1
|
vahidi M, Houshmand M, Banoei M, Heidari F. The association between TIPARP gene polymorphisms rs2665390 and ovarian cancer susceptibility. Gynecol Oncol Rep 2023; 47:101175. [PMID: 37091214 PMCID: PMC10113771 DOI: 10.1016/j.gore.2023.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Ovarian cancer is taken as the most typical malignancy among women and the ninth most typical cancer in Iran. Predictive tools are of great importance as ovarian cancer is usually detected in patients at later stages of the disease. In other countries, the TIPARP gene rs2665390 has been reported to be pertinent to ovarian cancer as a risk factor. This study aims to examine if this polymorphism pertains to the risk of ovarian cancer to diagnose suitable biomarkers in the Iranian population. Method: In the present case-control piliot study, peripheral blood samples were gathered from 60 control subjects and 60 patients with ovarian cancer. The gene was determined by Tetra ARMS PCR after DNA extraction. Tetra ARMS PCR is a flexible, rapid, and cost-effective method to detect allele-specific DNA polymorphisms. The data were analyzed by chi-square test. Results: The results indicated that there was a significant association between the T/T and C/C genotypes distribution and C and T allele in ovarian cancer for rs2665390 polymorphism in the two populations. In addition, significant correlations were observed in patients with the (T/T) genotype (p = 0.0048) as frequencies of ovarian cancer decreased. Discussion & Conclusions: Based on the results, rs2665390 polymorphism of TiPARP gene might be pertained to the susceptibility of ovarian cancer in the Iranian pilot population, which can be used as a suitable biomarker for the population and help physicians with their predictions. However, more studies need to be conducted in this area to broaden our horizons on this issue.
Collapse
|
2
|
Khodadoust A, Nasirizadeh N, Seyfati SM, Taheri RA, Ghanei M, Bagheri H. High-performance strategy for the construction of electrochemical biosensor for simultaneous detection of miRNA-141 and miRNA-21 as lung cancer biomarkers. Talanta 2023; 252:123863. [DOI: 10.1016/j.talanta.2022.123863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
3
|
Kandettu A, Adiga D, Devi V, Suresh PS, Chakrabarty S, Radhakrishnan R, Kabekkodu SP. Deregulated miRNA clusters in ovarian cancer: Imperative implications in personalized medicine. Genes Dis 2022; 9:1443-1465. [PMID: 36157483 PMCID: PMC9485269 DOI: 10.1016/j.gendis.2021.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/04/2021] [Accepted: 12/31/2021] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. OC is usually detected at the advanced stages of the disease, making it highly lethal. miRNAs are single-stranded, small non-coding RNAs with an approximate size ranging around 22 nt. Interestingly, a considerable proportion of miRNAs are organized in clusters with miRNA genes placed adjacent to one another, getting transcribed together to result in miRNA clusters (MCs). MCs comprise two or more miRNAs that follow the same orientation during transcription. Abnormal expression of the miRNA cluster has been identified as one of the key drivers in OC. MC exists both as tumor-suppressive and oncogenic clusters and has a significant role in OC pathogenesis by facilitating cancer cells to acquire various hallmarks. The present review summarizes the regulation and biological function of MCs in OC. The review also highlights the utility of abnormally expressed MCs in the clinical management of OC.
Collapse
|
4
|
Abstract
In an effort to identify a novel microRNA (miRNA) as a gastric cancer (GC) treatment target and prognostic biomarker, we surveyed The Cancer Genome Atlas database and found that miR-588 expression is low in GC tissues. This was confirmed by real-time reverse transcription polymerase chain reaction assays of GC patient plasma samples and SGC7901 and MNK28 cells. A constructed miRNA-mRNA network showed that CXCL5, CXCL9, and CXCL10 are target genes of miR-588. Analysis of the miRWalk database revealed that miR-588 directly binds to CXCL5 and CXCL9. Overexpression of miR-588 reduced GC cell proliferation in vitro and in vivo. High expression of miR-588 inhibited Ki-67 expression in vivo. The FunRich database also showed that CXCL5, CXCL9, and CXCL10 are involved in immune responses, while the Database of Immune Cell Expression showed they are differentially expressed in CD8+ T cells. High expression of CXCL9 and CXCL10 correlated positively with infiltrating levels of CD4+ T and CD8+ T cells in stomach adenocarcinoma. High expression of miR-588, CXCL5, CXCL9, and CXCL10 was associated with prolonged survival of GC patients. These findings indicate that miR-588 is a biomarker for tumor-associated immune infiltration and a prognostic marker in GC patients.
Collapse
|
5
|
miRNA networks modulate human endothelial cell adaptation to cyclic hypoxia. Cell Signal 2019; 54:150-160. [DOI: 10.1016/j.cellsig.2018.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
|
6
|
Dou YD, Huang T, Wang Q, Shu X, Zhao SG, Li L, Liu T, Lu G, Chan WY, Liu HB. Integrated microRNA and mRNA signatures in peripheral blood lymphocytes of familial epithelial ovarian cancer. Biochem Biophys Res Commun 2018; 496:191-198. [DOI: 10.1016/j.bbrc.2018.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 01/28/2023]
|
7
|
Dong W, Li B, Wang J, Song Y, Zhang Z, Fu C. MicroRNA-337 inhibits cell proliferation and invasion of cervical cancer through directly targeting specificity protein 1. Tumour Biol 2017. [PMID: 28641487 DOI: 10.1177/1010428317711323] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Wei Dong
- Radiation Oncology Department, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, P.R. China
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R. China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R. China
| | - Juan Wang
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R. China
| | - Yipeng Song
- Radiation Oncology Department, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, P.R. China
| | - Zicheng Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R. China
| | - Chengrui Fu
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R. China
| |
Collapse
|
8
|
Liu P, Qi X, Bian C, Yang F, Lin X, Zhou S, Xie C, Zhao X, Yi T. MicroRNA-18a inhibits ovarian cancer growth via directly targeting TRIAP1 and IPMK. Oncol Lett 2017; 13:4039-4046. [PMID: 28588697 PMCID: PMC5452870 DOI: 10.3892/ol.2017.5961] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022] Open
Abstract
The role of microRNA-18a (miRNA/miR-18a) as a tumor suppressor or promoter in a number of different types of cancer has been reported. However, to date, the expression and the effects of miR-18a in epithelial ovarian cancer (EOC) remain elusive. In the present study, the expression of miR-18a in patient EOC tissues and ovarian cancer cell lines was investigated using the reverse transcription-quantitative polymerase chain reaction. Luciferase assays and western blotting were performed to detect the potential direct targets of miR-18a. An A2780cp intraperitoneal mouse model, and Cell Counting Kit 8, flow cytometry and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assays, were used to investigate the effect of miR-18a on tumor growth in vivo and in vitro. The results indicated that the expression of miR-18a was reduced in EOC tissue and in the investigated ovarian cancer cell lines compared with non-malignant (normal) ovarian tissues and the human ovarian epithelium cell line, respectively. Overexpression of miR-18a in the A2780s and A2780cp cell lines significantly induced cell cycle arrest and apoptosis. It was demonstrated that miR-18a directly targets tumor protein p53-regulating inhibitor of apoptosis gene 1 and inositol phosphate multikinase, hence regulating the expression of downstream targets. The A2780cp intraperitoneal mouse model was employed and the results indicated that miR-18a may inhibit A2780cp intraperitoneal tumor growth in vivo by inhibiting proliferation and inducing apoptosis. Together, the results of the present study demonstrated that miR-18a has a role as a tumor suppressor by inhibiting proliferation and inducing apoptosis. Assessment of miR-18a expression may provide a novel method for diagnosis and be a therapeutic target for EOC.
Collapse
Affiliation(s)
- Ping Liu
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ce Bian
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fan Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaojuan Lin
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shengtao Zhou
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chuan Xie
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
9
|
Fateh A, Feizi MAH, Safaralizadeh R, Azarbarzin S, Ravanbakhsh R. Diagnostic and Prognostic Value of miR-1287 in Colorectal Cancer. J Gastrointest Cancer 2016; 47:399-403. [DOI: 10.1007/s12029-016-9833-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Sun X, Clermont PL, Jiao W, Helgason CD, Gout PW, Wang Y, Qu S. Elevated expression of the centromere protein-A(CENP-A)-encoding gene as a prognostic and predictive biomarker in human cancers. Int J Cancer 2016; 139:899-907. [PMID: 27062469 DOI: 10.1002/ijc.30133] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/09/2016] [Accepted: 03/23/2016] [Indexed: 01/08/2023]
Abstract
Centromere protein-A (CENP-A), a histone-H3 variant, plays an essential role in cell division by ensuring proper formation and function of centromeres and kinetochores. Elevated CENP-A expression has been associated with cancer development. This study aimed to establish whether elevated CENP-A expression can be used as a prognostic and predictive cancer biomarker. Molecular profiling of CENP-A in human cancers was investigated using genomic, transcriptomic and patient information from databases, including COSMIC, Oncomine, Kaplan-Meier plotter and cBioPortal. A network of CENP-A co-expressed genes was derived from cBioPortal and analyzed using Ingenuity Pathway Analysis (IPA) and Oncomine protocols to explore the function of CENP-A and its predictive potential. Transcriptional and post-transcriptional regulation of CENP-A expression was analyzed in silico. It was found that CENP-A expression was elevated in 20 types of solid cancer compared with normal counterparts. Elevated CENP-A expression highly correlated with cancer progression and poor patient outcome. Genomic analysis indicated that the elevated CENP-A expression was not due to alterations in the sequence or copy number of the CENP-A gene. Furthermore, CENP-A can be regulated by key oncogenic proteins and tumor-suppressive microRNAs. CENP-A co-expression network analysis indicated that CENP-A function is associated with cell cycle progression. Oncomine analysis showed a strong correlation between elevated CENP-A expression and oncolytic response of breast cancer patients to taxane-based chemotherapy. In conclusion, elevated CENP-A expression is coupled to malignant progression of numerous types of cancer. It may be useful as a biomarker of poor patient prognosis and as a predictive biomarker for taxane-based chemotherapy.
Collapse
Affiliation(s)
- Xia Sun
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Pier-Luc Clermont
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Wenlin Jiao
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Cheryl D Helgason
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Center, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sifeng Qu
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Center, Vancouver, BC, Canada
| |
Collapse
|
11
|
Mostowska A, Sajdak S, Pawlik P, Markowska J, Pawałowska M, Lianeri M, Jagodzinski PP. Replication study for the association of seven genome- GWAS-identified Loci with susceptibility to ovarian cancer in the Polish population. Pathol Oncol Res 2015; 21:307-13. [PMID: 25173882 PMCID: PMC4422849 DOI: 10.1007/s12253-014-9822-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 07/24/2014] [Indexed: 12/01/2022]
Abstract
We investigated the previously-demonstrated association of seven genome-wide association studies (GWAS) single nucleotide polymorphisms (SNPs), including rs2072590 (HOXD-AS1), rs2665390 (TIPARP), rs10088218 and rs10098821 (8q24), rs3814113 (9p22), rs9303542 (SKAP1) and rs2363956 (ANKLE1), as risk factors of epithelial ovarian tumors (EOTs). These SNPs were genotyped in two hundred seventy three patients with EOTs and four hundred sixty four unrelated healthy females from the Polish population. We observed the lowest p values of the trend test for the 9p22 rs3814113 and 8q24 rs10098821 SNPs in patients with all subtypes of ovarian cancer (p(trend) = 0.010 and p(trend) = 0.014, respectively). There were also significant p values for the trend of the 9p22 rs3814113 and the 8q24 rs10098821 SNPs for serous histological subtypes of ovarian cancer (p(trend) = 0.006, p(trend) = 0.033, respectively). Moreover, stratification of the patients based on their histological type of cancer demonstrated, in the dominant hereditary model, a significant association of the 9p22 rs3814113 SNP with serous ovarian carcinoma OR = 0.532 (95% CI = 0.342 - 0.827, p = 0.005, p(corr) = 0.035). Despite the relatively small sample size of cases and controls, our studies confirmed some of the previously-demonstrated GWAS SNPs as genetic risk factors for EOTs.
Collapse
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781 Poznań, Poland
| | - Stefan Sajdak
- Clinic of Gynecological Surgery, Poznań University of Medical Sciences, Poznań, Poland
| | - Piotr Pawlik
- Clinic of Gynecological Surgery, Poznań University of Medical Sciences, Poznań, Poland
| | - Janina Markowska
- Chair of Gynecologic Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - Monika Pawałowska
- Chair of Gynecologic Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - Margarita Lianeri
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781 Poznań, Poland
| | - Paweł P. Jagodzinski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781 Poznań, Poland
| |
Collapse
|
12
|
Kan CWS, Howell VM, Hahn MA, Marsh DJ. Genomic alterations as mediators of miRNA dysregulation in ovarian cancer. Genes Chromosomes Cancer 2014; 54:1-19. [PMID: 25280227 DOI: 10.1002/gcc.22221] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/10/2014] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the fifth most common cause of cancer death in women worldwide. Serous epithelial ovarian cancer (SEOC) is the most common and aggressive histological subtype. Widespread genomic alterations go hand-in-hand with aberrant DNA damage signaling and are a hallmark of high-grade SEOC. MicroRNAs (miRNAs) are a class of small noncoding RNA molecules that are nonrandomly distributed in the genome. They are frequently located in chromosomal regions susceptible to copy number variation (CNV) associated with malignancy that can influence their expression. Widespread changes in miRNA expression have been reported in multiple cancer types including ovarian cancer. This review examines CNV and single nucleotide polymorphisms, two common types of genomic alterations that occur in ovarian cancer, in the context of their influence on the expression of miRNA and the ability of miRNA to bind to and regulate their target genes. This includes genes encoding proteins involved in DNA repair and the maintenance of genomic stability. Improved understanding of mechanisms of miRNA dysregulation and the role of miRNA in ovarian cancer will provide further insight into the pathogenesis and treatment of this disease.
Collapse
Affiliation(s)
- Casina W S Kan
- Hormones and Cancer Group, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia
| | | | | | | |
Collapse
|
13
|
Baatz JE, Newton DA, Riemer EC, Denlinger CE, Jones EE, Drake RR, Spyropoulos DD. Cryopreservation of viable human lung tissue for versatile post-thaw analyses and culture. In Vivo 2014; 28:411-423. [PMID: 24982205 PMCID: PMC5937261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Clinical trials are currently used to test therapeutic efficacies for lung cancer, infections and diseases. Animal models are also used as surrogates for human disease. Both approaches are expensive and time-consuming. The utility of human biospecimens as models is limited by specialized tissue processing methods that preserve subclasses of analytes (e.g. RNA, protein, morphology) at the expense of others. We present a rapid and reproducible method for the cryopreservation of viable lung tissue from patients undergoing lobectomy or transplant. This method involves the pseudo-diaphragmatic expansion of pieces of fresh lung tissue with cryoprotectant formulation (pseudo-diaphragmatic expansion-cryoprotectant perfusion or PDX-CP) followed by controlled-rate freezing in cryovials. Expansion-perfusion rates, volumes and cryoprotectant formulation were optimized to maintain tissue architecture, decrease crystal formation and increase long-term cell viability. Rates of expansion of 4 cc/min or less and volumes ranging from 0.8-1.2 × tissue volume were well-tolerated by lung tissue obtained from patients with chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis, showing minimal differences compared to standard histopathology. Morphology was greatly improved by the PDX-CP procedure compared to simple fixation. Fresh versus post-thawed lung tissue showed minimal differences in histology, RNA integrity numbers and post-translational modified protein integrity (2-dimensional differential gel electrophoresis). It was possible to derive numerous cell types, including alveolar epithelial cells, fibroblasts and stem cells, from the tissue for at least three months after cryopreservation. This new method should provide a uniform, cost-effective approach to the banking of biospecimens, with versatility to be amenable to any post-acquisition process applicable to fresh tissue samples.
Collapse
Affiliation(s)
- John E Baatz
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, U.S.A.
| | - Danforth A Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Ellen C Riemer
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Chadrick E Denlinger
- Department of Surgery, Medical University of South Carolina, Charleston, SC, U.S.A
| | - E Ellen Jones
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Richard R Drake
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Demetri D Spyropoulos
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| |
Collapse
|
14
|
Ying H, Lyu J, Ying T, Li J, Jin S, Shao J, Wang L, Xu H. Risk miRNA screening of ovarian cancer based on miRNA functional synergistic network. J Ovarian Res 2014; 7:9. [PMID: 24444095 PMCID: PMC3902002 DOI: 10.1186/1757-2215-7-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/06/2013] [Indexed: 12/27/2022] Open
Abstract
Background miRNAs are proved to have causal roles in tumorgenesis involving various types of human cancers, but the mechanism is not clear. We aimed to explore the effect of miRNAs on the development of ovarian cancer and the underlying mechanism. Methods The miRNA expression profile GSE31801 was downloaded from GEO (Gene Expression Omnibus) database. Firstly, the differentially expressed miRNAs were screened. Target genes of the miRNAs were collected from TargetScan, PicTar, miRanda, and DIANA-microT database, then the miRNA-miRNA co-regulating network was constructed using miRNA pairs with common regulated target genes. Next, the functional modules in the network were studied, the miRNA pairs regulated at least one modules were enriched to form the miRNA functional synergistic network (MFSN). Results Risk miRNA were selected in MFSN according to the topological structure. Transcript factors (TFs) in MFSN were identified, followed by the miRNA-transcript factor networks construction. Totally, 42 up- and 61 down-regulated differentially expressed miRNAs were identified, of which 68 formed 2292 miRNA pairs in the miRNA-miRNA co-regulating network. GO: 0007268 (synaptic transmission) and GO: 0019226 (transmission of nerve impulse) were the two common functions of miRNAs in MFSN, and hsa-miR-579 (36), hsa-miR-942 (31), hsa-miR-105 (31), hsa-miR-150 (34), and hsa-miR-27a* (32) were selected as the hub nodes in MFSN. Conclusions In all, 17 TFs, including CREM, ERG, and CREB1 were screened as the cancer related TFs in MFSN. Other TFs, such as BIN1, FOXN3, FOXK1, FOXP2, and ESRRG with high degrees may be inhibited in ovarian cancer. MFSN gave us a new shed light on the mechanism studies in ovarian cancer.
Collapse
Affiliation(s)
- Huanchun Ying
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No,36, Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yao S, Graham K, Shen J, Campbell LES, Singh P, Zirpoli G, Roberts M, Ciupak G, Davis W, Hwang H, Khoury T, Bovbjerg DH, Jandorf L, Pawlish KS, Bandera EV, Liu S, Ambrosone CB, Zhao H. Genetic variants in microRNAs and breast cancer risk in African American and European American women. Breast Cancer Res Treat 2013; 141:447-59. [PMID: 24062209 DOI: 10.1007/s10549-013-2698-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 09/10/2013] [Indexed: 01/05/2023]
Abstract
MicroRNAs (miRNAs) are an integral part of the post-transcriptional machinery of gene expression and have been implicated in the carcinogenic cascade. Single nucleotide polymorphisms (SNPs) in miRNAs and risk of breast cancer have been evaluated in populations of European or Asian ancestry, but not among women of African ancestry. Here we examined 145 SNPs in six miRNA processing genes and in 78 miRNAs which target genes known to be important in breast cancer among 906 African American (AA) and 653 European American (EA) cases and controls enrolled in the Women's Circle of Health Study. Allele frequencies of most SNPs (87 %) differed significantly by race. We found a number of SNPs in miRNAs and processing genes in association with breast cancer overall or stratified by estrogen receptor (ER) status. Several associations were significantly different by race, with none of the associations being significant in both races. Using a polygenic risk score to combine the effects of multiple SNPs, we found significant associations with the score in each subgroup analysis. For ER-positive cancer, each unit increment of the risk score was associated with a 51 % increased risk in AAs (OR = 1.51, 95 % CI = 1.30-1.74, p = 3.3 × 10(-8)) and a 73 % increased risk in EAs (OR = 1.73, 95 % CI = 1.45-2.06, p = 1.4 × 10(-9)). These data show, for the first time, that miRNA-related genetic variations may underlie the etiology of breast cancer in both populations of African and European ancestries. Future studies are needed to validate our findings and to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Song Yao
- Department of Cancer Prevention & Control, Roswell Park Cancer Institute, Buffalo, NY, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|