1
|
Suh HN, Choi GE. Wnt signaling in the tumor microenvironment: A driver of brain tumor dynamics. Life Sci 2024; 358:123174. [PMID: 39471897 DOI: 10.1016/j.lfs.2024.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
The Wnt signaling pathway is important for cell growth and development in the central nervous system and its associated vasculature. Thus, it is an interesting factor for establishing anti-brain cancer therapy. However, simply inhibiting the Wnt signaling pathway in patients with brain tumors is not an effective anti-cancer therapy. Due to their complex microenvironment, which comprises various cell types and signaling molecules, brain tumors pose significant challenges. It is important to understand the interplay between tumor cells and the microenvironment for developing effective therapeutic strategies for both benign and malignant brain tumors. Thus, this research focused on the role of the tumor microenvironment (TME) in brain tumor progression, particularly the involvement of Wnt-dependent signaling pathways. The brain parenchyma comprises neurons, glia, endothelial cells, and other extracellular matrix elements that can contribute to the TME. The TME components can secrete Wnt ligands or associated molecules, resulting in the aberrant activation of the Wnt signaling pathway, followed by tumor progression and therapeutic resistance. Therefore, it is essential to understand the intricate crosstalk between the Wnt signaling pathway and the TME in developing targeted therapies. This review aimed to elucidate the complexities of the brain TME and its interactions with the Wnt signaling pathways to improve treatment outcomes and our understanding of brain tumor biology.
Collapse
Affiliation(s)
- Han Na Suh
- Center for Translational Toxicologic Research, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeonbukdo 56212, Republic of Korea.
| | - Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, South Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, South Korea.
| |
Collapse
|
2
|
Wang F, Wang W, Wang M, Chen D. Genetic landscape of breast cancer subtypes following radiation therapy: insights from comprehensive profiling. Front Oncol 2024; 14:1291509. [PMID: 38380359 PMCID: PMC10878167 DOI: 10.3389/fonc.2024.1291509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Background In breast cancer, in the era of precision cancer therapy, different patterns of genetic mutations dictate different treatments options. However, it is not clear whether the genetic profiling of breast cancer patients undergoing breast-conserving surgery is related to the adverse reactions caused by radiotherapy. Methods We collected formalin-fixed paraffin-embedded (FFPE) tumor tissue samples from 54 breast cancer patients treated with radiation after breast-conserving surgery and identified comprehensive molecular information in hundreds of cancer-associated genes by FoundationOne CDx (F1CDx), a next-generation sequencing (NGS)-based assay. Results Among our cohort of 54 breast cancer patients, we found high-frequency mutations in cancer-related genes such as TP53 (56%), RAD21 (39%), PIK3CA (35%), ERBB2 (24%), and MYC (22%). Strikingly, we detected that the WNT pathway appears to be a signaling pathway with specific high-frequency mutations in the HER2 subtype. We also compared the mutation frequencies of the two groups of patients with and without cutaneous radiation injury (CRI) after radiotherapy and found that the mutation frequencies of two genes, FGFR1 and KLHL6, were significantly higher in patients with CRI : No subgroup than in those with CRI : Yes. Conclusion Different breast cancer subtypes have their own type-specific mutation patterns. FGFR1 and KLHL6 mutations are protective factors for radiation-induced skin toxicity in breast cancer patients.
Collapse
Affiliation(s)
- Fang Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Weiyan Wang
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Minglei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
- Department of Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| |
Collapse
|
3
|
Lučić I, Kurtović M, Mlinarić M, Piteša N, Čipak Gašparović A, Sabol M, Milković L. Deciphering Common Traits of Breast and Ovarian Cancer Stem Cells and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:10683. [PMID: 37445860 DOI: 10.3390/ijms241310683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer (BC) and ovarian cancer (OC) are among the most common and deadly cancers affecting women worldwide. Both are complex diseases with marked heterogeneity. Despite the induction of screening programs that increase the frequency of earlier diagnosis of BC, at a stage when the cancer is more likely to respond to therapy, which does not exist for OC, more than 50% of both cancers are diagnosed at an advanced stage. Initial therapy can put the cancer into remission. However, recurrences occur frequently in both BC and OC, which are highly cancer-subtype dependent. Therapy resistance is mainly attributed to a rare subpopulation of cells, named cancer stem cells (CSC) or tumor-initiating cells, as they are capable of self-renewal, tumor initiation, and regrowth of tumor bulk. In this review, we will discuss the distinctive markers and signaling pathways that characterize CSC, their interactions with the tumor microenvironment, and the strategies they employ to evade immune surveillance. Our focus will be on identifying the common features of breast cancer stem cells (BCSC) and ovarian cancer stem cells (OCSC) and suggesting potential therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Lučić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Matea Kurtović
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Monika Mlinarić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Nikolina Piteša
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Gilson Sena IF, Fernandes LL, Lorandi LL, Santana TV, Cintra L, Lima IF, Iwai LK, Kramer JM, Birbrair A, Heller D. Identification of early biomarkers in saliva in genetically engineered mouse model C(3)1-TAg of breast cancer. Sci Rep 2022; 12:11544. [PMID: 35798767 PMCID: PMC9263110 DOI: 10.1038/s41598-022-14514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is one of leading causes of death worldwide in the female population. Deaths from breast cancer could be reduced significantly through earlier and more efficient detection of the disease. Saliva, an oral fluid that contains an abundance of protein biomarkers, has been recognized as a promising diagnostic biofluid that is easy to isolate through non-invasive techniques. Assays on saliva can be performed rapidly and are cost-effective. Therefore, our work aimed to identify salivary biomarkers present in the initial stages of breast cancer, where cell alterations are not yet detectable by histopathological analysis. Using state-of-the-art techniques, we employed a transgenic mouse model of mammary cancer to identify molecular changes in precancerous stage breast cancer through protein analysis in saliva. Through corroborative molecular approaches, we established that proteins related to metabolic changes, inflammatory process and cell matrix degradation are detected in saliva at the onset of tumor development. Our work demonstrated that salivary protein profiles can be used to identify cellular changes associated with precancerous stage breast cancer through non-invasive means even prior to biopsy-evident disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Ismael Feitosa Lima
- Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling (LETA/CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling (LETA/CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, The University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Department of Dermatology, Medical Sciences Center, University of Wisconsin-Madison, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| | - Débora Heller
- Post Graduate Program in Dentistry, Cruzeiro do Sul University, São Paulo, Brazil. .,Hospital Israelita Albert Einstein, São Paulo, Brazil. .,Department of Periodontology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
5
|
Targeting Breast Cancer Stem Cells Using Naturally Occurring Phytoestrogens. Int J Mol Sci 2022; 23:ijms23126813. [PMID: 35743256 PMCID: PMC9224163 DOI: 10.3390/ijms23126813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer therapies have made significant strides in improving survival for patients over the past decades. However, recurrence and drug resistance continue to challenge long-term recurrence-free and overall survival rates. Mounting evidence supports the cancer stem cell model in which the existence of a small population of breast cancer stem cells (BCSCs) within the tumor enables these cells to evade conventional therapies and repopulate the tumor, giving rise to more aggressive, recurrent tumors. Thus, successful breast cancer therapy would need to target these BCSCs, as well the tumor bulk cells. Since the Women’s Health Initiative study reported an increased risk of breast cancer with the use of conventional hormone replacement therapy in postmenopausal women, many have turned their attention to phytoestrogens as a natural alternative. Phytoestrogens are plant compounds that share structural similarities with human estrogens and can bind to the estrogen receptors to alter the endocrine responses. Recent studies have found that phytoestrogens can also target BCSCs and have the potential to complement conventional therapy eradicating BCSCs. This review summarized the latest findings of different phytoestrogens and their effect on BCSCs, along with their mechanisms of action, including selective estrogen receptor binding and inhibition of molecular pathways used by BCSCs. The latest results of phytoestrogens in clinical trials are also discussed to further evaluate the use of phytoestrogen in the treatment and prevention of breast cancer.
Collapse
|
6
|
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. Int J Mol Sci 2021; 22:12200. [PMID: 34830082 PMCID: PMC8618305 DOI: 10.3390/ijms222212200] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 01/09/2023] Open
Abstract
The traditional two-dimensional (2D) in vitro cell culture system (on a flat support) has long been used in cancer research. However, this system cannot be fully translated into clinical trials to ideally represent physiological conditions. This culture cannot mimic the natural tumor microenvironment due to the lack of cellular communication (cell-cell) and interaction (cell-cell and cell-matrix). To overcome these limitations, three-dimensional (3D) culture systems are increasingly developed in research and have become essential for tumor research, tissue engineering, and basic biology research. 3D culture has received much attention in the field of biomedicine due to its ability to mimic tissue structure and function. The 3D matrix presents a highly dynamic framework where its components are deposited, degraded, or modified to delineate functions and provide a platform where cells attach to perform their specific functions, including adhesion, proliferation, communication, and apoptosis. So far, various types of models belong to this culture: either the culture based on natural or synthetic adherent matrices used to design 3D scaffolds as biomaterials to form a 3D matrix or based on non-adherent and/or matrix-free matrices to form the spheroids. In this review, we first summarize a comparison between 2D and 3D cultures. Then, we focus on the different components of the natural extracellular matrix that can be used as supports in 3D culture. Then we detail different types of natural supports such as matrigel, hydrogels, hard supports, and different synthetic strategies of 3D matrices such as lyophilization, electrospiding, stereolithography, microfluid by citing the advantages and disadvantages of each of them. Finally, we summarize the different methods of generating normal and tumor spheroids, citing their respective advantages and disadvantages in order to obtain an ideal 3D model (matrix) that retains the following characteristics: better biocompatibility, good mechanical properties corresponding to the tumor tissue, degradability, controllable microstructure and chemical components like the tumor tissue, favorable nutrient exchange and easy separation of the cells from the matrix.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Liban;
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| |
Collapse
|
7
|
Khan S, Suryavanshi M, Kaur J, Nayak D, Khurana A, Manchanda RK, Tandon C, Tandon S. Stem cell therapy: A paradigm shift in breast cancer treatment. World J Stem Cells 2021; 13:841-860. [PMID: 34367480 PMCID: PMC8316873 DOI: 10.4252/wjsc.v13.i7.841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
As per the latest Globocan statistics, the high prevalence rate of breast cancer in low- and middle-income countries has led to it becoming the most common cancer to be diagnosed, hence posing a major public health challenge. As per this data, more than 11.7% of the estimated new cancer cases in 2020 were due to breast cancer. A small but significant subpopulation of cells with self- renewing ability are present in the tumor stroma and have been given the nomenclature of cancer stem cells (CSCs). These cells display a high degree of plasticity owing to their ability to transition from the slowly cycling quiescent phase to the actively proliferating phenotype. This attribute of CSCs allows them to differentiate into various cell types having diverse functions. Breast CSCs have a pivotal role in development, metastasis, treatment resistance and relapse of breast cancers. This review focuses on the pathways regulating breast CSC maintenance and the current strategies that are being explored for directing the development of novel, targeted, therapeutic approaches for limiting and eradicating this aberrant stem cell population.
Collapse
Affiliation(s)
- Sabiha Khan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India
| | - Moushumi Suryavanshi
- Department of Pathology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Jasamrit Kaur
- Department of Chemistry, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh 160030, India
| | - Debadatta Nayak
- Central Council for Research in Homeopathy, New Delhi 110058, India
| | - Anil Khurana
- Central Council for Research in Homeopathy, New Delhi 110058, India
| | | | - Chanderdeep Tandon
- Amity Institute of Biotechnology, Amity University, Noida 201313, Uttar Pradesh, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India
| |
Collapse
|
8
|
Shan NL, Shin Y, Yang G, Furmanski P, Suh N. Breast cancer stem cells: A review of their characteristics and the agents that affect them. Mol Carcinog 2021; 60:73-100. [PMID: 33428807 DOI: 10.1002/mc.23277] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
The evolving concept that cancer stem cells (CSCs) are the driving element in cancer development, evolution and heterogeneity, has overridden the previous model of a tumor consisting of cells all with similar sequentially acquired mutations and a similar potential for renewal, invasion and metastasis. This paradigm shift has focused attention on therapeutically targeting CSCs directly as a means of eradicating the disease. In breast cancers, CSCs can be identified by cell surface markers and are characterized by their ability to self-renew and differentiate, resist chemotherapy and radiation, and initiate new tumors upon serial transplantation in xenografted mice. These functional properties of CSCs are regulated by both intracellular and extracellular factors including pluripotency-related transcription factors, intracellular signaling pathways and external stimuli. Several classes of natural products and synthesized compounds have been studied to target these regulatory elements and force CSCs to lose stemness and/or terminally differentiate and thereby achieve a therapeutic effect. However, realization of an effective treatment for breast cancers, focused on the biological effects of these agents on breast CSCs, their functions and signaling, has not yet been achieved. In this review, we delineate the intrinsic and extrinsic factors identified to date that control or promote stemness in breast CSCs and provide a comprehensive compilation of potential agents that have been studied to target breast CSCs, transcription factors and stemness-related signaling. Our aim is to stimulate further study of these agents that could become the basis for their use as stand-alone treatments or components of combination therapies effective against breast cancers.
Collapse
Affiliation(s)
- Naing L Shan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Yoosub Shin
- Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ge Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Philip Furmanski
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
9
|
Sweeney K, Cameron ER, Blyth K. Complex Interplay between the RUNX Transcription Factors and Wnt/β-Catenin Pathway in Cancer: A Tango in the Night. Mol Cells 2020; 43:188-197. [PMID: 32041394 PMCID: PMC7057843 DOI: 10.14348/molcells.2019.0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
Cells are designed to be sensitive to a myriad of external cues so they can fulfil their individual destiny as part of the greater whole. A number of well-characterised signalling pathways dictate the cell's response to the external environment and incoming messages. In healthy, well-ordered homeostatic systems these signals are tightly controlled and kept in balance. However, given their powerful control over cell fate, these pathways, and the transcriptional machinery they orchestrate, are frequently hijacked during the development of neoplastic disease. A prime example is the Wnt signalling pathway that can be modulated by a variety of ligands and inhibitors, ultimately exerting its effects through the β-catenin transcription factor and its downstream target genes. Here we focus on the interplay between the three-member family of RUNX transcription factors with the Wnt pathway and how together they can influence cell behaviour and contribute to cancer development. In a recurring theme with other signalling systems, the RUNX genes and the Wnt pathway appear to operate within a series of feedback loops. RUNX genes are capable of directly and indirectly regulating different elements of the Wnt pathway to either strengthen or inhibit the signal. Equally, β-catenin and its transcriptional co-factors can control RUNX gene expression and together they can collaborate to regulate a large number of third party co-target genes.
Collapse
Affiliation(s)
- Kerri Sweeney
- CRUK Beatson Institute, Garscube Estate, Glasgow G6 BD, UK
| | - Ewan R. Cameron
- Glasgow Veterinary School, University of Glasgow, Glasgow G61 1QH, UK
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Glasgow G6 BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
10
|
Martin-Orozco E, Sanchez-Fernandez A, Ortiz-Parra I, Ayala-San Nicolas M. WNT Signaling in Tumors: The Way to Evade Drugs and Immunity. Front Immunol 2019; 10:2854. [PMID: 31921125 PMCID: PMC6934036 DOI: 10.3389/fimmu.2019.02854] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
WNT/β-catenin signaling is involved in many physiological processes. Its implication in embryonic development, cell migration, and polarization has been shown. Nevertheless, alterations in this signaling have also been related with pathological events such as sustaining and proliferating the cancer stem cell (CSC) subset present in the tumor bulk. Related with this, WNT signaling has been associated with the maintenance, expansion, and epithelial-mesenchymal transition of stem cells, and furthermore with two distinctive features of this tumor population: therapeutic resistance (MDR, multidrug resistance) and immune escape. These mechanisms are developed and maintained by WNT activation through the transcriptional control of the genes involved in such processes. This review focuses on the description of the best known WNT pathways and the molecules involved in them. Special attention is given to the WNT cascade proteins deregulated in tumors, which have a decisive role in tumor survival. Some of these proteins function as extrusion pumps that, in the course of chemotherapy, expel the drugs from the cells; others help the tumoral cells hide from the immune effector mechanisms. Among the WNT targets involved in drug resistance, the drug extrusion pump MDR-1 (P-GP, ABCB1) and the cell adhesion molecules from the CD44 family are highlighted. The chemokine CCL4 and the immune checkpoint proteins CD47 and PD-L1 are included in the list of WNT target molecules with a role in immunity escape. This pathway should be a main target in cancer therapy as WNT signaling activation is essential for tumor progression and survival, even in the presence of the anti-tumoral immune response and/or antineoplastic drugs. The appropriate design and combination of anti-tumoral strategies, based on the modulation of WNT mediators and/or protein targets, could negatively affect the growth of tumoral cells, improving the efficacy of these types of therapies.
Collapse
Affiliation(s)
- Elena Martin-Orozco
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), ARADyAL, Murcia, Spain
| | - Ana Sanchez-Fernandez
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Irene Ortiz-Parra
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Maria Ayala-San Nicolas
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Choi H, Jin S, Cho H, Won H, An HW, Jeong G, Park Y, Kim H, Park MK, Son T, Min K, Jang K, Oh Y, Lee J, Kong G. CDK12 drives breast tumor initiation and trastuzumab resistance via WNT and IRS1-ErbB-PI3K signaling. EMBO Rep 2019; 20:e48058. [PMID: 31468695 PMCID: PMC6776914 DOI: 10.15252/embr.201948058] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) has emerged as an effective therapeutic target due to its ability to regulate DNA damage repair in human cancers, but little is known about the role of CDK12 in driving tumorigenesis. Here, we demonstrate that CDK12 promotes tumor initiation as a novel regulator of cancer stem cells (CSCs) and induces anti-HER2 therapy resistance in human breast cancer. High CDK12 expression caused by concurrent amplification of CDK12 and HER2 in breast cancer patients is associated with disease recurrence and poor survival. CDK12 induces self-renewal of breast CSCs and in vivo tumor-initiating ability, and also reduces susceptibility to trastuzumab. Furthermore, CDK12 kinase activity inhibition facilitates anticancer efficacy of trastuzumab in HER2+ tumors, and mice bearing trastuzumab-resistant HER2+ tumor show sensitivity to an inhibitor of CDK12. Mechanistically, the catalytic activity of CDK12 is required for the expression of genes involved in the activation of ErbB-PI3K-AKT or WNT-signaling cascades. These results suggest that CDK12 is a major oncogenic driver and an actionable target for HER2+ breast cancer to replace or augment current anti-HER2 therapies.
Collapse
Affiliation(s)
- Hee‐Joo Choi
- Institute for Bioengineering and Biopharmaceutical Research (IBBR)Hanyang UniversitySeoulKorea
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Sora Jin
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Hani Cho
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Hee‐Young Won
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Hee Woon An
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Ga‐Young Jeong
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Young‐Un Park
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Hyung‐Yong Kim
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | | | - Taekwon Son
- College of PharmacySeoul National UniversitySeoulKorea
| | - Kyueng‐Whan Min
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Ki‐Seok Jang
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Young‐Ha Oh
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Jeong‐Yeon Lee
- Department of MedicineCollege of MedicineHanyang UniversitySeoulKorea
| | - Gu Kong
- Institute for Bioengineering and Biopharmaceutical Research (IBBR)Hanyang UniversitySeoulKorea
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| |
Collapse
|
12
|
Acquisition of a side population fraction augments malignant phenotype in ovarian cancer. Sci Rep 2019; 9:14215. [PMID: 31578411 PMCID: PMC6775117 DOI: 10.1038/s41598-019-50794-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/19/2019] [Indexed: 01/29/2023] Open
Abstract
Side population (SP) cells harbor malignant phenotypes in cancer. The aim of this study was to identify genes that modulate the proportion of ovarian cancer SP cells. Using a shRNA library targeting 15,000 genes, a functional genomics screen was performed to identify genes whose suppression increased the SP percentage. The biological effects caused by alteration of those identified genes were investigated in vitro and in vivo. We found that suppression of MSL3, ZNF691, VPS45, ITGB3BP, TLE2, and ZNF498 increased the proportion of SP cells. Newly generated SP cells exhibit greater capacity for sphere formation, single cell clonogenicity, and in vivo tumorigenicity. On the contrary, overexpression of MSL3, VPS45, ITGB3BP, TLE2, and ZNF498 decreased the proportion of SP cells, sphere formation capacity and single cell clonogenicity. In ovarian cancer cases, low expression of MSL3, ZNF691 and VPS45 was related to poor prognosis. Suppression of these six genes enhanced activity of the hedgehog pathway. Cyclopamine, a hedgehog pathway inhibitor, significantly decreased the number of SP cells and their sphere forming ability. Our results provide new information regarding molecular mechanisms favoring SP cells and suggest that Hedgehog signaling may provide a viable target for ovarian cancer.
Collapse
|
13
|
Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F, Zoljalali Moghaddam SH. Cancer stem cells: A review from origin to therapeutic implications. J Cell Physiol 2019; 235:790-803. [PMID: 31286518 DOI: 10.1002/jcp.29044] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are elucidated as cells that can perpetuate themselves via autorestoration. These cells are highly resistant to current therapeutic approaches and are the main reason for cancer recurrence. Radiotherapy has made a lot of contributions to cancer treatment. However, despite continuous achievements, therapy resistance and tumor recurrence are still prevalent in most patients. This resistance might be partly related to the existence of CSCs. In the present study, recent advances in the investigation of different biological properties of CSCs, such as their origin, markers, characteristics, and targeting have been reviewed. We have also focused our discussion on radioresistance and adaptive responses of CSCs and their related extrinsic and intrinsic influential factors. In summary, we suggest CSCs as the prime therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Rasoul Baharlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Jafar Karami
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, School of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ramazan Rezaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pourramezan
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
14
|
Notch and Wnt Dysregulation and Its Relevance for Breast Cancer and Tumor Initiation. Biomedicines 2018; 6:biomedicines6040101. [PMID: 30388742 PMCID: PMC6315509 DOI: 10.3390/biomedicines6040101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the second leading cause of cancer deaths among women in the world. Treatment has been improved and, in combination with early detection, this has resulted in reduced mortality rates. Further improvement in therapy development is however warranted. This will be particularly important for certain sub-classes of breast cancer, such as triple-negative breast cancer, where currently no specific therapies are available. An important therapy development focus emerges from the notion that dysregulation of two major signaling pathways, Notch and Wnt signaling, are major drivers for breast cancer development. In this review, we discuss recent insights into the Notch and Wnt signaling pathways and into how they act synergistically both in normal development and cancer. We also discuss how dysregulation of the two pathways contributes to breast cancer and strategies to develop novel breast cancer therapies starting from a Notch and Wnt dysregulation perspective.
Collapse
|
15
|
Zhang Y, Yang H, Li Q, Duan X, Zhao X, Wei Y, Chen X. Three-Dimensional Ameliorated Biologics Elicit Thymic Renewal in Tumor-Bearing Hosts. THE JOURNAL OF IMMUNOLOGY 2018; 201:1975-1983. [DOI: 10.4049/jimmunol.1701727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/23/2018] [Indexed: 12/31/2022]
|
16
|
Hume RD, Pensa S, Brown EJ, Kreuzaler PA, Hitchcock J, Husmann A, Campbell JJ, Lloyd-Thomas AO, Cameron RE, Watson CJ. Tumour cell invasiveness and response to chemotherapeutics in adipocyte invested 3D engineered anisotropic collagen scaffolds. Sci Rep 2018; 8:12658. [PMID: 30139956 PMCID: PMC6107500 DOI: 10.1038/s41598-018-30107-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/05/2018] [Indexed: 12/27/2022] Open
Abstract
Breast cancers are highly heterogeneous and their metastatic potential and response to therapeutic drugs is difficult to predict. A tool that could accurately gauge tumour invasiveness and drug response would provide a valuable addition to the oncologist’s arsenal. We have developed a 3-dimensional (3D) culture model that recapitulates the stromal environment of breast cancers by generating anisotropic (directional) collagen scaffolds seeded with adipocytes and culturing tumour fragments therein. Analysis of tumour cell invasion in the presence of various therapeutic drugs, by immunofluorescence microscopy coupled with an optical clearing technique, demonstrated the utility of this approach in determining both the rate and capacity of tumour cells to migrate through the stroma while shedding light also on the mode of migration. Furthermore, the response of different murine mammary tumour types to chemotherapeutic drugs could be readily quantified.
Collapse
Affiliation(s)
- Robert D Hume
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Sara Pensa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Elizabeth J Brown
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Peter A Kreuzaler
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Jessica Hitchcock
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Anke Husmann
- Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Jonathan J Campbell
- Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Annabel O Lloyd-Thomas
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ruth E Cameron
- Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
17
|
El-Badawy A, Ghoneim NI, Nasr MA, Elkhenany H, Ahmed TA, Ahmed SM, El-Badri N. Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells. Biol Open 2018; 7:bio.034181. [PMID: 29907642 PMCID: PMC6078341 DOI: 10.1242/bio.034181] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Telomerase and its core component, telomerase reverse transcriptase (hTERT), are critical for stem cell compartment integrity. Normal adult stem cells have the longest telomeres in a given tissue, a property mediated by high hTERT expression and high telomerase enzymatic activity. In contrast, cancer stem cells (CSCs) have short telomeres despite high expression of hTERT, indicating that the role of hTERT in CSCs is not limited to telomere elongation and/or maintenance. The function of hTERT in CSCs remains poorly understood. Here, we knocked down hTERT expression in CSCs and observed a morphological shift to a more epithelial phenotype, suggesting a role for hTERT in the epithelial-to-mesenchymal transition (EMT) of CSCs. Therefore, in this study, we systematically explored the relationship between hTERT and EMT and identified a reciprocal, bi-directional feedback loop between hTERT and EMT in CSCs. We found that hTERT expression is mutually exclusive to the mesenchymal phenotype and that, reciprocally, loss of the mesenchymal phenotype represses hTERT expression. We also showed that hTERT plays a critical role in the expression of key CSC markers and nuclear β-catenin localization, increases the percentage of cells with side-population properties, and upregulates the CD133 expression. hTERT also promotes chemoresistance properties, tumorsphere formation and other important functional CSC properties. Subsequently, hTERT knockdown leads to the loss of the above advantages, indicating a loss of CSC properties. Our findings suggest that targeting hTERT might improve CSCs elimination by transitioning them from the aggressive mesenchymal state to a more steady epithelial state, thereby preventing cancer progression. Summary: This study describe a reciprocal, bi-directional feedback loop between hTERT and EMT to regulate properties of CSCs, suggesting that targeting hTERT may eliminate CSCs, thereby preventing cancer progression.
Collapse
Affiliation(s)
- Ahmed El-Badawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt
| | - Nehal I Ghoneim
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt
| | - Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt
| | - Hoda Elkhenany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt.,Department of Surgery, College of Veterinary Medicine, Alexandria University, Alexandria 22785, Egypt
| | - Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt
| | - Sara M Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt
| |
Collapse
|
18
|
Yue Z, Yuan Z, Zeng L, Wang Y, Lai L, Li J, Sun P, Xue X, Qi J, Yang Z, Zheng Y, Fang Y, Li D, Siwko S, Li Y, Luo J, Liu M. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells. FASEB J 2017; 32:2422-2437. [PMID: 29269400 DOI: 10.1096/fj.201700897r] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The fourth member of the leucine-rich repeat-containing GPCR family (LGR4, frequently referred to as GPR48) and its cognate ligands, R-spondins (RSPOs) play crucial roles in the development of multiple organs as well as the survival of adult stem cells by activation of canonical Wnt signaling. Wnt/β-catenin signaling acts to regulate breast cancer; however, the molecular mechanisms determining its spatiotemporal regulation are largely unknown. In this study, we identified LGR4 as a master controller of Wnt/β-catenin signaling-mediated breast cancer tumorigenesis, metastasis, and cancer stem cell (CSC) maintenance. LGR4 expression in breast tumors correlated with poor prognosis. Either Lgr4 haploinsufficiency or mammary-specific deletion inhibited mouse mammary tumor virus (MMTV)- PyMT- and MMTV- Wnt1-driven mammary tumorigenesis and metastasis. Moreover, LGR4 down-regulation decreased in vitro migration and in vivo xenograft tumor growth and lung metastasis. Furthermore, Lgr4 deletion in MMTV- Wnt1 tumor cells or knockdown in human breast cancer cells decreased the number of functional CSCs by ∼90%. Canonical Wnt signaling was impaired in LGR4-deficient breast cancer cells, and LGR4 knockdown resulted in increased E-cadherin and decreased expression of N-cadherin and snail transcription factor -2 ( SNAI2) (also called SLUG), implicating LGR4 in regulation of epithelial-mesenchymal transition. Our findings support a crucial role of the Wnt signaling component LGR4 in breast cancer initiation, metastasis, and breast CSCs.-Yue, Z., Yuan, Z., Zeng, L., Wang, Y., Lai, L., Li, J., Sun, P., Xue, X., Qi, J., Yang, Z., Zheng, Y., Fang, Y., Li, D., Siwko, S., Li, Y., Luo, J., Liu, M. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells.
Collapse
Affiliation(s)
- Zhiying Yue
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zengjin Yuan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Li Zeng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Ying Wang
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Li Lai
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Jing Li
- East China Normal University Joint Center for Translational Medicine, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Peng Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiwen Xue
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Junyi Qi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhengfeng Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yansen Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuanzhang Fang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Stefan Siwko
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| |
Collapse
|
19
|
El-Badawy A, Ghoneim MA, Gabr MM, Salah RA, Mohamed IK, Amer M, El-Badri N. Cancer cell-soluble factors reprogram mesenchymal stromal cells to slow cycling, chemoresistant cells with a more stem-like state. Stem Cell Res Ther 2017; 8:254. [PMID: 29115987 PMCID: PMC5688803 DOI: 10.1186/s13287-017-0709-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/24/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) play different roles in modulating tumor progression, growth, and metastasis. MSCs are recruited to the tumor site in large numbers and subsequently have an important microenvironmental role in modulating tumor progression and drug sensitivity. However, the effect of the tumor microenvironment on MSC plasticity remains poorly understood. Herein, we report a paracrine effect of cancer cells, in which they secrete soluble factors that promote a more stem-like state in bone marrow mesenchymal stem cells (BM-MSCs). METHODS The effect of soluble factors secreted from MCF7, Hela, and HepG2 cancer cell lines on BM-MSCs was assessed using a Transwell indirect coculture system. After 5 days of coculture, BM-MSCs were characterized by flow cytometry for surface marker expression, by qPCR for gene expression profile, and by confocal immunofluorescence for marker expression. We then measured the sensitivity of cocultured BM-MSCs to chemotherapeutic agents, their cell cycle profile, and their response to DNA damage. The sphere formation, invasive properties, and in-vivo performance of BM-MSCs after coculture with cancer cells were also measured. RESULTS Indirect coculture of cancer cells and BM-MSCs, without direct cell contact, generated slow cycling, chemoresistant spheroid stem cells that highly expressed markers of pluripotency, cancer cells, and cancer stem cells (CSCs). They also displayed properties of a side population and enhanced sphere formation in culture. Accordingly, these cells were termed cancer-induced stem cells (CiSCs). CiSCs showed a more mesenchymal phenotype that was further augmented upon TGF-β stimulation and demonstrated a high expression of the β-catenin pathway and ALDH1A1. CONCLUSIONS These findings demonstrate that MSCs, recruited to the tumor microenvironment in large numbers, may display cellular plasticity, acquire a more stem-like state, and acquire some properties of CSCs upon exposure to cancer cell-secreted factors. These acquired characteristics may contribute to tumor progression, survival, and metastasis. Our findings provide new insights into the interactions between MSCs and cancer cells, with the potential to identify novel molecular targets for cancer therapy.
Collapse
Affiliation(s)
- Ahmed El-Badawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, 12588, 6th of October City, Giza, Egypt
| | | | - Mahmoud M. Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, 12588, 6th of October City, Giza, Egypt
| | - Ihab K. Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Marwa Amer
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, 12588, 6th of October City, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, 12588, 6th of October City, Giza, Egypt
| |
Collapse
|
20
|
Abstract
The mammary epithelium is organized in a hierarchy of mammary stem cells (MaSCs), progenitors, and differentiated cells. The development and homeostasis of mammary gland are tightly controlled by a complex network of cell lineage regulators. These determinants of cellular hierarchy are frequently deregulated in breast tumor cells and closely associated with cancer progression and metastasis. They also contribute to the diversity of breast cancer subtypes and their distinct metastatic patterns. Cell fate regulators that normally promote stem/progenitor activities can serve as drivers for epithelial-mesenchymal transition and metastasis whereas regulators that promote terminal differentiation generally suppress metastasis. In this review, we discuss how some of the key factors function in normal mammary lineage determination and how these processes are hijacked by tumor cells to enhance metastasis. Understanding the molecular connections between normal development and cancer metastasis will enable the development of more specific and effective therapeutic approaches targeting metastatic tumor cells.
Collapse
Affiliation(s)
- Wei Lu
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ, 08544, USA.
| |
Collapse
|
21
|
Christensen AG, Ehmsen S, Terp MG, Batra R, Alcaraz N, Baumbach J, Noer JB, Moreira J, Leth-Larsen R, Larsen MR, Ditzel HJ. Elucidation of Altered Pathways in Tumor-Initiating Cells of Triple-Negative Breast Cancer: A Useful Cell Model System for Drug Screening. Stem Cells 2017; 35:1898-1912. [DOI: 10.1002/stem.2654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/31/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Anne G. Christensen
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
| | - Sidse Ehmsen
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
| | - Mikkel G. Terp
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
| | - Richa Batra
- Department of Mathematics and Computer Science; Faculty of Science, University of Southern Denmark; Odense Denmark
| | - Nicolas Alcaraz
- Department of Mathematics and Computer Science; Faculty of Science, University of Southern Denmark; Odense Denmark
| | - Jan Baumbach
- Department of Mathematics and Computer Science; Faculty of Science, University of Southern Denmark; Odense Denmark
| | - Julie B. Noer
- Section for Molecular Disease Biology, Department of Veterinary Disease Biology; Section for Molecular Disease Biology, University of Copenhagen; Frederiksberg C Denmark
| | - José Moreira
- Section for Molecular Disease Biology, Department of Veterinary Disease Biology; Section for Molecular Disease Biology, University of Copenhagen; Frederiksberg C Denmark
| | - Rikke Leth-Larsen
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense Denmark
- Department of Clinical Biochemistry and Pharmacology; Centre for Clinical Proteomics, Odense University Hospital; Odense Denmark
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
- Department of Oncology; Odense University Hospital; Odense Denmark
| |
Collapse
|
22
|
Deficiency of CCN5/WISP-2-Driven Program in breast cancer Promotes Cancer Epithelial cells to mesenchymal stem cells and Breast Cancer growth. Sci Rep 2017; 7:1220. [PMID: 28450698 PMCID: PMC5430628 DOI: 10.1038/s41598-017-00916-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer progression and relapse is conceivably due to tumor initiating cells (TICs)/cancer stem cells. EMT (epithelial-mesenchymal-transition)-signaling regulates TICs’ turnover. However, the mechanisms associated with this episode are unclear. We show that, in triple-negative-breast cancer (TNBC) cells enriched with TICs, CCN5 significantly blocks cellular growth via apoptosis, reversing EMT-signaling and impairing mammosphere formation, thereby blocking the tumor-forming ability and invasive capacity of these cells. To corroborate these findings, we isolated tumor-initiating side populations (SP) and non-side population (NSP or main population) from MCF-7 cell line, and evaluated the impact of CCN5 on these subpopulations. CCN5 was overexpressed in the NSP but downregulated in the SP. Characteristically, NSP cells are ER-α positive and epithelial type with little tumorigenic potency, while SP cells are very similar to triple-negative ones that do not express ER-α- and Her-2 and are highly tumorigenic in xenograft models. The overexpression of CCN5 in SP results in EMT reversion, ER-α upregulation and delays in tumor growth in xenograft models. We reasoned that CCN5 distinguishes SP and NSP and could reprogram SP to NSP transition, thereby delaying tumor growth in the xenograft model. Collectively, we reveal how CCN5-signaling underlies the driving force to prevent TNBC growth and progression.
Collapse
|
23
|
Castagnoli L, Ghedini GC, Koschorke A, Triulzi T, Dugo M, Gasparini P, Casalini P, Palladini A, Iezzi M, Lamolinara A, Lollini PL, Nanni P, Chiodoni C, Tagliabue E, Pupa SM. Pathobiological implications of the d16HER2 splice variant for stemness and aggressiveness of HER2-positive breast cancer. Oncogene 2016; 36:1721-1732. [PMID: 27641338 PMCID: PMC5447867 DOI: 10.1038/onc.2016.338] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022]
Abstract
We have previously shown that the d16HER2 splice variant is linked to HER2-positive
breast cancer (BC) tumorigenesis, progression and response to Trastuzumab. However,
the mechanisms by which d16HER2 contributes to HER2-driven aggressiveness and
targeted therapy susceptibility remain uncertain. Here, we report that the
d16HER2-positive mammary tumor cell lines MI6 and MI7, derived from spontaneous
lesions of d16HER2 transgenic (tg) mice and resembling the aggressive features of
primary lesions, are enriched in the expression of Wnt, Notch and
epithelial–mesenchymal transition pathways related genes compared with
full-length wild-type (WT) HER2-positive cells (WTHER2_1 and WTHER2_2) derived from
spontaneous tumors arising in WTHER2 tg mice. MI6 cells exhibited increased
resistance to anoikis and significantly higher mammosphere-forming efficiency (MFE)
and self-renewal capability than the WTHER2-positive counterpart. Furthermore,
d16HER2-positive tumor cells expressed a higher fraction of
CD29High/CD24+/SCA1Low cells and
displayed greater in vivo tumor engraftment in serial dilution conditions
than WTHER2_1 cells. Accordingly, NOTCH inhibitors impaired mammosphere formation
only in MI6 cells. A comparative analysis of stemness-related features driven by
d16HER2 and WTHER2 in ad hoc engineered human BC cells (MCF7 and T47D)
revealed a higher MFE and aldehyde dehydrogenase-positive staining in d16HER2- vs
WTHER2-infected cells, sustaining consistent BC-initiating cell enrichment in the
human setting. Moreover, marked CD44 expression was found in MCF7_d16 and T47D_d16
cells vs their WTHER2 and Mock counterparts. Clinically, BC cases from two distinct
HER2-positive cohorts characterized by high levels of expression of the
activated-d16HER2 metagene were significantly enriched in the Notch family and signal
transducer genes vs those with low levels of the metagene.
Collapse
Affiliation(s)
- L Castagnoli
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - G C Ghedini
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - A Koschorke
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - T Triulzi
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Dugo
- Functional Genomics and Bioinformatics Core Facility, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - P Gasparini
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - P Casalini
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - A Palladini
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - M Iezzi
- CESI Aging Research Center, Department of Medicine and Aging Sciences, G D'Annunzio University, Via Colle dell'Ara, Chieti Scalo, Chieti, Italy
| | - A Lamolinara
- CESI Aging Research Center, Department of Medicine and Aging Sciences, G D'Annunzio University, Via Colle dell'Ara, Chieti Scalo, Chieti, Italy
| | - P L Lollini
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - P Nanni
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - C Chiodoni
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - E Tagliabue
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - S M Pupa
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
24
|
Gkountela S, Aceto N. Stem-like features of cancer cells on their way to metastasis. Biol Direct 2016; 11:33. [PMID: 27457474 PMCID: PMC4960876 DOI: 10.1186/s13062-016-0135-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED More than 90 % of cancer-related deaths are due to the development of a systemic metastatic disease. Clearly, much remains to be understood about the biological principles that govern human cancer metastasis, aiming at the ambitious objective to decrease metastasis-related mortality in patients. For many years, research on metastasis has been conducted in great part on experimental mouse models, mainly because of the difficulties in sampling, longitudinal studies, and molecular interrogation of a human metastatic disease. However, recently, extraordinary advances in microfluidic technologies are allowing the isolation and characterization of human circulating tumor cells (CTCs) that escaped a primary tumor mass and are in the process of seeding a distant metastasis. Analysis of human CTCs has now revealed important features of cancer metastasis, such as the high metastatic potential of CTC-clusters compared to single CTCs, the dynamic expression of epithelial and mesenchymal markers on CTCs during treatment, and the possibility to culture CTCs from patients for a real-time and individualized testing of drug susceptibility. Nevertheless, several aspects of CTC biology remain unsolved, such as the characterization of the stem-like cell population among human CTCs. Here, we focus on describing the latest findings in the CTC field, and discuss them in the context of cancer stem cell biology. Defining the molecular features of those few metastasis-initiating, stem-like CTCs holds the exceptional promise to develop metastasis-tailored therapies for patients with cancer. REVIEWERS This article was reviewed by Elisa Cimetta, Luca Pellegrini and Sirio Dupont (nominated by LP).
Collapse
Affiliation(s)
- Sofia Gkountela
- Department of Biomedicine, Cancer Metastasis, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| |
Collapse
|
25
|
Marcucci F, Rumio C, Lefoulon F. Anti-Cancer Stem-like Cell Compounds in Clinical Development - An Overview and Critical Appraisal. Front Oncol 2016; 6:115. [PMID: 27242955 PMCID: PMC4861739 DOI: 10.3389/fonc.2016.00115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer stem-like cells (CSC) represent a subpopulation of tumor cells with elevated tumor-initiating potential. Upon differentiation, they replenish the bulk of the tumor cell population. Enhanced tumor-forming capacity, resistance to antitumor drugs, and metastasis-forming potential are the hallmark traits of CSCs. Given these properties, it is not surprising that CSCs have become a therapeutic target of prime interest in drug discovery. In fact, over the last few years, an enormous number of articles describing compounds endowed with anti-CSC activities have been published. In the meanwhile, several of these compounds and also approaches that are not based on the use of pharmacologically active compounds (e.g., vaccination, radiotherapy) have progressed into clinical studies. This article gives an overview of these compounds, proposes a tentative classification, and describes their biological properties and their developmental stage. Eventually, we discuss the optimal clinical setting for these compounds, the need for biomarkers allowing patient selection, the redundancy of CSC signaling pathways and the utility of employing combinations of anti-CSC compounds and the therapeutic limitations posed by the plasticity of CSCs.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan , Milan , Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan , Milan , Italy
| | | |
Collapse
|
26
|
Cremers N, Neeb A, Uhle T, Dimmler A, Rothley M, Allgayer H, Fodde R, Sleeman JP, Thiele W. CD24 Is Not Required for Tumor Initiation and Growth in Murine Breast and Prostate Cancer Models. PLoS One 2016; 11:e0151468. [PMID: 26978528 PMCID: PMC4792398 DOI: 10.1371/journal.pone.0151468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 02/29/2016] [Indexed: 12/03/2022] Open
Abstract
CD24 is a small, heavily glycosylated, GPI-linked membrane protein, whose expression has been associated with the tumorigenesis and progression of several types of cancer. Here, we studied the expression of CD24 in tumors of MMTV-PyMT, Apc1572/T+ and TRAMP genetic mouse models that spontaneously develop mammary or prostate carcinoma, respectively. We found that CD24 is expressed during tumor development in all three models. In MMTV-PyMT and Apc1572T/+ breast tumors, CD24 was strongly but heterogeneously expressed during early tumorigenesis, but decreased in more advanced stages, and accordingly was increased in poorly differentiated lesions compared with well differentiated lesions. In prostate tumors developing in TRAMP mice, CD24 expression was strong within hyperplastic lesions in comparison with non-hyperplastic regions, and heterogeneous CD24 expression was maintained in advanced prostate carcinomas. To investigate whether CD24 plays a functional role in tumorigenesis in these models, we crossed CD24 deficient mice with MMTV-PyMT, Apc1572T/+ and TRAMP mice, and assessed the influence of CD24 deficiency on tumor onset and tumor burden. We found that mice negative or positive for CD24 did not significantly differ in terms of tumor initiation and burden in the genetic tumor models tested, with the exception of Apc1572T/+ mice, in which lack of CD24 reduced the mammary tumor burden slightly but significantly. Together, our data suggest that while CD24 is distinctively expressed during the early development of murine mammary and prostate tumors, it is not essential for the formation of tumors developing in MMTV-PyMT, Apc1572T/+ and TRAMP mice.
Collapse
MESH Headings
- Animals
- CD24 Antigen/genetics
- CD24 Antigen/physiology
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Genes, APC
- Male
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/virology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Models, Animal
- Neoplastic Syndromes, Hereditary/etiology
- Neoplastic Syndromes, Hereditary/genetics
- Prostate/pathology
- Prostatic Neoplasms/genetics
- Retroviridae Infections/genetics
- Seminal Vesicles/pathology
- Tumor Virus Infections/genetics
Collapse
Affiliation(s)
- Natascha Cremers
- University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
- Karlsruhe Institute of Technology, Institut für Toxikologie und Genetik, Karlsruhe, Germany
| | - Antje Neeb
- Karlsruhe Institute of Technology, Institut für Toxikologie und Genetik, Karlsruhe, Germany
| | - Tanja Uhle
- University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
- Karlsruhe Institute of Technology, Institut für Toxikologie und Genetik, Karlsruhe, Germany
| | - Arno Dimmler
- Institut und Gemeinschaftspraxis für Pathologie an den St. Vincentiuskliniken Karlsruhe, Karlsruhe, Germany
| | - Melanie Rothley
- University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
- Karlsruhe Institute of Technology, Institut für Toxikologie und Genetik, Karlsruhe, Germany
| | - Heike Allgayer
- University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Riccardo Fodde
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jonathan Paul Sleeman
- University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
- Karlsruhe Institute of Technology, Institut für Toxikologie und Genetik, Karlsruhe, Germany
| | - Wilko Thiele
- University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
- Karlsruhe Institute of Technology, Institut für Toxikologie und Genetik, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
27
|
Ferrari N, Riggio AI, Mason S, McDonald L, King A, Higgins T, Rosewell I, Neil JC, Smalley MJ, Sansom OJ, Morris J, Cameron ER, Blyth K. Runx2 contributes to the regenerative potential of the mammary epithelium. Sci Rep 2015; 5:15658. [PMID: 26489514 PMCID: PMC4614940 DOI: 10.1038/srep15658] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
Although best known for its role in bone development and associated structures the transcription factor RUNX2 is expressed in a wide range of lineages, including those of the mammary gland. Previous studies have indicated that Runx2 can regulate aspects of mammary cell function and influence the properties of cancer cells. In this study we investigate the role of Runx2 in the mammary stem/progenitor population and its relationship with WNT signalling. Results show that RUNX2 protein is differentially expressed throughout embryonic and adult development of the murine mammary gland with high levels of expression in mammary stem-cell enriched cultures. Importantly, functional analysis reveals a role for Runx2 in mammary stem/progenitor cell function in in vitro and in vivo regenerative assays. Furthermore, RUNX2 appears to be associated with WNT signalling in the mammary epithelium and is specifically upregulated in mouse models of WNT-driven breast cancer. Overall our studies reveal a novel function for Runx2 in regulating mammary epithelial cell regenerative potential, possibly acting as a downstream target of WNT signalling.
Collapse
Affiliation(s)
- Nicola Ferrari
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Alessandra I. Riggio
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Susan Mason
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Laura McDonald
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Ayala King
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Theresa Higgins
- Cancer Research UK London Research Institute, Lincoln’s Inn Fields, London, WC2A 3LY
| | - Ian Rosewell
- Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD
| | - James C. Neil
- University of Glasgow, Garscube Estate, Bearsden, Glasgow, G61 1QH
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, CF24 4HQ
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Joanna Morris
- University of Glasgow, Garscube Estate, Bearsden, Glasgow, G61 1QH
| | - Ewan R. Cameron
- University of Glasgow, Garscube Estate, Bearsden, Glasgow, G61 1QH
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| |
Collapse
|
28
|
Zhao Z, Li S, Song E, Liu S. The roles of ncRNAs and histone-modifiers in regulating breast cancer stem cells. Protein Cell 2015; 7:89-99. [PMID: 26349457 PMCID: PMC4742390 DOI: 10.1007/s13238-015-0199-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/16/2015] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs), a subpopulation of cancer cells with ability of initiating tumorigenesis, exist in many kinds of tumors including breast cancer. Cancer stem cells contribute to treatment resistance and relapse. Conventional treatments only kill differentiated cancer cells, but spare CSCs. Combining conventional treatments with therapeutic drugs targeting to CSCs will eradicate cancer cells more efficiently. Studying the molecular mechanisms of CSCs regulation is essential for developing new therapeutic strategies. Growing evidences showed CSCs are regulated by non-coding RNA (ncRNA) including microRNAs and long non-coding RNAs (lncRNAs), and histone-modifiers, such as let-7, miR-93, miR-100, HOTAIR, Bmi-1 and EZH2. Herein we review the roles of microRNAs, lncRNAs and histone-modifiers especially Polycomb family proteins in regulating breast cancer stem cells (BCSCs).
Collapse
Affiliation(s)
- Zhiju Zhao
- Innovation Center for Cell Signalling and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, 230027, China
| | - Shu Li
- Department of Pathophysiology, Wannan Medical College, Wuhu, 241002, China
| | - Erwei Song
- Department of Breast Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Suling Liu
- Innovation Center for Cell Signalling and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, 230027, China.
| |
Collapse
|
29
|
Abstract
The identification of cancer stem cells (CSCs) represents an important milestone in the understanding of chemodrug resistance and cancer recurrence. More specifically, some studies have suggested that potential metastasis-initiating cells (MICs) might be present within small CSC populations. The targeting and eradication of these cells represents a potential strategy for significantly improving clinical outcomes. A number of studies have suggested that dysregulation of Wnt/β-catenin signaling occurs in human breast cancer. Consistent with these findings, our previous data have shown that the relative level of Wnt/β-catenin signaling activity in breast cancer stem cells (BCSCs) is significantly higher than that in bulk cancer cells. These results suggest that BCSCs could be sensitive to therapeutic approaches targeting Wnt/β-catenin signaling pathway. In this context, abnormal Wnt/β-catenin signaling activity may be an important clinical feature of breast cancer and a predictor of poor survival. We therefore hypothesized that Wnt/β-catenin signaling might regulate self-renewal and CSC migration, thereby enabling metastasis and systemic tumor dissemination in breast cancer. Here, we investigated the effects of inhibiting Wnt/β-catenin signaling on cancer cell migratory potential by examining the expression of CSC-related genes, and we examined how this pathway links metastatic potential with tumor formation in vitro and in vivo.
Collapse
|
30
|
Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, Park JH, Yun CH, Chung JU, Lee KJ, Lee HY, Nam JS. Wnt/β-Catenin Small-Molecule Inhibitor CWP232228 Preferentially Inhibits the Growth of Breast Cancer Stem-like Cells. Cancer Res 2015; 75:1691-702. [PMID: 25660951 DOI: 10.1158/0008-5472.can-14-2041] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/28/2015] [Indexed: 11/16/2022]
Abstract
Breast cancer stem cells (BCSC) are resistant to conventional chemotherapy and radiotherapy, which may destroy tumor masses but not all BCSC that can mediate relapses. In the present study, we showed that the level of Wnt/β-catenin signaling in BCSC is relatively higher than in bulk tumor cells, contributing to a relatively higher level of therapeutic resistance. We designed a highly potent small-molecule inhibitor, CWP232228, which antagonizes binding of β-catenin to T-cell factor (TCF) in the nucleus. Notably, although CWP232228 inhibited the growth of both BCSC and bulk tumor cells by inhibiting β-catenin-mediated transcription, BCSC exhibited greater growth inhibition than bulk tumor cells. We also documented evidence of greater insulin-like growth factor-I (IGF-I) expression by BCSC than by bulk tumor cells and that CWP232228 attenuated IGF-I-mediated BCSC functions. These results suggested that the inhibitory effect of CWP232228 on BCSC growth might be achieved through the disruption of IGF-I activity. Taken together, our findings indicate that CWP232228 offers a candidate therapeutic agent for breast cancer that preferentially targets BCSC as well as bulk tumor cells.
Collapse
Affiliation(s)
- Gyu-Beom Jang
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea. Department of Molecular Medicine, School of Medicine, Gachon University, Incheon South Korea
| | - In-Sun Hong
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea. Department of Molecular Medicine, School of Medicine, Gachon University, Incheon South Korea
| | - Ran-Ju Kim
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea. Department of Molecular Medicine, School of Medicine, Gachon University, Incheon South Korea
| | - Su-Youn Lee
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea. Department of Molecular Medicine, School of Medicine, Gachon University, Incheon South Korea
| | - Se-Jin Park
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea. Department of Molecular Medicine, School of Medicine, Gachon University, Incheon South Korea
| | - Eun-Sook Lee
- Division of Convergence Technology, Center for Breast Cancer, Research Institute and Hospital, National Cancer Center 323, Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, South Korea
| | - Jung Hyuck Park
- JW Pharmaceutical, 2477 Nambusunhwan-ro, Seocho-gu, Seoul, South Korea
| | - Chi-Ho Yun
- JW Pharmaceutical, 2477 Nambusunhwan-ro, Seocho-gu, Seoul, South Korea
| | - Jae-Uk Chung
- JW Pharmaceutical, 2477 Nambusunhwan-ro, Seocho-gu, Seoul, South Korea
| | - Kyoung-June Lee
- JW Pharmaceutical, 2477 Nambusunhwan-ro, Seocho-gu, Seoul, South Korea
| | - Hwa-Yong Lee
- The Faculty of Liberal Arts, Jungwon University, Chungbuk, Republic of Korea
| | - Jeong-Seok Nam
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea. Department of Molecular Medicine, School of Medicine, Gachon University, Incheon South Korea.
| |
Collapse
|
31
|
|
32
|
High GINS2 transcript level predicts poor prognosis and correlates with high histological grade and endocrine therapy resistance through mammary cancer stem cells in breast cancer patients. Breast Cancer Res Treat 2014; 148:423-36. [DOI: 10.1007/s10549-014-3172-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/31/2022]
|
33
|
Lee SH, Koo BS, Kim JM, Huang S, Rho YS, Bae WJ, Kang HJ, Kim YS, Moon JH, Lim YC. Wnt/β-catenin signalling maintains self-renewal and tumourigenicity of head and neck squamous cell carcinoma stem-like cells by activating Oct4. J Pathol 2014; 234:99-107. [DOI: 10.1002/path.4383] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Sang Hyuk Lee
- Department of Otorhinolaryngology - Head & Neck Surgery; Sungkyunkwan University School of Medicine; Kangbuk Samsung Hospital Seoul Korea
| | - Bon Seok Koo
- Department of Otolaryngology - Head and Neck Surgery, Cancer Research Institute; Chungnam National University College of Medicine; Daejeon Korea
| | - Jin Man Kim
- Department of Pathology, Research Institute for Medical Sciences and Pathology; Chungnam National University College of Medicine; Daejeon Korea
| | - Songmei Huang
- Department of Pathology, Research Institute for Medical Sciences and Pathology; Chungnam National University College of Medicine; Daejeon Korea
| | - Young Soo Rho
- Department of Otorhinolaryngology - Head & Neck Surgery; Ewha University School of Medicine; Seoul Korea
| | - Woo Jin Bae
- Department of Otolaryngology - Head and Neck Surgery; Hallym University College of Medicine; Seoul Korea
| | - Hyun Jung Kang
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science; Konkuk University School of Medicine; Seoul Korea
| | - Young Sook Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science; Konkuk University School of Medicine; Seoul Korea
| | - Jung Hwa Moon
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science; Konkuk University School of Medicine; Seoul Korea
| | - Young Chang Lim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science; Konkuk University School of Medicine; Seoul Korea
| |
Collapse
|
34
|
Zhou J, Chen Q, Zou Y, Chen H, Qi L, Chen Y. Conservative surgery in the Zollinger-Ellison syndrome. Front Oncol 1984; 9:820. [PMID: 31555586 PMCID: PMC6722475 DOI: 10.3389/fonc.2019.00820] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Breast cancer stem cells have been known to contribute immensely to the carcinogenesis of the breast and therapeutic resistance in the clinic. Current studies show that the population of breast cancer stem cells is heterogeneous, involving various cellular markers and regulatory signaling pathways. In addition, different subtypes of breast cancer exhibit distinct subtypes and frequencies of breast cancer stem cells. In this review, we provide an overview of the characteristics of breast cancer stem cells, including their various molecular markers, prominent regulatory signaling, and complex microenvironment. The cellular origins of breast cancer are discussed to understand the heterogeneity and diverse differentiations of stem cells. Importantly, we also outline the recent advances and controversies in the therapeutic implications of breast cancer stem cells in different subtypes of breast cancer.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, China
- *Correspondence: Jiaojiao Zhou
| | - Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiheng Zou
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Huihui Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Qi
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, China
| | - Yiding Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, China
- Yiding Chen
| |
Collapse
|
35
|
Crabtree JS, Miele L. [Modification of a micromethod for determining leukocyte migration inhibition and its significance in oncological patients]. Biomedicines 1981; 6:biomedicines6030077. [PMID: 30018256 PMCID: PMC6163894 DOI: 10.3390/biomedicines6030077] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/21/2022] Open
Abstract
Breast cancer stem cells (BCSC) have been implicated in tumor initiation, progression, metastasis, recurrence, and resistance to therapy. The origins of BCSCs remain controversial due to tumor heterogeneity and the presence of such small side populations for study, but nonetheless, cell surface markers and their correlation with BCSC functionality continue to be identified. BCSCs are driven by persistent activation of developmental pathways, such as Notch, Wnt, Hippo, and Hedgehog and new treatment strategies that are aimed at these pathways are in preclinical and clinical development.
Collapse
Affiliation(s)
- Judy S Crabtree
- Department of Genetics and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Lucio Miele
- Department of Genetics and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|