1
|
Gong Y, Li H. CDK7 in breast cancer: mechanisms of action and therapeutic potential. Cell Commun Signal 2024; 22:226. [PMID: 38605321 PMCID: PMC11010440 DOI: 10.1186/s12964-024-01577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) serves as a pivotal regulator in orchestrating cellular cycle dynamics and gene transcriptional activity. Elevated expression levels of CDK7 have been ubiquitously documented across a spectrum of malignancies and have been concomitantly correlated with adverse clinical outcomes. This review delineates the biological roles of CDK7 and explicates the molecular pathways through which CDK7 exacerbates the oncogenic progression of breast cancer. Furthermore, we synthesize the extant literature to provide a comprehensive overview of the advancement of CDK7-specific small-molecule inhibitors, encapsulating both preclinical and clinical findings in breast cancer contexts. The accumulated evidence substantiates the conceptualization of CDK7 as a propitious therapeutic target in breast cancer management.
Collapse
Affiliation(s)
- Ying Gong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huiping Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
2
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
3
|
Cárdenas-León CG, Klaas M, Mäemets-Allas K, Arak T, Eller M, Jaks V. Olfactomedin 4 regulates migration and proliferation of immortalized non-transformed keratinocytes through modulation of the cell cycle machinery and actin cytoskeleton remodelling. Exp Cell Res 2022; 415:113111. [PMID: 35337817 DOI: 10.1016/j.yexcr.2022.113111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 12/22/2022]
Abstract
Olfactomedin 4 (OLFM4), a multifunctional matricellular protein, is involved in regulation of angiogenesis, innate immunity, inflammation, tumorigenesis and metastasis formation via modulation of important cellular processes like adhesion, proliferation, differentiation as well as apoptosis. In our previous work we demonstrated the upregulation of OLFM4 during liver regeneration and cutaneous wound healing. Here we studied the outcomes of OLFM4 downregulation in human immortalized keratinocytes - the HaCaT cells. The suppression of OLFM4 inhibited migration but enhanced the proliferation of these cells. By using proteomic, and phosphoproteomic analysis, we found that OLFM4 downregulation induced changes in the levels of 184 proteins and 348 phosphosites. An integrated pathway analysis suggested that the increased phosphorylation of CDK7 at Ser164 and Thr170 may serve as the key event in the activation of CDK2 and consequent activation of cell cycle progression. Furthermore, the decrease in GIT1 and WAVE2 protein levels were connected to the disorganization of the actin cytoskeleton, reduction of lamellipodia formation at the leading edge of HaCaT cells, and decrease in their migration capacity.
Collapse
Affiliation(s)
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Terje Arak
- Tartu University Hospital, Surgery Clinic, Puusepa 8, 50406, Tartu, Estonia
| | - Mart Eller
- Tartu University Hospital, Surgery Clinic, Puusepa 8, 50406, Tartu, Estonia
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia; Dermatology Clinic, Tartu University Clinics, Tartu, Estonia.
| |
Collapse
|
4
|
Kenchappa RS, Liu Y, Argenziano MG, Banu MA, Mladek AC, West R, Luu A, Quiñones-Hinojosa A, Hambardzumyan D, Justilien V, Leitges M, Sarkaria JN, Sims PA, Canoll P, Murray NR, Fields AP, Rosenfeld SS. Protein kinase C ι and SRC signaling define reciprocally related subgroups of glioblastoma with distinct therapeutic vulnerabilities. Cell Rep 2021; 37:110054. [PMID: 34818553 PMCID: PMC9845019 DOI: 10.1016/j.celrep.2021.110054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 01/19/2023] Open
Abstract
We report that atypical protein kinase Cι (PKCι) is an oncogenic driver of glioblastoma (GBM). Deletion or inhibition of PKCι significantly impairs tumor growth and prolongs survival in murine GBM models. GBM cells expressing elevated PKCι signaling are sensitive to PKCι inhibitors, whereas those expressing low PKCι signaling exhibit active SRC signaling and sensitivity to SRC inhibitors. Resistance to the PKCι inhibitor auranofin is associated with activated SRC signaling and response to a SRC inhibitor, whereas resistance to a SRC inhibitor is associated with activated PKCι signaling and sensitivity to auranofin. Interestingly, PKCι- and SRC-dependent cells often co-exist in individual GBM tumors, and treatment of GBM-bearing mice with combined auranofin and SRC inhibitor prolongs survival beyond either drug alone. Thus, we identify PKCι and SRC signaling as distinct therapeutic vulnerabilities that are directly translatable into an improved treatment for GBM.
Collapse
Affiliation(s)
| | - Yi Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael G Argenziano
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Matei A Banu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ann C Mladek
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Rita West
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Amanda Luu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Dolores Hambardzumyan
- Departments of Neurosurgery and Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Verline Justilien
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Nicole R Murray
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA.
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA.
| | | |
Collapse
|
5
|
Andrade MJ, Van Lonkhuyzen DR, Upton Z, Satyamoorthy K. RPA facilitates rescue of keratinocytes from UVB radiation damage through insulin-like growth factor-I signalling. J Cell Sci 2021; 134:jcs255786. [PMID: 34137442 DOI: 10.1242/jcs.255786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/10/2021] [Indexed: 01/19/2023] Open
Abstract
UVBR-induced photolesions in genomic DNA of keratinocytes impair cellular functions and potentially determine the cell fate post-irradiation. The ability of insulin-like growth factor-I (IGF-I) to rescue epidermal keratinocytes after photodamage via apoptosis prevention and photolesion removal was recently demonstrated using in vitro two-dimensional and three-dimensional skin models. Given the limited knowledge of specific signalling cascades contributing to post-UVBR IGF-I effects, we used inhibitors to investigate the impact of blockade of various signalling mediators on IGF-I photoprotection. IGF-I treatment, in the presence of signalling inhibitors, particularly TDRL-505, which targets replication protein A (RPA), impaired activation of IGF-1R downstream signalling, diminished cyclobutane pyrimidine dimer removal, arrested growth, reduced cell survival and increased apoptosis. Further, the transient partial knockdown of RPA was found to abrogate IGF-I-mediated responses in keratinocytes, ultimately affecting photoprotection and, thereby, establishing that RPA is required for IGF-I function. Our findings thus elucidate the importance of RPA in linking the damage response activation, cell cycle regulation, repair and survival pathways, separately initiated by IGF-I upon UVBR-induced damage. This information is potentially imperative for the development of effective sunburn and photodamage repair strategies. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Melisa J Andrade
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Derek R Van Lonkhuyzen
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Zee Upton
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore138648
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
6
|
Abstract
Cyclin-dependent kinase 7 (CDK7), along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs progression through the cell cycle via T-loop phosphorylation of cell cycle CDKs. CAK is also a component of the general transcription factor, TFIIH. CDK7-mediated phosphorylation of RNA polymerase II (Pol II) at active gene promoters permits transcription. Cell cycle dysregulation is an established hallmark of cancer, and aberrant control of transcriptional processes, through diverse mechanisms, is also common in many cancers. Furthermore, CDK7 levels are elevated in a number of cancer types and are associated with clinical outcomes, suggestive of greater dependence on CDK7 activity, compared with normal tissues. These findings identify CDK7 as a cancer therapeutic target, and several recent publications report selective CDK7 inhibitors (CDK7i) with activity against diverse cancer types. Preclinical studies have shown that CDK7i cause cell cycle arrest, apoptosis and repression of transcription, particularly of super-enhancer-associated genes in cancer, and have demonstrated their potential for overcoming resistance to cancer treatments. Moreover, combinations of CDK7i with other targeted cancer therapies, including BET inhibitors, BCL2 inhibitors and hormone therapies, have shown efficacy in model systems. Four CDK7i, ICEC0942 (CT7001), SY-1365, SY-5609 and LY3405105, have now progressed to Phase I/II clinical trials. Here we describe the work that has led to the development of selective CDK7i, the current status of the most advanced clinical candidates, and discuss their potential importance as cancer therapeutics, both as monotherapies and in combination settings. ClinicalTrials.gov Identifiers: NCT03363893; NCT03134638; NCT04247126; NCT03770494.
Collapse
|
7
|
Dey A, Islam SMA, Patel R, Acevedo-Duncan M. The interruption of atypical PKC signaling and Temozolomide combination therapy against glioblastoma. Cell Signal 2020; 77:109819. [PMID: 33147518 DOI: 10.1016/j.cellsig.2020.109819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
Current treatment options of glioblastoma include chemotherapy and limited surgical resection. Temozolomide (TMZ) is the current therapeutic choice for chemotherapy. Still, it has severe limitations due to the development of resistance that occurs by genetic modification and constitutive activation of several cell signaling pathways. Therefore, it is essential to develop combination therapy of TMZ with other novel compounds to prevent the development of chemo-resistance. In this study, we used two inhibitors; ICA, an inhibitor of PKC-ι and ζ-Stat, an inhibitor of PKC-ζ. T98G and U87MG glioblastoma cells were treated with either ICA or ζ-stat or TMZ monotherapies, as well as TMZ were combined with either ICA or ζ-stat for five consecutive days. Our in vitro results exhibited that ICA when combined with TMZ, significantly decreased the viability of cancerous cells compared with untreated or TMZ or ICA monotherapies. Additionally, glioblastoma cells were remarkably undergoing apoptosis against the combination treatment of TMZ and ICA nucleotide compared with untreated control cells, as suggested by our Annexin-V/PI flow cytometric analysis. Moreover, the combination of TMZ and ICA also decreased the invasion of glioblastoma cell lines by acting on FAK/Paxillin pathway, as evidenced by scratch assay, transwell invasion assay, Western blot and immunoprecipitation analysis. Furthermore, our in vivo data presented that the combination of ICA and TMZ also reduced glioblastoma tumor growth and volume in mice. These data suggest that atypical PKCs, particularly PKC-ι might be an important therapeutic target as adjuvant therapy in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Avijit Dey
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, United States of America
| | - S M Anisul Islam
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, United States of America
| | - Rekha Patel
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, United States of America
| | - Mildred Acevedo-Duncan
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, United States of America.
| |
Collapse
|
8
|
Atypical Protein Kinase-C inhibitors exhibit a synergistic effect in facilitating DNA damaging effect of 5-fluorouracil in colorectal cancer cells. Biomed Pharmacother 2020; 121:109665. [DOI: 10.1016/j.biopha.2019.109665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 01/31/2023] Open
|
9
|
A high-throughput screen identifies that CDK7 activates glucose consumption in lung cancer cells. Nat Commun 2019; 10:5444. [PMID: 31784510 PMCID: PMC6884612 DOI: 10.1038/s41467-019-13334-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Elevated glucose consumption is fundamental to cancer, but selectively targeting this pathway is challenging. We develop a high-throughput assay for measuring glucose consumption and use it to screen non-small-cell lung cancer cell lines against bioactive small molecules. We identify Milciclib that blocks glucose consumption in H460 and H1975, but not in HCC827 or A549 cells, by decreasing SLC2A1 (GLUT1) mRNA and protein levels and by inhibiting glucose transport. Milciclib blocks glucose consumption by targeting cyclin-dependent kinase 7 (CDK7) similar to other CDK7 inhibitors including THZ1 and LDC4297. Enhanced PIK3CA signaling leads to CDK7 phosphorylation, which promotes RNA Polymerase II phosphorylation and transcription. Milciclib, THZ1, and LDC4297 lead to a reduction in RNA Polymerase II phosphorylation on the SLC2A1 promoter. These data indicate that our high-throughput assay can identify compounds that regulate glucose consumption and that CDK7 is a key regulator of glucose consumption in cells with an activated PI3K pathway. Many cancer cells have increased glucose consumption compared to normal cells, a feature that can be exploited therapeutically. Here, the authors carry out a chemical screen and identify compounds that selectively blocks glucose metabolism in non-small-cell lung cancer cell lines.
Collapse
|
10
|
Chohan TA, Qayyum A, Rehman K, Tariq M, Akash MSH. An insight into the emerging role of cyclin-dependent kinase inhibitors as potential therapeutic agents for the treatment of advanced cancers. Biomed Pharmacother 2018; 107:1326-1341. [PMID: 30257348 DOI: 10.1016/j.biopha.2018.08.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 01/16/2023] Open
Abstract
Cancer denotes a pathological manifestation that is characterized by hyperproliferation of cells. It has anticipated that a better understanding of disease pathogenesis and the role of cell-cycle regulators may provide an opportunity to develop an effective cancer therapeutic agents. Specifically, the cyclin-dependent kinases (CDKs) which regulate the transition of cell-cycle through different phases; have been identified as fundamental targets for therapeutic advances. It is an evident from experimental studies that several events leading to tumor growth occur by exacerbation of CDK4/CDK6 in G1-phase of cell division cycle. Additionally, the characteristics of S- and G2/M-phase regulated by CDK1/CDK2 are pivotal events that may lead to abrupt the cell division. Although, previously reported CDK inhibitors have shown remarkable results in pre-clinical studies, but have not yielded appreciable clinical results yet. Therefore, the development of clinically potent CDK inhibitors has remained to be a challenging task. However, continuous efforts has led to the development of some novel CDKs inhibitors that have emerged as a potent strategy for the treatment of advanced cancers. In this article, we have summarized the role of CDKs in cell-cycle regulation and tumorigenesis and recent advances in the development of CDKs inhibitors as a promising therapy for the treatment of advanced cancer. In addition, we have also performed a comparison of crystallographic studies to get valuable insight into the interaction mode differences of inhibitors, binding to CDK isoforms with apparently similar binding sites. The knowledge of ligand-specific recognition towards a particular CDK isoform may be applied as a key tool in future for the designing of isoform-specific inhibitors.
Collapse
Affiliation(s)
- Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Aisha Qayyum
- Department of Paediatrics Medicine, Sabzazar Hospital, Lahore, Pakistan
| | - Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Tariq
- Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur, Pakistan
| | | |
Collapse
|
11
|
A Novel Atypical PKC-Iota Inhibitor, Echinochrome A, Enhances Cardiomyocyte Differentiation from Mouse Embryonic Stem Cells. Mar Drugs 2018; 16:md16060192. [PMID: 29865255 PMCID: PMC6025622 DOI: 10.3390/md16060192] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
Echinochrome A (EchA) is a marine bioproduct extracted from sea urchins having antioxidant, antimicrobial, anti-inflammatory, and chelating effects, and is the active component of the clinical drug histochrome. We investigated the potential use of Ech A for inducing cardiomyocyte differentiation from mouse embryonic stem cells (mESCs). We also assessed the effects of Ech A on mitochondrial mass, inner membrane potential (Δψm), reactive oxygen species generation, and levels of Ca2+. To identify the direct target of Ech A, we performed in vitro kinase activity and surface plasmon resonance binding assays. Ech A dose-dependently enhanced cardiomyocyte differentiation with higher beating rates. Ech A (50 μM) increased the mitochondrial mass and membrane potential but did not alter the mitochondrial superoxide and Ca2+ levels. The in vitro kinase activity of the atypical protein kinase C-iota (PKCι) was significantly decreased by 50 μM of Ech A with an IC50 for PKCι activity of 107 μM. Computational protein-ligand docking simulation results suggested the direct binding of Ech A to PKCι, and surface plasmon resonance confirmed the direct binding with a low KD of 6.3 nM. Therefore, Ech A is a potential drug for enhancing cardiomyocyte differentiation from mESCs through direct binding to PKCι and inhibition of its activity.
Collapse
|
12
|
Han Y, Zhao S, Gong Y, Hou G, Li X, Li L. Serum cyclin-dependent kinase 9 is a potential biomarker of atherosclerotic inflammation. Oncotarget 2016; 7:1854-62. [PMID: 26636538 PMCID: PMC4811502 DOI: 10.18632/oncotarget.6443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Atherosclerotic coronary artery disease (CAD) is one of the most prevalent diseases worldwide. Atherosclerosis was considered to be the single most important contributor to CAD. In this study, a distinct serum protein expression pattern in CAD patients was demonstrated by proteomic analysis with two-dimensional gel electrophoresis coupled with mass spectrometry. In particular, CDK9 was found to be highly elevated in serum, monocytes and artery plaque samples of CAD patients. Furthermore, there was high infiltration of CD14+ monocytes/macrophages within artery plaques correlated with the expression of CDK9. Moreover, Flavopiridol (CDK9 inhibitor) could inhibit THP-1 cell (monocytic acute leukemia cell line) proliferation by targeting CDK9. Altogether, These findings indicate that CDK9 represent an important role for inflammation in the pathogenesis of atherosclerosis. It may be a potential biomarker of atherosclerotic inflammation and offer insights into the pathophysiology and targeted therapy for atherosclerotic CAD.
Collapse
Affiliation(s)
- Yeming Han
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Shanshan Zhao
- Laboratory of Experimental Teratology, Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- Laboratory of Experimental Teratology, Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Genetics, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guihua Hou
- Laboratory of Experimental Teratology, Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xi Li
- Laboratory of Experimental Teratology, Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Genetics, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Li Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
13
|
Ni S, Chen L, Li M, Zhao W, Shan X, Wu M, Cheng J, Liang L, Wang Y, Jiang W, Zhang J, Ni R. PKC iota promotes cellular proliferation by accelerated G1/S transition via interaction with CDK7 in esophageal squamous cell carcinoma. Tumour Biol 2016; 37:13799-13809. [PMID: 27481515 DOI: 10.1007/s13277-016-5193-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
Protein kinase C iota (PKCι) has been shown to play an important role in tumorigenesis of many cancers. It was reported that frequent amplification and overexpression of PKCi were correlated with resistance to anoikis in primary esophageal squamous cell carcinomas (ESCC). In this study, we clarified a novel role of PKCι on the cell cycle progression and proliferation in ESCC. Western blot and immunohistochemistry (IHC) analysis showed that the expression of PKCι was higher in ESCC tumor tissues and cell lines. Meanwhile, IHC stain revealed that PKCι was positively correlated with clinical pathologic variables such as tumor size, tumor grade, and tumor invasion, as well as ki67. Immunoprecipitation and immunofluorescence assay revealed that PKCι/CDK7 has the physical interaction and were co-located in the cell nucleus. And this direct interaction could increase the phosphorylation level of CDK7. In vitro studies such as starvation and refeeding assay along with PKCι-shRNA transfection assay demonstrated that PKCι expression promoted proliferation of ESCC cells. And knocking PKCi down by silencing RNA (siRNA) significantly caused cell cycle arrest at G0/G1 phase, decreased rate of colony formation, and alleviated cellular apoptosis. This research provide new insights into PKCi signaling to more deeply understand its cancer-promoting function in ESCC.
Collapse
Affiliation(s)
- Sujie Ni
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Lingling Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Mei Li
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Weijuan Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Xiaohang Shan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Miaomiao Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Jialin Cheng
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Li Liang
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Yayun Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Wenyan Jiang
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China.
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
14
|
Yang L, Yuan X, Wang J, Gu C, Zhang H, Yu J, Liu F. Radiosensitization of human glioma cells by tamoxifen is associated with the inhibition of PKC-ι activity in vitro. Oncol Lett 2015; 10:473-478. [PMID: 26171054 DOI: 10.3892/ol.2015.3195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 04/21/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the radiosensitizing effects of tamoxifen (TAM), a non-steroidal anti-estrogen drug, in human glioma A172 and U251 cells in vitro. A colony-forming assay revealed that TAM enhances radiosensitivity in A172 and U251 cells. Treatment with TAM also increased the percentage of apoptotic cells subsequent to ionizing radiation, and increased the expression of apoptotic markers, including cleaved caspase-3 and poly(ADP-ribose) polymerase. Ionizing radiation induced G2/M phase arrest, which was alleviated within 24 h when the radiation-induced DNA damage was repaired. However, flow cytometry analysis revealed that TAM treatment delayed the recovery of cell cycle progression. Additional examination demonstrated that TAM-mediated protein kinase C-ι (PKC-ι) inhibition may lead to the activation of pro-apoptotic B-cell lymphoma 2-associated death promoter, and the dephosphorylation of cyclin-dependent kinase 7, resulting in increased cell apoptosis and sustained G2/M phase arrest following exposure to radiation. The present data indicate that the radiosensitizing effects of TAM on glioma cells are partly due to the inhibition of PKC-ι activity in vitro.
Collapse
Affiliation(s)
- Lei Yang
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P.R. China
| | - Xiaopeng Yuan
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P.R. China
| | - Jie Wang
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P.R. China
| | - Cheng Gu
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P.R. China
| | - Haowen Zhang
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P.R. China
| | - Jiahua Yu
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P.R. China
| | - Fenju Liu
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P.R. China
| |
Collapse
|
15
|
McCray AN, Desai S, Acevedo-Duncan M. The interruption of PKC-ι signaling and TRAIL combination therapy against glioblastoma cells. Neurochem Res 2014; 39:1691-701. [PMID: 24965532 DOI: 10.1007/s11064-014-1361-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 05/09/2014] [Accepted: 06/12/2014] [Indexed: 12/22/2022]
Abstract
Glioblastoma is a highly aggressive type of brain cancer which currently has limited options for treatment. It is imperative to develop combination therapies that could cause apoptosis in glioblastoma. The aim of this study was to characterize the affect of modified ICA-1, a PKC-iota inhibitor, on the growth pattern of various glioblastoma cell lines. T98G and U87 glioblastoma cells were treated with ICA-1 alone and the absolute cell numbers of each group were determined for cell growth expansion analysis, cell viability analysis, and cell death analysis. Low dose ICA-1 treatment alone significantly inhibited cell growth expansion of high density glioblastoma cells without inducing cell death. However, the high dose ICA-1 treatment regimen provided significant apoptosis for glioblastoma cells. Furthermore, this study was conducted to use a two layer molecular level approach for treating glioblastoma cells with ICA-1 plus an apoptosis agent, tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL), to induce apoptosis in such chemo-refractory cancer cells. Following ICA-1 plus TRAIL treatment, apoptosis was detected in glioblastoma cells via the TUNEL assay and via flow cytometric analysis using Annexin-V FITC/PI. This study offers the first evidence for ICA-1 alone to inhibit glioblastoma cell proliferation as well as the novel combination of ICA-1 with TRAIL to cause robust apoptosis in a caspase-3 mediated mechanism. Furthermore, ICA-1 plus TRAIL simultaneously modulates down-regulation of PKC-iota and c-Jun.
Collapse
Affiliation(s)
- Andrea N McCray
- James A. Haley Veterans' Hospital, 13000 Bruce B. Downs Blvd., VAR 151, Tampa, FL, 33612, USA,
| | | | | |
Collapse
|
16
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
17
|
Keysar SB, Astling DP, Anderson RT, Vogler BW, Bowles DW, Morton JJ, Paylor JJ, Glogowska MJ, Le PN, Eagles-Soukup JR, Kako SL, Takimoto SM, Sehrt DB, Umpierrez A, Pittman MA, Macfadden SM, Helber RM, Peterson S, Hausman DF, Said S, Leem TH, Goddard JA, Arcaroli JJ, Messersmith WA, Robinson WA, Hirsch FR, Varella-Garcia M, Raben D, Wang XJ, Song JI, Tan AC, Jimeno A. A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Mol Oncol 2013; 7:776-90. [PMID: 23607916 PMCID: PMC3760013 DOI: 10.1016/j.molonc.2013.03.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 12/23/2022] Open
Abstract
Targeted therapy development in head and neck squamous cell carcinoma (HNSCC) is challenging given the rarity of activating mutations. Additionally, HNSCC incidence is increasing related to human papillomavirus (HPV). We sought to develop an in vivo model derived from patients reflecting the evolving HNSCC epidemiologic landscape, and use it to identify new therapies. Primary and relapsed tumors from HNSCC patients, both HPV+ and HPV-, were implanted on mice, giving rise to 25 strains. Resulting xenografts were characterized by detecting key mutations, measuring protein expression by IHC and gene expression/pathway analysis by mRNA-sequencing. Drug efficacy studies were run with representative xenografts using the approved drug cetuximab as well as the new PI3K inhibitor PX-866. Tumors maintained their original morphology, genetic profiles and drug susceptibilities through serial passaging. The genetic makeup of these tumors was consistent with known frequencies of TP53, PI3KCA, NOTCH1 and NOTCH2 mutations. Because the EGFR inhibitor cetuximab is a standard HNSCC therapy, we tested its efficacy and observed a wide spectrum of efficacy. Cetuximab-resistant strains had higher PI3K/Akt pathway gene expression and protein activation than cetuximab-sensitive strains. The PI3K inhibitor PX-866 had anti-tumor efficacy in HNSCC models with PIK3CA alterations. Finally, PI3K inhibition was effective in two cases with NOTCH1 inactivating mutations. In summary, we have developed an HNSCC model covering its clinical spectrum whose major genetic alterations and susceptibility to anticancer agents represent contemporary HNSCC. This model enables to prospectively test therapeutic-oriented hypotheses leading to personalized medicine.
Collapse
Affiliation(s)
- Stephen B. Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - David P. Astling
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
- Department of Biostatistics and Informatics, UCSOM, CO 80045, United States
| | - Ryan T. Anderson
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Brian W. Vogler
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Daniel W. Bowles
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - J. Jason Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Jeramiah J. Paylor
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Magdalena J. Glogowska
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Phuong N. Le
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Justin R. Eagles-Soukup
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Severine L. Kako
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Sarah M. Takimoto
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Daniel B. Sehrt
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Adrian Umpierrez
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Morgan A. Pittman
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Sarah M. Macfadden
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Ryan M. Helber
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | | | | | - Sherif Said
- Department of Pathology, UCSOM, CO 80045, United States
| | - Ted H. Leem
- Department of Otolaryngology, UCSOM, CO 80045, United States
| | | | - John J. Arcaroli
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Wells A. Messersmith
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - William A. Robinson
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Fred R. Hirsch
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - Marileila Varella-Garcia
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
| | - David Raben
- Department of Radiation Oncology, USCOM, CO 80045, United States
| | - Xiao-Jing Wang
- Department of Pathology, UCSOM, CO 80045, United States
- Charles C. Gates Center for Stem Cell Biology, UCSOM, CO 80045, United States
| | - John I. Song
- Department of Otolaryngology, UCSOM, CO 80045, United States
| | - Aik-Choon Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
- Department of Biostatistics and Informatics, UCSOM, CO 80045, United States
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine (UCSOM), Aurora, CO 80045, United States
- Department of Otolaryngology, UCSOM, CO 80045, United States
- Charles C. Gates Center for Stem Cell Biology, UCSOM, CO 80045, United States
| |
Collapse
|
18
|
Deregulations in the cyclin-dependent kinase-9-related pathway in cancer: implications for drug discovery and development. ISRN ONCOLOGY 2013; 2013:305371. [PMID: 23840966 PMCID: PMC3690251 DOI: 10.1155/2013/305371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/19/2013] [Indexed: 12/21/2022]
Abstract
The CDK9-related pathway is an important regulator of mammalian cell biology and is also involved in the replication cycle of several viruses, including the human immunodeficiency virus type 1. CDK9 is present in two isoforms termed CDK9-42 and CDK9-55 that bind noncovalently type T cyclins and cyclin K. This association forms a heterodimer, where CDK9 carries the enzymatic site and the cyclin partner functions as a regulatory subunit. This heterodimer is the main component of the positive transcription elongation factor b, which stabilizes RNA elongation via phosphorylation of the RNA pol II carboxyl terminal domain. Abnormal activities in the CDK9-related pathway were observed in human malignancies and cardiac hypertrophies. Thus, the elucidation of the CDK9 pathway deregulations may provide useful insights into the pathogenesis and progression of human malignancies, cardiac hypertrophy, AIDS and other viral-related maladies. These studies may lead to the improvement of kinase inhibitors for the treatment of the previously mentioned pathological conditions. This review describes the CDK9-related pathway deregulations in malignancies and the development of kinase inhibitors in cancer therapy, which can be classified into three categories: antagonists that block the ATP binding site of the catalytic domain, allosteric inhibitors, and small molecules that disrupt protein-protein interactions.
Collapse
|
19
|
Black AR, Black JD. Protein kinase C signaling and cell cycle regulation. Front Immunol 2013; 3:423. [PMID: 23335926 PMCID: PMC3547298 DOI: 10.3389/fimmu.2012.00423] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022] Open
Abstract
A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about 30 years. However, despite the wealth of information on PKC-mediated control of, T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s) and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks), cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1 → S and/or G2 → M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in T cells.
Collapse
Affiliation(s)
- Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
20
|
Three meta-analyses define a set of commonly overexpressed genes from microarray datasets on astrocytomas. Mol Neurobiol 2012; 47:325-36. [PMID: 23135747 DOI: 10.1007/s12035-012-8367-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Glioma is one of the most common tumors of the central nervous system, and one of its main types is astrocytoma. Microarray technology has been widely used to explore the molecular mechanism of cancer. It is universally accepted that meta-analysis considerably improves the statistical robustness of results, particularly in clinical research. To obtain the maximum reliability, we used three different meta-analyses to integrate the four microarray datasets, GSE16011, GSE4290, GSE2223, and GSE19728 (local), and defined the common differentially expressed genes (DEGs) in astrocytomas compared with normal brain tissue. Four DEGs, PCNA, CDC2, CDK2 and CCNB2, which are components of the cell cycle pathway, were chosen for Real-Time Polymerase Chain Reaction (RT-PCR) and immunohistochemistry validation. PCNA is similar to the P53 gene and has been widely implicated in various cancers including gliomas. Therefore, the expression status of PCNA in our study was considered as a reference to test our whole experimental scheme, and the results indicate that our methodology is valid. Although a few studies have reported the overexpression of the CDC2, CDK2 and CCNB2 genes in glioma cell lines, we are the first to identify the statuses of these genes in human astrocytoma tissues at the mRNA and protein levels. The results of the gene validations strongly suggested that the genes play an important role in astrocytomas and could potentially be valuable in the diagnosis and treatment of astrocytoma.
Collapse
|