1
|
Shakhov AS, Churkina AS, Kotlobay AA, Alieva IB. The Endothelial Centrosome: Specific Features and Functional Significance for Endothelial Cell Activity and Barrier Maintenance. Int J Mol Sci 2023; 24:15392. [PMID: 37895072 PMCID: PMC10607758 DOI: 10.3390/ijms242015392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
This review summarizes information about the specific features that are characteristic of the centrosome and its relationship with the cell function of highly specialized cells, such as endotheliocytes. It is based on data from other researchers and our own long-term experience. The participation of the centrosome in the functional activity of these cells, including its involvement in the performance of the main barrier function of the endothelium, is discussed. According to modern concepts, the centrosome is a multifunctional complex and an integral element of a living cell; the functions of which are not limited only to the ability to polymerize microtubules. The location of the centrosome near the center of the interphase cell, the concentration of various regulatory proteins in it, the organization of the centrosome radial system of microtubules through which intracellular transport is carried out by motor proteins and the involvement of the centrosome in the process of the perception of the external signals and their transmission make this cellular structure a universal regulatory and distribution center, controlling the entire dynamic morphology of an animal cell. Drawing from modern data on the tissue-specific features of the centrosome's structure, we discuss the direct involvement of the centrosome in the performance of functions by specialized cells.
Collapse
Affiliation(s)
- Anton Sergeevich Shakhov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
| | - Aleksandra Sergeevna Churkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1–73, Leninskye Gory, 119992 Moscow, Russia
| | - Anatoly Alekseevich Kotlobay
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Irina Borisovna Alieva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
| |
Collapse
|
2
|
Nirmala JG, Lopus M. Tryptone-stabilized gold nanoparticles induce unipolar clustering of supernumerary centrosomes and G1 arrest in triple-negative breast cancer cells. Sci Rep 2019; 9:19126. [PMID: 31836782 PMCID: PMC6911093 DOI: 10.1038/s41598-019-55555-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/30/2019] [Indexed: 12/22/2022] Open
Abstract
Gold nanoparticles of different sizes, shapes, and decorations exert a variety of effects on biological systems. We report a novel mechanism of action of chemically modified, tryptone-stabilized gold nanoparticles (T-GNPs) in the triple-negative breast cancer (TNBC) cell line, MDA-MB-231. The T-GNPs, synthesized using HAuCl4.3H2O and tryptone and characterized by an assortment of spectroscopy techniques combined with high-resolution electron microscopy, demonstrated strong antiproliferative and anti-clonogenic potential against MDA-MB-231 cells, arresting them at the G1 phase of the cell cycle and promoting apoptosis. The molecular mechanism of action of these particles involved induction of unipolar clustering and hyper amplification of the supernumerary centrosomes (a distinctive feature of many tumour cells, including TNBC cells). The clustering was facilitated by microtubules with suppressed dynamicity. Mass spectrometry-assisted proteomic analysis revealed that the T-GNP-induced G1 arrest was facilitated, at least in part, by downregulation of ribosome biogenesis pathways. Due to the presence of supernumerary centrosomes in many types of tumour cells, we propose chemical induction of their unipolar clustering as a potential therapeutic strategy.
Collapse
Affiliation(s)
- J Grace Nirmala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India.
| |
Collapse
|
3
|
Docherty CK, Nilsen M, MacLean MR. Influence of 2-Methoxyestradiol and Sex on Hypoxia-Induced Pulmonary Hypertension and Hypoxia-Inducible Factor-1-α. J Am Heart Assoc 2019; 8:e011628. [PMID: 30819028 PMCID: PMC6474940 DOI: 10.1161/jaha.118.011628] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022]
Abstract
Background Women are at greater risk of developing pulmonary arterial hypertension, with estrogen and its downstream metabolites playing a potential role in the pathogenesis of the disease. Hypoxia-inducible factor-1-α (HIF 1α) is a pro-proliferative mediator and may be involved in the development of human pulmonary arterial hypertension . The estrogen metabolite 2-methoxyestradiol (2 ME 2) has antiproliferative properties and is also an inhibitor of HIF 1α. Here, we examine sex differences in HIF 1α signaling in the rat and human pulmonary circulation and determine if 2 ME 2 can inhibit HIF 1α in vivo and in vitro. Methods and Results HIF 1α signaling was assessed in male and female distal human pulmonary artery smooth muscle cells ( hPASMC s), and the effects of 2 ME 2 were also studied in female hPASMC s. The in vivo effects of 2 ME 2 in the chronic hypoxic rat (male and female) model of pulmonary hypertension were also determined. Basal HIF 1α protein expression was higher in female hPASMC s compared with male. Both factor-inhibiting HIF and prolyl hydroxylase-2 (hydroxylates HIF leading to proteosomal degradation) protein levels were significantly lower in female hPASMC s when compared with males. In vivo, 2 ME 2 ablated hypoxia-induced pulmonary hypertension in male and female rats while decreasing protein expression of HIF 1α. 2 ME 2 reduced proliferation in hPASMC s and reduced basal protein expression of HIF 1α. Furthermore, 2 ME 2 caused apoptosis and significant disruption to the microtubule network. Conclusions Higher basal HIF 1α in female hPASMC s may increase susceptibility to developing pulmonary arterial hypertension . These data also demonstrate that the antiproliferative and therapeutic effects of 2 ME 2 in pulmonary hypertension may involve inhibition of HIF 1α and/or microtubular disruption in PASMC s.
Collapse
MESH Headings
- 2-Methoxyestradiol/pharmacology
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cytoskeleton/drug effects
- Cytoskeleton/metabolism
- Cytoskeleton/pathology
- Disease Models, Animal
- Female
- Humans
- Hypoxia/complications
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/etiology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Sex Factors
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Craig K. Docherty
- Research Institute of Cardiovascular and Medical SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowUnited Kingdom
| | - Margaret Nilsen
- Research Institute of Cardiovascular and Medical SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowUnited Kingdom
| | - Margaret R. MacLean
- Research Institute of Cardiovascular and Medical SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowUnited Kingdom
| |
Collapse
|
4
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
5
|
Shakhov AS, Alieva IB. The Centrosome as the Main Integrator of Endothelial Cell Functional Activity. BIOCHEMISTRY (MOSCOW) 2017; 82:663-677. [PMID: 28601076 DOI: 10.1134/s0006297917060037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The centrosome is an intracellular structure of the animal cell responsible for organization of cytoplasmic microtubules. According to modern concepts, the centrosome is a very important integral element of the living cell whose functions are not limited to its ability to polymerize microtubules. The centrosome localization in the geometric center of the interphase cell, the high concentration of various regulatory proteins in this area, the centrosome-organized radial system of microtubules for intracellular transport by motor proteins, the centrosome involvement in the perception of external signals and their transmission - all these features make this cellular structure a unique regulation and distribution center managing dynamic morphology of the animal cell. In conjunction with the tissue-specific features of the centrosome structure, this suggests the direct involvement of the centrosome in execution of cell functions. This review discusses the involvement of the centrosome in the vital activity of endothelial cells, as well as its possible participation in the implementation of barrier function, the major function of endothelium.
Collapse
Affiliation(s)
- A S Shakhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | |
Collapse
|
6
|
Tunable release of chemotherapeutic and vascular disrupting agents from injectable fiber fragments potentiates combination chemotherapy. Int J Pharm 2016; 506:1-12. [PMID: 27091295 DOI: 10.1016/j.ijpharm.2016.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/22/2016] [Accepted: 04/15/2016] [Indexed: 11/21/2022]
Abstract
Cancer progression and metastasis relies much on vasculature networks in tumor microenvironment, and the combination treatment with chemotherapeutic drugs and vascular disrupting agents represents apparent clinical benefits. In the current study, fiber fragments with loadings of hydroxycamptothecin (HCPT) or combretastatin A-4 (CA4) were proposed for tumor inhibition and blood vessel disruption after local administration in tumors. To address challenges in balancing the disruption of tumor vessels and intratumoral uptake of chemotherapeutic agents, this study is focus on release tuning of HCPT and CA4 from the fiber fragment mixtures. Hydroxypropyl-β-cyclodextrin (HPCD) was blended at ratios from 0 to 10% into CA4-loaded fiber fragments (Fc) to modulate CA4 release durations from 0.5 to 24days, and HCPT-loaded fiber fragments (Fh) indicated a sustained release for over 35days. In vitro cytotoxicity tests indicated a sequential inhibition on the endothelial and tumor cell growth, and the growth inhibition of tumor cells was more significant after treatment with mixtures of Fh and Fc containing 2% HPCD (Fc2) than that of other mixtures. In an orthotopic breast tumor model, compared with those of free CA4, or Fc with a fast or slow release of CA4, Fh/Fc mixtures with CA4 release durations from 2 to 12days indicated a lower tumor growth rate, a prolonged animal survival, a lower vessel density in tumors, and a less significant tumor metastasis. In addition, the tumor cell proliferation rate, hypoxia-inducible factor-1α expression within tumors, and the number of surface metastatic nodules in lungs were significantly lower after treatment with Fh/Fc2 mixtures with a CA4 release duration of 5days than those of other mixtures. It demonstrates the advantages of fiber fragment mixtures in independently modulating the release of multiple drugs and the essential role of release tuning of chemotherapeutic drugs and vascular disrupting agents in improving the therapeutic efficacy.
Collapse
|
7
|
Lu JW, Ho YJ, Yang YJ, Liao HA, Ciou SC, Lin LI, Ou DL. Zebrafish as a disease model for studying human hepatocellular carcinoma. World J Gastroenterol 2015; 21:12042-12058. [PMID: 26576090 PMCID: PMC4641123 DOI: 10.3748/wjg.v21.i42.12042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the world’s most common cancers and the second leading cause of cancer deaths. Hepatocellular carcinoma (HCC), a primary hepatic cancer, accounts for 90%-95% of liver cancer cases. The pathogenesis of HCC consists of a stepwise process of liver damage that extends over decades, due to hepatitis, fatty liver, fibrosis, and cirrhosis before developing fully into HCC. Multiple risk factors are highly correlated with HCC, including infection with the hepatitis B or C viruses, alcohol abuse, aflatoxin exposure, and metabolic diseases. Over the last decade, genetic alterations, which include the regulation of multiple oncogenes or tumor suppressor genes and the activation of tumorigenesis-related pathways, have also been identified as important factors in HCC. Recently, zebrafish have become an important living vertebrate model organism, especially for translational medical research. In studies focusing on the biology of cancer, carcinogen induced tumors in zebrafish were found to have many similarities to human tumors. Several zebrafish models have therefore been developed to provide insight into the pathogenesis of liver cancer and the related drug discovery and toxicology, and to enable the evaluation of novel small-molecule inhibitors. This review will focus on illustrative examples involving the application of zebrafish models to the study of human liver disease and HCC, through transgenesis, genome editing technology, xenografts, drug discovery, and drug-induced toxic liver injury.
Collapse
|
8
|
Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: In vitro and in vivo studies. J Colloid Interface Sci 2015; 445:219-230. [DOI: 10.1016/j.jcis.2014.12.092] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022]
|
9
|
Das V, Štěpánková J, Hajdúch M, Miller JH. Role of tumor hypoxia in acquisition of resistance to microtubule-stabilizing drugs. Biochim Biophys Acta Rev Cancer 2015; 1855:172-82. [DOI: 10.1016/j.bbcan.2015.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/12/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
|
10
|
Ogden A, Rida PCG, Reid MD, Aneja R. Interphase microtubules: chief casualties in the war on cancer? Drug Discov Today 2013; 19:824-9. [PMID: 24201225 DOI: 10.1016/j.drudis.2013.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/09/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022]
Abstract
Microtubule-targeting agents (MTAs) profoundly affect interphase cells, such as by disrupting axonal transport, transcription, translation, mitochondrial permeability, immune cell function, directional migration and centrosome clustering. This finding is antithetical to the conventionally held notion that MTAs act on mitosis to trigger arrest-mediated apoptotic cell death. Furthermore, the paucity of mitotic cells in patient tumors and lack of correlation of MTA efficacy with tumor proliferation rate provide strong impetus to re-examine the mechanistic basis of action of MTAs, with an eye toward interphase activities. Whereas targeted antimitotics have unequivocally failed their promise across clinical studies, MTAs constitute a mainstay of chemotherapy. This paradox necessitates the conclusion that MTAs exert mitosis-independent effects, spurring a dramatic paradigm shift in our understanding of the mode of action of MTAs.
Collapse
Affiliation(s)
- Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | - Michelle D Reid
- Department of Pathology, Emory University Hospital, Atlanta, GA 30322, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
11
|
Abstract
Mitochondrial (mt) dysfunction in gliomas has been linked to abnormalities of mt energy metabolism, marked by a metabolic shift from oxidative phosphorylation to glycolysis ("Warburg effect"), disturbances in mt membrane potential regulation and apoptotic signaling, as well as to somatic mutations involving the Krebs cycle enzyme isocitrate dehydrogenase. Evolving biological concepts with potential therapeutic implications include interaction between microtubule proteins and mitochondria (mt) in the control of closure of voltage-dependent anion channels and in the regulation of mt dynamics and the mt-endoplasmic reticulum network. The cytoskeletal protein βIII-tubulin, which is overexpressed in malignant gliomas, has emerged as a prosurvival factor associated in part with mt and also as a marker of chemoresistance. Mt-targeted therapeutic strategies that are discussed include the following: (1) metabolic modulation with emphasis on dichloroacetate, a pyruvate dehydrogenase kinase inhibitor; (2) tumor cell death via apoptosis induced by tricyclic antidepressants, microtubule-modulating drugs, and small molecules or compounds capable of inflicting reactive oxygen species-dependent tumor cell death; and (3) pretreatment mt priming and mt-targeted prodrug cancer therapy.
Collapse
|
12
|
Chen H, Wei A, He J, Yu M, Mang J, Xu Z. Changes of hypoxia-inducible factor-1 signaling and the effect of cilostazol in chronic cerebral ischemia. Neural Regen Res 2013; 8:1803-13. [PMID: 25206477 PMCID: PMC4145952 DOI: 10.3969/j.issn.1673-5374.2013.19.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/02/2013] [Indexed: 11/28/2022] Open
Abstract
Hypoxia-inducible factor-1 and its specific target gene heme oxygenase-1, are involved in acute cerebral ischemia. However, very few studies have examined in detail the changes in the hypoxia-inducible factor-1/heme oxygenase-1 signaling pathway in chronic cerebral ischemia. In this study, a rat model of chronic cerebral ischemia was established by permanent bilateral common carotid artery occlusion, and these rats were treated with intragastric cilostazol (30 mg/kg) for 9 weeks. Morris water maze results showed that cognitive impairment gradually worsened as the cerebral ischemia proceeded. Immunohistochemistry, semi-quantitative PCR and western blot analysis showed that hypoxia-inducible factor-1α and heme oxygenase-1 expression levels increased after chronic cerebral ischemia, with hypoxia-inducible factor-1α expression peaking at 3 weeks and heme oxygenase-1 expression peaking at 6 weeks. These results suggest that the elevated levels of hypoxia-inducible factor-1α may upregulate heme oxygenase-1 expression following chronic cerebral ischemia and that the hypoxia-inducible factor-1/heme oxygenase-1 signaling pathway is involved in the development of cognitive impairment induced by chronic cerebral ischemia. Cilostazol treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, decreased hypoxia-inducible factor-1α and heme oxygenase-1 expression levels, and reduced apoptosis in the frontal cortex. These findings demonstrate that cilostazol can protect against cognitive impairment induced by chronic cerebral ischemic injury through an anti-apoptotic mechanism.
Collapse
Affiliation(s)
- Han Chen
- Department of Neurology, China-Japan Friendship Hospital, Jilin University, Changchun 130012, Jilin Province, China
- Department of Neurology, Chang Chun Central Hospital, Changchun 130051, Jilin Province, China
| | - Aixuan Wei
- Department of Neurology, China-Japan Friendship Hospital, Jilin University, Changchun 130012, Jilin Province, China
- Department of Neurology, Jilin City Central Hospital, Jilin 132011, Jilin Province, China
| | - Jinting He
- Department of Neurology, China-Japan Friendship Hospital, Jilin University, Changchun 130012, Jilin Province, China
| | - Ming Yu
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Jing Mang
- Department of Neurology, China-Japan Friendship Hospital, Jilin University, Changchun 130012, Jilin Province, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Friendship Hospital, Jilin University, Changchun 130012, Jilin Province, China
| |
Collapse
|
13
|
Ajeawung NF, Mononen L, Thorn A, Pin AL, Joshi HC, Huot J, Kamnasaran D. In-Vitro and Ex-Vivo Investigations of the Microtubule Binding Drug Targetin on Angiogenesis. ACTA ACUST UNITED AC 2013; 1:41-47. [PMID: 24749126 PMCID: PMC3991473 DOI: 10.14205/2309-3021.2013.01.01.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background Intervention aimed at disrupting or inhibiting newly formed vascular network is highly desired to attenuate the progression of angiogenesis-dependent diseases. In cancer, this is tightly associated with the generation of VEGF by hypoxia inducible factor-1α following its activation by hypoxia. In light of the multiple cellular roles played by microtubules and their involvement in the processing of the hypoxia inducible factor-1α transcript, modulation of microtubule dynamics is emerging as a logical approach to suppress tumor reliance on angiogenesis. Targetin is a novel noscapinoid that interferes with microtubule dynamicity and inhibits the growth of cell lines from many types of cancers. Methods and Results Utilizing in-vitro and ex-vivo angiogenic models, we discovered the vascular disrupting and anti-angiogenic properties of Targetin. Targetin disrupted pre-assembled capillary-like networks of human endothelial cells by severing cell-cell junctions, inhibiting endothelial cell proliferation and metabolic activity in the presence and absence of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Furthermore, we show that Targetin significantly inhibits the formation of neovasculature network sprouting from rat aortic explants stimulated with proangiogenic stimuli, namely VEGF or bFGF. Conclusion We conclude that Targetin is a potential clinically promising anti-angiogenic agent for the treatment of many diseases including cancers.
Collapse
Affiliation(s)
- Norbert F Ajeawung
- Department of Pediatrics, Laval University, Québec, Québec, G1V 4G2, Canada
| | - Lotta Mononen
- Department of Pediatrics, Laval University, Québec, Québec, G1V 4G2, Canada
| | - Andrea Thorn
- Department of Pediatrics, Laval University, Québec, Québec, G1V 4G2, Canada
| | - Anne-Laure Pin
- Centre de recherche du CHU de Québec, Québec, G1V 4G2, Canada
| | - Harish C Joshi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jacques Huot
- Centre de recherche du CHU de Québec, Québec, G1V 4G2, Canada ; Department of Molecular Biology, Medical Biology and Pathology, Québec, Québec, G1V 4G2, Canada
| | - Deepak Kamnasaran
- Department of Pediatrics, Laval University, Québec, Québec, G1V 4G2, Canada
| |
Collapse
|
14
|
Hu HM, Chen Y, Liu L, Zhang CG, Wang W, Gong K, Huang Z, Guo MX, Li WX, Li W. C1orf61 acts as a tumor activator in human hepatocellular carcinoma and is associated with tumorigenesis and metastasis. FASEB J 2012; 27:163-73. [PMID: 23012322 DOI: 10.1096/fj.12-216622] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The genomic amplification of chromosome 1q long arm, the chromosomal region containing C1orf61, is a common event in human cancers. However, the expression pattern of chromosome 1 open reading frame 61 (C1orf61) in hepatocellular carcinoma (HCC) and its effects on HCC progression remain unclear. We have previously reported that C1orf61 is highly up-regulated during human embryogenesis. In this study, we report that C1orf61 expression is associated with the progression of liver disease. We found that C1orf61 is up-regulated in hepatic cirrhosis tissues and is further up-regulated in primary HCC tumors. Moreover, hepatitis B virus (HBV)-positive patients exhibited significantly higher levels of C1orf61 expression than HBV-negative patients. The evaluation of highly malignant HCC cell lines revealed high protein expression levels of C1orf61. Furthermore, the C1orf61 protein was found to be predominantly distributed within the cytoplasm. The ectopic expression of C1orf61 in the nonmalignant L02 cell line promoted cellular proliferation and colony formation in vitro, as well as cell cycle progression via the regulation of the expression of specific cell cycle-related proteins. In addition, the overexpression of C1orf61 in L02 cells facilitated cellular invasion and metastasis. The down-regulation of epithelial markers (E-cadherin and occludin) and the up-regulation of mesenchymal markers (N-cadherin, vimentin, and snail) suggested that the overexpression of C1orf61 induced the epithelial-mesenchymal transition (EMT) that is linked to metastasis. Taken together, our findings demonstrate, for the first time, the roles of C1orf61 in HCC tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Hai-Ming Hu
- College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|