1
|
El-Masry OS, Goja A, Rateb M, Owaidah AY, Alsamman K. RNA sequencing identified novel target genes for Adansonia digitata in breast and colon cancer cells. Sci Prog 2021; 104:368504211032084. [PMID: 34251294 PMCID: PMC10450698 DOI: 10.1177/00368504211032084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adansonia digitata exhibits numerous beneficial effects. In the current study, we investigated the anti-cancer effects of four different extracts of A. digitata (polar and non-polar extracts of fruit powder and fibers) on the proliferation of human colon cancer (HCT116), human breast cancer (MCF-7), and human ovarian cancer (OVCAR-3 and OVCAR-4) cell lines. RNA sequencing revealed the influence of the effective A. digitata fraction on the gene expression profiles of responsive cells. The results indicated that only the polar extract of the A. digitata fibers exhibited anti-proliferative activities against HCT116 and MCF-7 cells, but not ovarian cancer cells. Moreover, the polar extract of the fibers resulted in the modulation of the expression of multiple genes in HCT116 and MCF-7 cells. We propose that casein kinase 2 alpha 3 (CSNK2A3) is a novel casein kinase 2 (CSNK2) isoform in HCT116 cells and report, for the first time, the potential involvement of FYVE, RhoGEF, and PH domain-containing 3 (FGD3) in colon cancer. Together, these findings provide evidence supporting the anti-cancer potential of the polar extract of A. digitata fibers in this experimental model of breast and colon cancers.
Collapse
Affiliation(s)
- Omar S. El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Arafat Goja
- Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mostafa Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
- Marine Biodiscovery Centre, School of Natural & Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Amani Y Owaidah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Wu G, Xia P, Yan S, Chen D, Xie L, Fan G. Identification of unique long non-coding RNAs as putative biomarkers for chromophobe renal cell carcinoma. Per Med 2020; 18:9-19. [PMID: 33052074 DOI: 10.2217/pme-2020-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate whether long non-coding RNAs (lncRNAs) can be utilized as molecular biomarkers in predicting the occurrence and progression of chromophobe renal cell carcinoma. Methods & results: Genetic and related clinical traits of chromophobe renal cell carcinoma were downloaded from the Cancer Genome Atlas and used to construct modules using weighted gene coexpression network analysis. In total, 44,889 genes were allocated into 21 coexpression modules depending on intergenic correlation. Among them, the green module was the most significant key module identified by module-trait correlation calculations (R2 = 0.43 and p = 4e-04). Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that genes in the green module were enriched in many pathways. Coexpression, protein-protein interaction networks, screening for differentially expressed genes, and survival analysis were used to select hub lncRNAs. Five hub lncRNAs (TTK, CENPE, KIF2C, BUB1, and RAD51AP1) were selected out. Conclusion: Our findings suggest that the five lncRNAs may act as potential biomarkers for chromophobe renal cell carcinoma progression and prognosis.
Collapse
Affiliation(s)
- Guanlin Wu
- Experimental & Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin-Buch, Germany.,Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Pengfei Xia
- Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Shixian Yan
- Experimental & Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin-Buch, Germany.,Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Dongming Chen
- Department of Cerebral Surgery, First People's Hospital of Tianmen, Tianmen, PR China
| | - Lei Xie
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, PR China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, PR China.,The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, PR China
| |
Collapse
|
3
|
TTK promotes mesenchymal signaling via multiple mechanisms in triple negative breast cancer. Oncogenesis 2018; 7:69. [PMID: 30206215 PMCID: PMC6133923 DOI: 10.1038/s41389-018-0077-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/16/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormal expression of TTK kinase has been associated with the initiation, progression, and therapeutic resistance of breast and other cancers, but its roles remain to be clarified. In this study, we examined the role of TTK in triple negative breast cancer (TNBC), and found that higher TTK expression correlated with mesenchymal and proliferative phenotypes in TNBC cells. Pharmacologic inhibition and genomic silencing of TTK not only reversed the epithelial-to-mesenchymal transition (EMT) in TNBC cells, but also increased the expression of KLF5, an effector of TGF-β signaling and inhibitor of EMT. In addition, TTK inhibition decreased the expression of EMT-associated micro-RNA miR-21 but increased the expression of miR-200 family members and suppressed TGF-β signaling. To test if upregulation of KLF5 plays a role in TTK-induced EMT, TTK and KLF5 were silenced simultaneously, which reversed the decreased EMT caused by loss of TTK. Consistently, the decrease in miR-21 expression and increase in miR-200 expression caused by TTK silencing were rescued by loss of KLF5. Altogether, this study highlights a novel role and signaling pathway for TTK in regulating EMT of TN breast cancer cells through TGF-β and KLF5 signaling, highlighting targetable signaling pathways for TTK inhibitors in aggressive breast cancer.
Collapse
|
4
|
Choi M, Min YH, Pyo J, Lee CW, Jang CY, Kim JE. TC Mps1 12, a novel Mps1 inhibitor, suppresses the growth of hepatocellular carcinoma cells via the accumulation of chromosomal instability. Br J Pharmacol 2017; 174:1810-1825. [PMID: 28299790 DOI: 10.1111/bph.13782] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Chromosomal instability is not only a hallmark of cancer but also an attractive therapeutic target. A diverse set of mitotic kinases maintains chromosomal stability. One of these is monopolar spindle 1 (Mps1, also known as TTK), which is essential for chromosome alignment and for the spindle assembly checkpoint (SAC). Pharmacological inhibition of Mps1 has been suggested as a cancer therapeutic; however, despite the existence of a novel Mps1 inhibitor, TC Mps1 12, no such studies have been performed. EXPERIMENTAL APPROACH The effects of TC Mps1 12 on cell viability, chromosome alignment, centrosome number, mitotic duration, apoptosis and SAC were determined in hepatocellular carcinoma (HCC) cells. In addition, the association of Mps1 expression with the overall survival of HCC patients was analysed. KEY RESULTS Treatment of human HCC cells with TC Mps1 12 led to chromosome misalignment and missegregation, and disorganization of centrosomes. Even in the presence of these errors, TC Mps1 12-treated cells overrode the SAC, resulting in a shortened mitotic duration and mitotic slippage. This mitotic catastrophe triggered apoptosis and, finally, inhibited the growth of HCC cells. In addition, the expression of the Mps1-encoding TTK gene was associated with poor overall survival of HCC patients. CONCLUSION AND IMPLICATIONS TC Mps1 12 results in the accumulation of chromosomal instabilities and mitotic catastrophe in HCC cells. Overall, these data demonstrate that the inhibition of Mps1 kinase using TC Mps1 12 is a promising therapeutic approach for liver cancer.
Collapse
Affiliation(s)
- Minji Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yoo Hong Min
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jaehyuk Pyo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chang-Young Jang
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,East-West Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues. Oncotarget 2016; 6:41216-27. [PMID: 26515599 PMCID: PMC4747401 DOI: 10.18632/oncotarget.5649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/12/2015] [Indexed: 12/13/2022] Open
Abstract
Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.
Collapse
|
6
|
Expression of Cancer Testis Antigens in Colorectal Cancer: New Prognostic and Therapeutic Implications. DISEASE MARKERS 2016; 2016:1987505. [PMID: 27635108 PMCID: PMC5007337 DOI: 10.1155/2016/1987505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
Abstract
Background. While cancer/testis antigens (CTAs) are restricted in postnatal tissues to testes and germ line-derived cells, their role in cancer development and the clinical significance of their expression still remain to be better defined. Objective. The aim of this study was to investigate the level of CTA expression in colon samples from patients with colorectal cancer (CRC) in relation to patient clinical status. Methods. Forty-five patients with newly diagnosed colorectal cancer were included in the study. We selected a panel of 18 CTAs that were previously detected in CRC as well as some new gene candidates, and their expression was detected at the mRNA level by employing RQ-PCR. Additionally, we evaluated CTA expression in three colon cancer cell lines (CL-188, HTB-39, and HTB-37) after exposure to the DNA methylation-modifying drug 5-azacytidine. Results. We report that 6 out of 18 (33%) CTAs tested (MAGEA3, OIP5, TTK, PLU1, DKKL1, and FBXO39) were significantly (p < 0.05) overexpressed in tumor tissue compared with healthy colon samples isolated from the same patients. Conclusions. Moreover, we found that MAGEA3, PLU-1, and DKKL expression positively correlated with disease progression, evaluated according to the Dukes staging system. Finally, 5-azacytidine exposure significantly upregulated expression of CTAs on CRC cells, which indicates that this demethylation agent could be employed therapeutically to enhance the immune response against tumor cells.
Collapse
|
7
|
Spindle Assembly Checkpoint as a Potential Target in Colorectal Cancer: Current Status and Future Perspectives. Clin Colorectal Cancer 2016; 16:1-8. [PMID: 27435760 DOI: 10.1016/j.clcc.2016.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC), one of the most common malignancies worldwide, is often diagnosed at an advanced stage, and resistance to chemotherapeutic and existing targeted therapy is a major obstacle to its successful treatment. New targets that offer alternative clinical options are therefore urgently needed. Recently, perturbation of the spindle assembly checkpoint (SAC), the surveillance mechanism that maintains anaphase inhibition until all chromosomes reach the metaphase plate, has been regarded as a promising target to fight cancer cells, either alone or in combination regimens. Consistent with this strategy, many cancers, including CRC, exhibit altered expression of SAC genes. In this article, we review our current knowledge on SAC activity status in CRC, and on current anti-CRC strategies and future therapeutic perspectives on the basis of SAC targeting experiments in vitro and in animal models.
Collapse
|
8
|
Li CW, Chen BS. Investigating core genetic-and-epigenetic cell cycle networks for stemness and carcinogenic mechanisms, and cancer drug design using big database mining and genome-wide next-generation sequencing data. Cell Cycle 2016; 15:2593-2607. [PMID: 27295129 PMCID: PMC5053590 DOI: 10.1080/15384101.2016.1198862] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies have demonstrated that cell cycle plays a central role in development and carcinogenesis. Thus, the use of big databases and genome-wide high-throughput data to unravel the genetic and epigenetic mechanisms underlying cell cycle progression in stem cells and cancer cells is a matter of considerable interest. Real genetic-and-epigenetic cell cycle networks (GECNs) of embryonic stem cells (ESCs) and HeLa cancer cells were constructed by applying system modeling, system identification, and big database mining to genome-wide next-generation sequencing data. Real GECNs were then reduced to core GECNs of HeLa cells and ESCs by applying principal genome-wide network projection. In this study, we investigated potential carcinogenic and stemness mechanisms for systems cancer drug design by identifying common core and specific GECNs between HeLa cells and ESCs. Integrating drug database information with the specific GECNs of HeLa cells could lead to identification of multiple drugs for cervical cancer treatment with minimal side-effects on the genes in the common core. We found that dysregulation of miR-29C, miR-34A, miR-98, and miR-215; and methylation of ANKRD1, ARID5B, CDCA2, PIF1, STAMBPL1, TROAP, ZNF165, and HIST1H2AJ in HeLa cells could result in cell proliferation and anti-apoptosis through NFκB, TGF-β, and PI3K pathways. We also identified 3 drugs, methotrexate, quercetin, and mimosine, which repressed the activated cell cycle genes, ARID5B, STK17B, and CCL2, in HeLa cells with minimal side-effects.
Collapse
Affiliation(s)
- Cheng-Wei Li
- a Department of Electrical Engineering , National Tsing Hua University , Hsinchu , Taiwan
| | - Bor-Sen Chen
- a Department of Electrical Engineering , National Tsing Hua University , Hsinchu , Taiwan
| |
Collapse
|
9
|
Expression and function analysis of mitotic checkpoint genes identifies TTK as a potential therapeutic target for human hepatocellular carcinoma. PLoS One 2014; 9:e97739. [PMID: 24905462 PMCID: PMC4048189 DOI: 10.1371/journal.pone.0097739] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/24/2014] [Indexed: 12/22/2022] Open
Abstract
The mitotic spindle checkpoint (SAC) genes have been considered targets of anticancer therapies. Here, we sought to identify the attractive mitotic spindle checkpoint genes appropriate for human hepatocellular carcinoma (HCC) therapies. Through expression profile analysis of 137 selected mitotic spindle checkpoint genes in the publicly available microarray datasets, we showed that 13 genes were dramatically up-regulated in HCC tissues compared to normal livers and adjacent non-tumor tissues. A role of the 13 genes in proliferation was evaluated by knocking them down via small interfering RNA (siRNA) in HCC cells. As a result, several mitotic spindle checkpoint genes were required for maintaining the proliferation of HCC cells, demonstrated by cell viability assay and soft agar colony formation assay. Then we established sorafenib-resistant sublines of HCC cell lines Huh7 and HepG2. Intriguingly, increased TTK expression was significantly associated with acquired sorafenib-resistance in Huh7, HepG2 cells. More importantly, TTK was observably up-regulated in 46 (86.8%) of 53 HCC specimens. A series of in vitro and in vivo functional experiment assays showed that TTK overexpression promoted cell proliferation, anchor-dependent colony formation and resistance to sorafenib of HCC cells; TTK knockdown restrained cell growth, soft agar colony formation and resistance to sorafenib of HCC cells. Collectively, TTK plays an important role in proliferation and sorafenib resistance and could act as a potential therapeutic target for human hepatocellular carcinoma.
Collapse
|
10
|
Abstract
MPS1 protein kinases are found widely, but not ubiquitously, in eukaryotes. This family of potentially dual-specific protein kinases is among several that regulate a number of steps of mitosis. The most widely conserved MPS1 kinase functions involve activities at the kinetochore in both the chromosome attachment and the spindle checkpoint. MPS1 kinases also function at centrosomes. Beyond mitosis, MPS1 kinases have been implicated in development, cytokinesis, and several different signaling pathways. Family members are identified by virtue of a conserved C-terminal kinase domain, though the N-terminal domain is quite divergent. The kinase domain of the human enzyme has been crystallized, revealing an unusual ATP-binding pocket. The activity, level, and subcellular localization of Mps1 family members are tightly regulated during cell-cycle progression. The mitotic functions of Mps1 kinases and their overexpression in some tumors have prompted the identification of Mps1 inhibitors and their active development as anticancer drugs.
Collapse
Affiliation(s)
- Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| | | |
Collapse
|