJ, Klug-De Santiago HL, Malik G, Wei SJ, Slaga TJ. Differential effects on lung cancer cell proliferation by agonists of glucocorticoid and PPARα receptors. Mol Carcinog 2013; 53:753-63. [DOI: 10.1002/mc.22029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/01/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Huiyun Liang
- Department of Cellular and Structural Biology; University of Texas Health Science Center at San Antonio; San Antonio, Texas
- Medical Research Division, Regional Academic Health Center at Edinburg; University of Texas Health Science Center at San Antonio; Edinburg, Texas
| | - Piotr Kowalczyk
- Department of Pharmacology; University of Texas Health Science Center at San Antonio; San Antonio, Texas
| | - Jacob J. Junco
- Department of Pharmacology; University of Texas Health Science Center at San Antonio; San Antonio, Texas
| | - Heather L. Klug-De Santiago
- Medical Research Division, Regional Academic Health Center at Edinburg; University of Texas Health Science Center at San Antonio; Edinburg, Texas
| | - Gunjan Malik
- Department of Pharmacology; University of Texas Health Science Center at San Antonio; San Antonio, Texas
| | - Sung-Jen Wei
- Medical Research Division, Regional Academic Health Center at Edinburg; University of Texas Health Science Center at San Antonio; Edinburg, Texas
- Department of Pharmacology; University of Texas Health Science Center at San Antonio; San Antonio, Texas
| | - Thomas J. Slaga
- Department of Cellular and Structural Biology; University of Texas Health Science Center at San Antonio; San Antonio, Texas
- Department of Pharmacology; University of Texas Health Science Center at San Antonio; San Antonio, Texas
| |
Collapse
|
16
|
Towards the validation of a lung tumorigenesis model with mainstream cigarette smoke inhalation using the A/J mouse. Toxicology 2013; 305:49-64. [DOI: 10.1016/j.tox.2013.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/17/2022]
|
17
|
Miller MS, Moore JE, Walb MC, Kock ND, Attia A, Isom S, McBride JE, Munley MT. Chemoprevention by N-acetylcysteine of low-dose CT-induced murine lung tumorigenesis. Carcinogenesis 2013; 34:319-24. [PMID: 23104176 PMCID: PMC3564436 DOI: 10.1093/carcin/bgs332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/28/2012] [Accepted: 10/15/2012] [Indexed: 11/14/2022] Open
Abstract
Data from the National Lung Screening Trial suggested that annual computed tomography (CT) screening of at-risk patients decreases lung cancer mortality by 20%. We assessed the effects of low-dose CT radiation in mice exposed to 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK) to mimic the effects of annual CT screening in heavy smokers and ex-smokers. A/J mice were treated at 8 weeks with NNK followed 1 week later by 4 weekly doses of 0, 10, 30 or 50 mGy of whole-body CT and euthanized 8 months later. Irradiated mice exhibited significant 1.8- to 2-fold increases in tumor multiplicity in males (16.1 ± 0.8 versus 9.1 ± 1.5 tumors per mouse; P < 0.0001) and females (21.6 ± 0.8 versus 10.5 ± 1.4 tumors per mouse; P < 0.0001), respectively, compared with unirradiated mice with no dose effect observed; female mice exhibited higher sensitivity to radiation exposure than did males (P < 0.0001). Similar results were obtained when tumor area was determined. To assess if the deleterious effects of radiation could be prevented by antioxidants, female mice were fed a diet containing 0.7% N-acetylcysteine (NAC) starting 3 days prior to the first CT exposure and continuing for a total of 5 weeks. NAC prevented CT induced increases in tumor multiplicity (10.5 ± 1.2 versus 20.7 ± 1.5 tumors per mouse; P < 0.0001) back to levels seen in NNK/unirradiated mice (10.5 ± 1.2). Our data suggest that exposure of sensitive populations to CT radiation increases the risk of tumorigenesis, and that antioxidants may prevent the long-term carcinogenic effects of low-dose radiation exposure. This would allow annual screening with CT while preventing the potential long-term toxicity of radiation exposure.
Collapse
Affiliation(s)
- Mark Steven Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
La Maestra S, Micale RT, De Flora S, D’Agostini F, Ganchev G, Iltcheva M, Petkov N, Steele VE, Balansky R. DNA damage in exfoliated cells and histopathological alterations in the urinary tract of mice exposed to cigarette smoke and treated with chemopreventive agents. Carcinogenesis 2013; 34:183-9. [PMID: 23042096 PMCID: PMC3534192 DOI: 10.1093/carcin/bgs314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/18/2012] [Accepted: 09/28/2012] [Indexed: 01/25/2023] Open
Abstract
Cigarette smoke (CS) is convincingly carcinogenic in mice when exposure starts at birth. We investigated the induction and modulation of alterations in the kidney and urinary bladder of CS-exposed mice. A total of 484 strain H Swiss mice were either sham-exposed or exposed since birth to mainstream CS (MCS) for 4 months. Dietary agents, including myo-inositol, suberoylanilide hydroxamic acid, bexarotene, pioglitazone and a combination of bexarotene and pioglitazone, were administered after weaning. Comet analyses showed that, after 2 and 4 months, MCS causes DNA damage in exfoliated urothelial cells, which can be prevented by myo-inositol and the peroxisome proliferator-activated receptor-γ ligand pioglitazone. After 7 months, the 17.6% of MCS-exposed male mice exhibited lesions of the urinary tract versus the 6.1% of sham-exposed mice, which emphasizes the role of sex hormones in urinary tract carcinogenesis. Myo-inositol and the RXR-specific retinoid bexarotene did not affect these alterations. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (Vorinostat) increased the incidence of kidney epithelium hyperplasia. Pioglitazone significantly enhanced the incidence of kidney lesions as compared with mice exposed to MCS only, indicating possible adverse effects of this antidiabetic drug, which were lost upon combination with bexarotene according to a combined chemoprevention strategy. RXR is a heterodymeric partner for peroxisome proliferator-activated receptor-γ, thereby modulating the expression of multiple target genes. In conclusion, there is contrast between the ability of pioglitazone to inhibit DNA damage in exfoliated cells and the alterations induced in the urinary tract of MCS-exposed mice, suggesting the occurrence of non-genotoxic mechanisms for this drug.
Collapse
Affiliation(s)
- Sebastiano La Maestra
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Rosanna T. Micale
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Francesco D’Agostini
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | | | | | | | | | - Roumen Balansky
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
- National Center of Oncology, Sofia 1756, Bulgaria and
| |
Collapse
|
19
|
Balansky R, Ganchev G, Iltcheva M, Kratchanova M, Denev P, Kratchanov C, Polasa K, D'Agostini F, Steele VE, De Flora S. Inhibition of lung tumor development by berry extracts in mice exposed to cigarette smoke. Int J Cancer 2012; 131:1991-7. [PMID: 22328465 DOI: 10.1002/ijc.27486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 12/16/2023]
Abstract
Cigarette smoke (CS) and dietary factors play a major role in cancer epidemiology. At the same time, however, the diet is the richest source of anticancer agents. Berries possess a broad array of health protective properties and were found to attenuate the yield of tumors induced by individual carcinogens in the rodent digestive tract and mammary gland but failed to prevent lung tumors induced by typical CS components in mice. We exposed whole-body Swiss ICR mice to mainstream CS, starting at birth and continuing daily for 4 months. Aqueous extracts of black chokeberry and strawberry were given as the only source of drinking water, starting after weaning and continuing for 7 months, thus mimicking an intervention in current smokers. In the absence of berries, CS caused a loss of body weight, induced early cytogenetical damage in circulating erythrocytes and histopathological alterations in lung (emphysema, blood vessel proliferation, alveolar epithelial hyperplasia and adenomas), liver (parenchymal degeneration) and urinary bladder (epithelial hyperplasia). Both berry extracts inhibited the CS-related body weight loss, cytogenetical damage, liver degeneration, pulmonary emphysema and lung adenomas. Protective effects were more pronounced in female mice, which may be ascribed to modulation by berry components of the metabolism of estrogens implicated in lung carcinogenesis. Interestingly, both the carcinogen and the chemopreventive agents tested are complex mixtures that contain a multitude of components working through composite mechanisms.
Collapse
|
20
|
De Flora S, Balansky R, D'Agostini F, Cartiglia C, Longobardi M, Steele VE, Izzotti A. Smoke-induced microRNA and related proteome alterations. Modulation by chemopreventive agents. Int J Cancer 2012; 131:2763-73. [PMID: 22945459 DOI: 10.1002/ijc.27814] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/09/2012] [Indexed: 11/12/2022]
Abstract
Dysregulation of microRNAs (miRNAs) has important consequences on gene and protein expression since a single miRNA targets a number of genes simultaneously. This article provides a review of published data and ongoing studies regarding the effects of cigarette smoke (CS), either mainstream (MCS) or environmental (ECS), on the expression of miRNAs and related proteins. The results generated in mice, rats, and humans provided evidence that exposure to CS results in an intense dysregulation of miRNA expression in the respiratory tract, which is mainly oriented in the sense of downregulation. In parallel, there was an upregulation of proteins targeted by the downregulated miRNAs. These trends reflect an attempt to defend the respiratory tract by means of antioxidant mechanisms, detoxification of carcinogens, DNA repair, anti-inflammatory pathways, apoptosis, etc. However, a long-lasting exposure to CS causes irreversible miRNA alterations that activate carcinogenic mechanisms, such as modulation of oncogenes and oncosuppressor genes, cell proliferation, recruitment of undifferentiated stem cells, inflammation, inhibition of intercellular communications, angiogenesis, invasion, and metastasis. The miRNA alterations induced by CS in the lung of mice and rats are similar to those observed in the human respiratory tract. Since a number of miRNAs that are modulated by CS and/or chemopreventive agents are subjected to single nucleotide polymorphisms in humans, they can be evaluated according to toxicogenomic/pharmacogenomics approaches. A variety of cancer chemopreventive agents tested in our laboratory modulated both baseline and CS-related miRNA and proteome alterations, thus contributing to evaluate both safety and efficacy of dietary and pharmacological agents.
Collapse
Affiliation(s)
- Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy.
| | | | | | | | | | | | | |
Collapse
|
21
|
Balansky R, D'Agostini F, Micale RT, La Maestra S, Steele VE, De Flora S. Dose-related cytogenetic damage in pulmonary alveolar macrophages from mice exposed to cigarette smoke early in life. Arch Toxicol 2012; 86:509-16. [PMID: 21989788 DOI: 10.1007/s00204-011-0765-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/29/2011] [Indexed: 12/01/2022]
Abstract
The micronucleus test detects both structural and numerical chromosomal aberrations caused by environmental agents. However, this test is poorly sensitive to detect the clastogenicity of cigarette smoke (CS) in human peripheral blood lymphocytes. At variance with peripheral blood lymphocytes and other cells outside the lower respiratory tract, pulmonary alveolar macrophages (PAM) are selectively affected by inhalable carcinogens and have been used to evaluate the modulation of CS-related cytogenetic alterations in vivo. The present study was aimed at evaluating (1) the cytogenetic response in PAM isolated from the lung of mice exposed to CS during the first 4 weeks of life and (2) the dose dependence of MN and polynucleated (PN) PAM formation in CS-exposed mice. To this purpose, ICR(CD-1) mice were exposed whole body to mainstream CS for 4 weeks, starting immediately after birth. Bronchoalveolar lavage (BAL) was performed to evaluate the cellularity of this fluid and the frequency of PN and MN PAM. At the doses of 119, 292, and 438 mg/m(3) total particulate matter, CS significantly increased both the proportion of PAM in the BAL fluid and the frequencies of PN and MN PAM. The cytogenetic effects were significantly correlated with the CS dose. In conclusion, PAM are suitable to detect induction by CS of clastogenic and aneugenic effects in mice during a developmental period corresponding to infancy, childhood, and early adolescence in humans. These surrogate cells, providing an important defense mechanism of the respiratory tract, are proposed as indicators of CS-related DNA damage in youngsters.
Collapse
Affiliation(s)
- Roumen Balansky
- National Center of Oncology, Str. Plovdivsko Pole 6, 1756 Sofia, Bulgaria.
| | | | | | | | | | | |
Collapse
|
22
|
Izzotti A, Larghero P, Balansky R, Pfeffer U, Steele VE, De Flora S. Interplay between histopathological alterations, cigarette smoke and chemopreventive agents in defining microRNA profiles in mouse lung. Mutat Res 2011; 717:17-24. [PMID: 20974155 DOI: 10.1016/j.mrfmmm.2010.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/15/2010] [Indexed: 12/14/2022]
Abstract
We have investigated alterations of microRNA expression profiles in the apparently healthy lung of mice and rats as an early response to exposure to cigarette smoke, either mainstream (MCS) or environmental, and/or to treatment with chemopreventive agents. Further on, we evaluated microRNA alterations at a later stage, when lung tumors were detectable in MCS-exposed mice. Lung samples were available from previous studies, in which strain H mice had been exposed to MCS for 4 months, starting immediately after birth, and then kept in filtered air for an additional 3 months. Some samples were from MCS-exposed mice treated either with N-acetyl-l-cysteine during pregnancy or with phenethyl isothiocyanate after weaning. The analysis of 576 mouse microRNAs showed that MCS strongly dysregulated microRNA expression and that both chemopreventive agents efficiently attenuated this trend, especially in noncancer tissue. MicroRNA expression was affected by histopathology, with specific signatures related to occurrence of pneumonia, adenoma, or bronchoalveolar carcinoma. Within pairs of samples from individual mice, microRNA analysis discriminated adenomatous tissue and especially carcinomatous tissue from the surrounding normal appearing tissue. A series of microRNA alterations characterized the sequential stages of pulmonary carcinogenesis. The involved functions included oncogene activation, inhibition of oncosuppressor genes, recruitment of undifferentiated stem cells, inflammation, inhibition of gap-junctional intercellular communications, angiogenesis, invasiveness, and metastatization. Thus, microRNA expression profiles in lung are dysregulated by MCS along all steps of the carcinogenesis process and depend on the interplay among exposure to noxious agents, treatment with dietary and pharmacological agents, and occurrence of pulmonary diseases.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
23
|
La Maestra S, Kisby GE, Micale RT, Johnson J, Kow YW, Bao G, Sheppard C, Stanfield S, Tran H, Woltjer RL, D'Agostini F, Steele VE, De Flora S. Cigarette smoke induces DNA damage and alters base-excision repair and tau levels in the brain of neonatal mice. Toxicol Sci 2011; 123:471-9. [PMID: 21778470 PMCID: PMC3179679 DOI: 10.1093/toxsci/kfr187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/05/2011] [Indexed: 11/12/2022] Open
Abstract
The prenatal and perinatal periods of brain development are especially vulnerable to insults by environmental agents. Early life exposure to cigarette smoke (CS), which contains both genotoxicants and oxidants, is considered an important risk factor for both neurodevelopmental and neurodegenerative disorders. Yet, little is known regarding the underlying pathogenetic mechanisms. In the present study, neonatal Swiss ICR (CD-1) albino mice were exposed to various concentrations of CS for 4 weeks and the brain examined for lipid peroxides, DNA damage, base-excision repair (BER) enzymes, apoptosis, and levels of the microtubule protein tau. CS induced a dose-dependent increase in both malondialdehyde and various types of DNA damage, including single-strand breaks, double-strand breaks, and DNA-protein cross-links. However, the CS-induced DNA damage in the brain returned to basal levels 1 week after smoking cessation. CS also modulated the activity and distribution of the BER enzymes 8-oxoguanine-DNA-glycosylase (OGG1) and apyrimidinic/apurinic endonuclease (APE1) in several brain regions. Normal tau (i.e., three-repeat tau, 3R tau) and various pathological forms of tau were also measured in the brain of CS-exposed neonatal mice, but only 3R tau and tau phosphorylated at serine 199 were significantly elevated. The oxidative stress, genomic dysregulation, and alterations in tau metabolism caused by CS during a critical period of brain development could explain why CS is an important risk factor for both neurodevelopmental and neurodegenerative disorders appearing in later life.
Collapse
Affiliation(s)
| | - Glen E. Kisby
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon 97239
| | - Rosanna T. Micale
- Department of Health Sciences, University of Genoa, I-16132 Genoa, Italy
| | - Jessica Johnson
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon 97239
| | - Yoke W. Kow
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Gaobin Bao
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Clayton Sheppard
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Sarah Stanfield
- Department of Pathology, Oregon Health & Science University, Portland, Oregon 97239
| | - Huong Tran
- Department of Pathology, Oregon Health & Science University, Portland, Oregon 97239
| | - Randall L. Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, Oregon 97239
| | | | - Vernon E. Steele
- Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland 20892-7322
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, I-16132 Genoa, Italy
| |
Collapse
|
24
|
Chu DI, Lim R, Heydrick S, Gainsbury ML, Abdou R, D’Addese L, Reed KL, Stucchi AF, Becker JM. N-acetyl-l-cysteine decreases intra-abdominal adhesion formation through the upregulation of peritoneal fibrinolytic activity and antioxidant defenses. Surgery 2011; 149:801-12. [DOI: 10.1016/j.surg.2011.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
|
25
|
Balansky R, Ganchev G, Iltcheva M, Nikolov M, Steele VE, De Flora S. Differential carcinogenicity of cigarette smoke in mice exposed either transplacentally, early in life or in adulthood. Int J Cancer 2011; 130:1001-10. [PMID: 21484788 DOI: 10.1002/ijc.26103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/14/2011] [Indexed: 11/09/2022]
Abstract
Cigarette smoke (CS) plays a dominant role in the epidemiology of human cancer. However, it is difficult to reproduce its carcinogenicity in laboratory animals. Recently, we showed that CS becomes a potent carcinogen in mice when exposure starts soon after birth. In our study, we comparatively evaluated the carcinogenic response to mainstream CS in mice at different ages. Neonatal mice were exposed daily for 4 months to CS, starting within 12 hr after birth, and sacrificed at 8 months. Adult mice were exposed for the same time period (3-7 months) and sacrificed at 11 months. Other mice were exposed transplacentally or both transplacentally and early in life. A total of 351 neonatal mice and 80 adult Swiss H mice were used. With varying intensity depending on age, CS induced pulmonary emphysema, bronchial and alveolar epithelial hyperplasia, blood vessel proliferation and hemangiomas and microadenomas in lung as well as parenchymal degeneration of liver. Histopathological alterations of kidney were only observed in mice exposed to CS early in life. Lung adenomas and malignant tumors of various histopathological nature were detected in neonatally exposed mice but not in adults. Transplacental CS induced the formation of lung adenomas in the offspring 8 months after birth. Previous exposure during pregnancy attenuated CS-related alveolar epithelial hyperplasia induced after birth. In conclusion, the carcinogenic response to CS varies depending on the developmental stage. The early postnatal life and the prenatal life are particularly at risk for the later development of CS-related tumors.
Collapse
|
26
|
Pires KMP, Bezerra FS, Machado MN, Zin WA, Porto LC, Valença SS. N-(2-mercaptopropionyl)-glycine but not Allopurinol prevented cigarette smoke-induced alveolar enlargement in mouse. Respir Physiol Neurobiol 2011; 175:322-30. [DOI: 10.1016/j.resp.2010.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/18/2010] [Accepted: 12/19/2010] [Indexed: 10/18/2022]
|
27
|
Coggins CRE. A further review of inhalation studies with cigarette smoke and lung cancer in experimental animals, including transgenic mice. Inhal Toxicol 2011; 22:974-83. [PMID: 20698816 DOI: 10.3109/08958378.2010.501831] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT The lack of an effective animal model for pulmonary carcinogenesis in smokers is a continuing problem for researchers trying to design Potentially Reduced Risk Products for those smokers who are either unwilling or unable to quit smoking. The major failing of inhalation assays with cigarette smoke in laboratory animals is that these assays produce only small percentages of animals with pulmonary tumors (e.g. adenomas, with the occasional adenocarcinoma), as opposed to the highly invasive carcinomas (e.g. small cell and squamous cell) seen in smokers. OBJECTIVE To update previous reviews on animal models, and to add different types of transgenic (Tg) mice to the review. METHODS Reviews were made of articles retrieved from PubMed and elsewhere. RESULTS The addition of Tg mice to the arsenal of tests used for the evaluation of the carcinogenic potential of cigarettes did not result in any better understanding of the inability of such testing to reflect the epidemiological evidence for lung cancer in smokers. CONCLUSION As in previous reviews on the subject, the best assay providing support for the epidemiology data is still the 5-month whole-body exposure of male A/J mice to a combination of mainstream/sidestream smoke, followed by a 4-month recovery.
Collapse
Affiliation(s)
- C R E Coggins
- Carson Watts Consulting, King, North Carolina 27021-7453, USA.
| |
Collapse
|
28
|
Das A, Chakrabarty S, Choudhury D, Chakrabarti G. 1,4-Benzoquinone (PBQ) Induced Toxicity in Lung Epithelial Cells Is Mediated by the Disruption of the Microtubule Network and Activation of Caspase-3. Chem Res Toxicol 2010; 23:1054-66. [DOI: 10.1021/tx1000442] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amlan Das
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, India 700019
| | - Subhendu Chakrabarty
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, India 700019
| | - Diptiman Choudhury
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, India 700019
| | - Gopal Chakrabarti
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, India 700019
| |
Collapse
|
29
|
Filosto S, Castillo S, Danielson A, Franzi L, Khan E, Kenyon N, Last J, Pinkerton K, Tuder R, Goldkorn T. Neutral sphingomyelinase 2: a novel target in cigarette smoke-induced apoptosis and lung injury. Am J Respir Cell Mol Biol 2010; 44:350-60. [PMID: 20448054 DOI: 10.1165/rcmb.2009-0422oc] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by exposure to cigarette smoke (CS). One mechanism of CS-induced lung injury is aberrant generation of ceramide, which leads to elevated apoptosis of epithelial and endothelial cells in the alveolar spaces. Recently, we discovered that CS-induced ceramide generation and apoptosis in pulmonary cells is governed by neutral sphingomyelinase (nSMase) 2. In the current experiments, we expanded our studies to investigate whether nSMase2 governs ceramide generation and apoptosis in vivo using rodent and human models of CS-induced lung injury. We found that exposure of mice or rats to CS leads to colocalizing elevations of ceramide levels and terminal deoxynucleotidyl transferase mediated X-dUTP nick end labeling-positive cells in lung tissues. These increases are nSMase2 dependent, and are abrogated by treatment with N-acetyl cysteine or anti-nSMase2 small interfering RNA (siRNA). We further showed that mice that are heterozygous for nSMase2 demonstrate significant decrease in ceramide generation after CS exposure, whereas acidic sphingomyelinase (aSMase) knockout mice maintain wild-type ceramide levels, confirming our previous findings (in human airway epithelial cells) that only nSMase2, and not aSMase, is activated by CS exposure. Lastly, we found that lung tissues from patients with emphysema (smokers) display significantly higher levels of nSMase2 expression compared with lung tissues from healthy control subjects. Taken together, these data establish the central in vivo role of nSMase2 in ceramide generation, aberrant apoptosis, and lung injury under CS exposure, underscoring its promise as a novel target for the prevention of CS-induced airspace destruction.
Collapse
Affiliation(s)
- Simone Filosto
- Genome and Biomedical Sciences Facility, Division of Pulmonary and Critical Care Medicine, University of California Davis, School of Medicine, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Balansky R, Ganchev G, Iltcheva M, Steele VE, De Flora S. Prevention of cigarette smoke-induced lung tumors in mice by budesonide, phenethyl isothiocyanate, and N-acetylcysteine. Int J Cancer 2010; 126:1047-54. [PMID: 19816928 PMCID: PMC4909837 DOI: 10.1002/ijc.24942] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lung cancer is the most important cause of death among neoplastic diseases worldwide, and cigarette smoke (CS) is the major risk factor for cancer. Complementarily to avoidance of exposure to CS, chemoprevention will lower the risk of cancer in passive smokers, ex-smokers, and addicted current smokers who fail to quit smoking. Unfortunately, chemoprevention clinical trials have produced disappointing results to date and, until recently, a suitable animal model evaluating CS carcinogenicity was not available. We previously demonstrated that mainstream CS induces a potent carcinogenic response when exposure of mice starts at birth. In the present study, neonatal mice (strain H) were exposed to CS for 120 consecutive days, starting at birth. The chemopreventive agents budesonide (2.4 mg/kg diet), phenethyl isothiocyanate (PEITC, 1,000 mg/kg diet), and N-acetyl-L-cysteine (NAC, 1,000 mg/kg body weight) were administered orally according to various protocols. The experiment was stopped after 210 days. Exposure to CS resulted in a high incidence and multiplicity of benign lung tumors and in significant increases of malignant lung tumors and other histopathological alterations. All three chemopreventive agents, administered to current smokers after weaning, were quite effective in protecting both male and female mice from CS pulmonary carcinogenicity. When given to ex-smokers after withdrawal of exposure to CS, the protective capacity of budesonide was unchanged, while PEITC lost part of its cancer chemopreventive activity. In conclusion, the proposed experimental model provides convincing evidence that it is possible to prevent CS-induced lung cancer by means of dietary and pharmacological agents.
Collapse
Affiliation(s)
- Roumen Balansky
- National Center of Oncology, Sofia, Bulgaria
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | | | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|