1
|
Li C, Zhu D, Cao X, Li Y, Hao X. Knockdown of S100A2 inhibits the aggressiveness of endometrial cancer by activating STING pathway. J OBSTET GYNAECOL 2024; 44:2361849. [PMID: 38920019 DOI: 10.1080/01443615.2024.2361849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Endometrial cancer is a kind of gynaecological cancer. S100A2 is a newfound biomarker to diagnose endometrial cancer. This study was to investigate the role of S100A2 on regulating migration and invasion of endometrial cancer. METHODS The mRNA and protein levels of S100A2 were obtained by quantitative real-time polymerase chain reaction, immunohistochemistry and western blot methods. Cell viability was measured by the Cell Counting Kit-8 assay. Cell migration and invasion were quantified using transwell assays. Western blot assay was conducted to quantify protein expressions of epithelial to mesenchymal transition-related proteins (N-cadherin and E-cadherin). Furthermore, in vivo tumour formation experiments were performed to evaluate the role of S100A2 on tumour xenografts. RESULTS S100A2 was significantly up-regulated in endometrial cancer tissues. Knockdown of S100A2 inhibited cell viability, migration and invasion of endometrial cancer cells. Meanwhile, STING pathway was activated by the inhibited S100A2. STING inhibitor C-176 significantly reversed the effects of S100A2 knockdown on aggressive behaviours of endometrial cancer cells. Inhibition of S100A2 dramatically suppresses the tumour growth in vivo. CONCLUSIONS S100A2 functions as an oncogene in endometrial cancer. Targeting S100A2 may be a promising therapeutic method to treat endometrial carcinoma.
Collapse
Affiliation(s)
- Chengcheng Li
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dandan Zhu
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xun Cao
- Rehabilitation Medicine Department, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyuan Hao
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Hosseinalizadeh H, Hussain QM, Poshtchaman Z, Ahsan M, Amin AH, Naghavi S, Mahabady MK. Emerging insights into keratin 7 roles in tumor progression and metastasis of cancers. Front Oncol 2024; 13:1243871. [PMID: 38260844 PMCID: PMC10800941 DOI: 10.3389/fonc.2023.1243871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/26/2023] [Indexed: 01/24/2024] Open
Abstract
Keratin 7 (KRT7), also known as cytokeratin-7 (CK-7) or K7, constitutes the principal constituent of the intermediate filament cytoskeleton and is primarily expressed in the simple epithelia lining the cavities of the internal organs, glandular ducts, and blood vessels. Various pathological conditions, including cancer, have been linked to the abnormal expression of KRT7. KRT7 overexpression promotes tumor progression and metastasis in different human cancers, although the mechanisms of these processes caused by KRT7 have yet to be established. Studies have indicated that the suppression of KRT7 leads to rapid regression of tumors, highlighting the potential of KRT7 as a novel candidate for therapeutic interventions. This review aims to delineate the various roles played by KRT7 in the progression and metastasis of different human malignancies and to investigate its prognostic significance in cancer treatment. Finally, the differential diagnosis of cancers based on the KRT7 is emphasized.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zahra Poshtchaman
- Department of Nursing, Esfarayen Faculty of Medical Sciences, Esfarayen, Iran
| | | | - Ali H. Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Soroush Naghavi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Peng A, Lin X, Yang Q, Sun Y, Chen R, Liu B, Yu X. ΔNp63α facilitates proliferation and migration, and modulates the chromatin landscape in intrahepatic cholangiocarcinoma cells. Cell Death Dis 2023; 14:777. [PMID: 38012140 PMCID: PMC10682000 DOI: 10.1038/s41419-023-06309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
p63 plays a crucial role in epithelia-originating tumours; however, its role in intrahepatic cholangiocarcinoma (iCCA) has not been completely explored. Our study revealed the oncogenic properties of p63 in iCCA and identified the major expressed isoform as ΔNp63α. We collected iCCA clinical data from The Cancer Genome Atlas database and analyzed p63 expression in iCCA tissue samples. We further established genetically modified iCCA cell lines in which p63 was overexpressed or knocked down to study the protein function/function of p63 in iCCA. We found that cells overexpressing p63, but not p63 knockdown counterparts, displayed increased proliferation, migration, and invasion. Transcriptome analysis showed that p63 altered the iCCA transcriptome, particularly by affecting cell adhesion-related genes. Moreover, chromatin accessibility decreased at p63 target sites when p63 binding was lost and increased when p63 binding was gained. The majority of the p63 bound sites were located in the distal intergenic regions and showed strong enhancer marks; however, active histone modifications around the Transcription Start Site changed as p63 expression changed. We also detected an interaction between p63 and the chromatin structural protein YY1. Taken together, our results suggest an oncogenic role for p63 in iCCA.
Collapse
Affiliation(s)
- Anghui Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Xiaowen Lin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yihao Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Ruiyan Chen
- Department of Dermatology, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
| | - Xinyang Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
| |
Collapse
|
4
|
Chen Q, Guo H, Jiang H, Hu Z, Yang X, Yuan Z, Gao Y, Zhang G, Bai Y. S100A2 induces epithelial-mesenchymal transition and metastasis in pancreatic cancer by coordinating transforming growth factor β signaling in SMAD4-dependent manner. Cell Death Discov 2023; 9:356. [PMID: 37758734 PMCID: PMC10533899 DOI: 10.1038/s41420-023-01661-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor and is associated with a poor prognosis. Treatment strategies for PDAC are largely ineffective primarily because of delay in its diagnosis and limited efficacy of systematic treatment. S100A2 is associated with the proliferation, migration, and differentiation of several tumors; however, its effects on PDAC and the associated molecular mechanisms remain to be explored. We studied the mechanisms underlying the effect of S100A2 on epithelial-mesenchymal transition (EMT) and metastasis in PDAC cells. We found that the level of S100A2 remarkably increased and was associated with poor PDAC prognosis. The overexpression of S100A2 in PANC-1 cells also induced EMT, in addition to increasing the invasion and migration of PDAC cells, whereas the knockdown of S100A2 markedly inhibited cell metastasis. Furthermore, S100A2 was found to enhance metastatic abilities in vivo. The overexpression of S100A2 increased SMAD4 expression, whereas the knockdown of S100A2 reduced SMAD4 expression. SMAD4 overexpression could effectively rescue the effects of S100A2 knockdown on EMT. S100A2 mechanistically activated the transforming growth factor (TGF)-β/Smad2/3 signaling pathway, upregulated SMAD4 expression, induced EMT, and increased PANC-1 cell metastasis. In conclusion, the S100A2/SMAD4 axis modulates EMT to accelerate PDAC development. Our results supplement and enrich the understanding of the pathogenesis underlying PDAC and provide a new theoretical basis and strategy targeting S100A2 for the diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Qinbo Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Haojie Jiang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Ge Zhang
- Department of Orthopedics, The First Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| |
Collapse
|
5
|
Roura AJ, Szadkowska P, Poleszak K, Dabrowski MJ, Ellert-Miklaszewska A, Wojnicki K, Ciechomska IA, Stepniak K, Kaminska B, Wojtas B. Regulatory networks driving expression of genes critical for glioblastoma are controlled by the transcription factor c-Jun and the pre-existing epigenetic modifications. Clin Epigenetics 2023; 15:29. [PMID: 36850002 PMCID: PMC9972689 DOI: 10.1186/s13148-023-01446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM, WHO grade IV) is an aggressive, primary brain tumor. Despite extensive tumor resection followed by radio- and chemotherapy, life expectancy of GBM patients did not improve over decades. Several studies reported transcription deregulation in GBMs, but regulatory mechanisms driving overexpression of GBM-specific genes remain largely unknown. Transcription in open chromatin regions is directed by transcription factors (TFs) that bind to specific motifs, recruit co-activators/repressors and the transcriptional machinery. Identification of GBM-related TFs-gene regulatory networks may reveal new and targetable mechanisms of gliomagenesis. RESULTS We predicted TFs-regulated networks in GBMs in silico and intersected them with putative TF binding sites identified in the accessible chromatin in human glioma cells and GBM patient samples. The Cancer Genome Atlas and Glioma Atlas datasets (DNA methylation, H3K27 acetylation, transcriptomic profiles) were explored to elucidate TFs-gene regulatory networks and effects of the epigenetic background. In contrast to the majority of tumors, c-Jun expression was higher in GBMs than in normal brain and c-Jun binding sites were found in multiple genes overexpressed in GBMs, including VIM, FOSL2 or UPP1. Binding of c-Jun to the VIM gene promoter was stronger in GBM-derived cells than in cells derived from benign glioma as evidenced by gel shift and supershift assays. Regulatory regions of the majority of c-Jun targets have distinct DNA methylation patterns in GBMs as compared to benign gliomas, suggesting the contribution of DNA methylation to the c-Jun-dependent gene expression. CONCLUSIONS GBM-specific TFs-gene networks identified in GBMs differ from regulatory pathways attributed to benign brain tumors and imply a decisive role of c-Jun in controlling genes that drive glioma growth and invasion as well as a modulatory role of DNA methylation.
Collapse
Affiliation(s)
- Adria-Jaume Roura
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Paulina Szadkowska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Poleszak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Michal J. Dabrowski
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | | | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Iwona A. Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Karolina Stepniak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, ul. Ludwika Pasteura 3, 02-093 Warsaw, Poland
| |
Collapse
|
6
|
Zhang Q, Xia T, Qi C, Du J, Ye C. High expression of S100A2 predicts poor prognosis in patients with endometrial carcinoma. BMC Cancer 2022; 22:77. [PMID: 35042454 PMCID: PMC8764844 DOI: 10.1186/s12885-022-09180-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background S100A2, a member of the S100 protein family, is abnormally expressed and plays a vital role in multiple cancers. However, little is known about the clinical significance of S100A2 in endometrial carcinoma. Methods Clinicopathological data were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Gene Expression Omnibus (GEO), and Clinical Proteomic Tumor Analysis Consortium (CPTAC). First, the expression and prognostic value of different S100 family members in endometrial carcinoma were evaluated. Subsequently, the Kaplan–Meier plotter and Cox regression analysis were used to assess the prognostic significance of S100A2, while the association between S100A2 expression and clinical characteristics in endometrial carcinoma was also analyzed using logistic regression. A receiver operating characteristic (ROC) curve and a nomogram were constructed. The putative underlying cellular mechanisms were explored using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene set enrichment analysis (GSEA). Results Our results revealed that S100A2 expression was significantly higher in endometrial carcinoma tissue than in non-cancerous tissue at both the mRNA and protein levels. Analysis of Kaplan–Meier plotter data revealed that patients with high S100A2 expression had shorter overall survival (OS) and disease specific survival (DSS) compared with those of patients with low S100A2 expression. Multivariate Cox analysis further confirmed that high S100A2 expression was an independent risk factor for OS in patients with endometrial carcinoma. Other clinicopathologic features found to be related to worse prognosis in endometrial carcinoma included age, clinical stage, histologic grade, and tumor invasion. Importantly, ROC analysis also confirmed that S100A2 has a high diagnostic value in endometrial carcinoma. KEGG enrichment analysis and GSEA revealed that the estrogen and IL-17 signaling pathways were significantly upregulated in the high S100A2 expression group, in which estrogen response, JAK-STAT3, K-Ras, and TNFα/NF-κB were differentially enriched. Conclusions S100A2 plays an important role in endometrial carcinoma progression and may represent an independent diagnostic and prognostic biomarker for endometrial carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09180-5.
Collapse
|
7
|
Wang Y, Ye H, Yang Y, Li J, Cen A, Zhao L. microRNA-181a promotes the oncogene S100A2 and enhances papillary thyroid carcinoma growth by mediating the expression of histone demethylase KDM5C. J Endocrinol Invest 2022; 45:17-28. [PMID: 34143366 DOI: 10.1007/s40618-021-01606-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Papillary thyroid carcinoma (PTC) is an endocrine malignancy. Increasing evidence highlights microRNAs (miRNAs) as important participants in PTC. Here, we investigated the role of miR-181a in PTC. METHODS A microarray-based analysis was performed to identify the differential expression of miR-181a in PTC, which was validated with RT-qPCR. Protein expression of the proliferation-related factor Ki-67 and apoptosis- and migration-related factors in PTC was assessed with immunoblot analysis. A dual-luciferase reporter gene assay was adopted to verify the relationship between miR-181a and lysine demethylase 5C (KDM5C). Chromatin immunoprecipitation (ChIP) was used to detect the level of the H3K4me3 modification on S100 calcium-binding protein A2 (S100A2). Cell viability, apoptosis, and invasion and migration abilities were evaluated by Cell Counting Kit-8 (CCK-8), flow cytometry, and transwell assays, respectively. The in vitro results were verified in in vivo nude mouse models. RESULTS miR-181a was highly expressed in PTC tissues and cell lines. Silencing miR-181a repressed the proliferation and migration of PTC cells. KDM5C was identified as the target gene of miR-181a and represses S100A2 expression through histone demethylation to diminish the migration and proliferation of PTC cells. miR-181a depletion suppressed tumor growth. CONCLUSION Collectively, these results suggest that highly expressed miR-181a promotes the proliferation of PTC cells by increasing the expression of the oncogene S100A2. This study contributes to the advancement of miR-181a-targeted therapeutics.
Collapse
Affiliation(s)
- Y Wang
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, People's Republic of China.
| | - H Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Hepatopancreatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Y Yang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - J Li
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, People's Republic of China
| | - A Cen
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, People's Republic of China
| | - L Zhao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
8
|
Han F, Zhang L, Liao S, Zhang Y, Qian L, Hou F, Gong J, Lai M, Zhang H. The interaction between S100A2 and KPNA2 mediates NFYA nuclear import and is a novel therapeutic target for colorectal cancer metastasis. Oncogene 2022; 41:657-670. [PMID: 34802034 DOI: 10.1038/s41388-021-02116-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022]
Abstract
Nucleocytoplasmic transport of proteins is disrupted and dysregulated in cancer cells. Nuclear pore complexes and cargo proteins are two main transportation regulators. However, the mechanism regulating nucleocytoplasmic transport in cancer remains elusive. Here, we identified a S100A2/KPNA2 cotransport complex that transports the tumor-associated transcription factor NFYA in colorectal cancer (CRC). Through the S100A2/KNPA2 complex, depending on its interaction with S100A2, NFYA is transported to the nucleus and inhibits the transcriptional activity of E-cadherin, which in turn promotes CRC metastasis. Targeting the S100A2/KPNA2 binding sites with the specific inhibitor delanzomib is a potential therapeutic approach for CRC.
Collapse
Affiliation(s)
- Fengyan Han
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Lei Zhang
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Shaoxia Liao
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Lili Qian
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Feijun Hou
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Jingwen Gong
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Maode Lai
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
9
|
Chen Y, Wang C, Song J, Xu R, Ruze R, Zhao Y. S100A2 Is a Prognostic Biomarker Involved in Immune Infiltration and Predict Immunotherapy Response in Pancreatic Cancer. Front Immunol 2021; 12:758004. [PMID: 34887861 PMCID: PMC8650155 DOI: 10.3389/fimmu.2021.758004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is a highly fatal and aggressive disease with its incidence and mortality quite discouraging. It is of great significance to construct an effective prognostic signature of PC and find the novel biomarker for the optimization of the clinical decision-making. Due to the crucial role of immunity in tumor development, a prognostic model based on nine immune-related genes was constructed, which was proved to be effective in The Cancer Genome Atlas (TCGA) training set, TCGA testing set, TCGA entire set, GSE78229 set, and GSE62452 set. Furthermore, S100A2 (S100 Calcium Binding Protein A2) was identified as the gene occupying the most paramount position in risk model. Gene set enrichment analysis (GSEA), ESTIMATE and CIBERSORT algorithm revealed that S100A2 was closely associated with the immune status in PC microenvironment, mainly related to lower proportion of CD8+T cells and activated NK cells and higher proportion of M0 macrophages. Meanwhile, patients with high S100A2 expression might get more benefit from immunotherapy according to immunophenoscore algorithm. Afterwards, our independent cohort was also used to demonstrate S100A2 was an unfavorable marker of PC, as well as its remarkably positive correlation with the expression of PD-L1. In conclusion, our results demonstrate S100A2 might be responsible for the preservation of immune-suppressive status in PC microenvironment, which was identified with significant potentiality in predicting prognosis and immunotherapy response in PC patients.
Collapse
Affiliation(s)
- Yuan Chen
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jianlu Song
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Rexiati Ruze
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Huang G, Zhang J, Qing G, Liu D, Wang X, Chen Y, Li Y, Guo S. S100A2 Silencing Relieves Epithelial-Mesenchymal Transition in Pulmonary Fibrosis by Inhibiting the Wnt/β-Catenin Signaling Pathway. DNA Cell Biol 2020; 40:18-25. [PMID: 33306933 DOI: 10.1089/dna.2020.6030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pulmonary fibrosis (PF) is a progressive and lethal disease with poor prognosis. S100A2 plays an important role in the progression of cancer. However, the role of S100A2 in PF has not yet been reported. In this study, we explored the potential role of S100A2 in PF and its potential molecular mechanisms. Increased expression of S100A2 was first observed in lung tissues of PF patients. We found that downregulation of S100A2 inhibited the transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in A549 cells. Mechanically, TGF-β1 upregulated β-catenin and the phosphorylation of glycogen synthase kinase-3β, which was blocked by silencing S100A2 in vitro. Furthermore, lithium chloride (activator of the Wnt/β-catenin signaling pathway) effectively rescued S100A2 knockdown-mediated inhibition of EMT in PF. In conclusion, these findings demonstrate that downregulation of S100A2 alleviated PF through inhibiting EMT. S100A2 is a promising potential target for further understanding the mechanism and developing a strategy for the treatment of PF and other EMT-associated diseases.
Collapse
Affiliation(s)
- Guichuan Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Gang Qing
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Xin Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yishi Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Li C, Chen Q, Zhou Y, Niu Y, Wang X, Li X, Zheng H, Wei T, Zhao L, Gao H. S100A2 promotes glycolysis and proliferation via GLUT1 regulation in colorectal cancer. FASEB J 2020; 34:13333-13344. [PMID: 32816365 DOI: 10.1096/fj.202000555r] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 01/05/2023]
Abstract
The deregulation of S100A2 has been implicated in the pathogenesis of several types of cancers. However, the molecular mechanisms underlying the protumorigenic capacities of S100A2 have not been fully elucidated. Here, we demonstrated the molecular mechanisms underlying the roles of S100A2 in glycolysis reprogramming and proliferation of colorectal cancer (CRC) cells. The results indicated that S100A2 overexpression raises glucose metabolism and proliferation. Mechanistically, S100A2 activated the PI3K/AKT signaling pathway, upregulated GLUT1 expression, induced glycolytic reprogramming, and consequently increased proliferation. Clinical data showed significantly increased S100A2 levels in CRC tissues and the Oncomine database. In addition, analysis revealed a positive correlation between S100A2 and GLUT1 mRNA expression in CRC tissues. Together, these results demonstrate that the S100A2/GLUT1 axis can promote the progression of CRC by modulating glycolytic reprogramming. Our results further suggest that targeting S100A2 could present a promising therapeutic avenue for the prevention of colorectal cancer progression.
Collapse
Affiliation(s)
- Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qinbo Chen
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi Zhou
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan Niu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinyi Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wei
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Wang L, Wang N, Zhang R, Dong D, Liu R, Zhang L, Ji W, Yu M, Zhang F, Niu R, Zhou Y. TGFβ regulates NK1R-Tr to affect the proliferation and apoptosis of breast cancer cells. Life Sci 2020; 256:117674. [PMID: 32380077 DOI: 10.1016/j.lfs.2020.117674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES TGFβ promotes cancer aggressiveness in advanced stages. NK1R-Tr expression in advanced breast cancer has a pro-carcinogenic effect. In this study, we aimed to investigate the effect of the association of TGFβ with NK1R-Tr expression on the proliferation and apoptosis of breast cancer cells. METHODS Immunohistochemical staining and Western blot analysis were used to detect TGFβ and NK1R-Tr in breast cancer and paracancerous tissue samples. MDA-MB-231 and BT549 cells were stimulated with TGFβ after NK1R knockdown or treated with the NK1R antagonist aprepitant, and the effects of TGFβ and NK1R-Tr on proliferation and apoptosis were detected by CCK-8, colony formation and flow cytometry assays. In vivo xenograft models were used to further verify the effects of NK1R-Tr and TGFβ. The regulatory effects of Smad4 on NK1R promoter activity were confirmed by ChIP and dual-luciferase reporter assays. RESULTS The expression levels of TGFβ and NK1R-Tr were higher in breast cancer tissues than in adjacent tissues and were positively correlated in human breast cancer tissues. NK1R knockdown or aprepitant treatment in MDA-MB-231 and BT549 cells attenuated the effects of TGFβ on cell proliferation. The proportion of cells in G2/M phase significantly increased, the expression of cyclin B1 decreased, and the expression of P21 increased; these effects were weakened by TGFβ treatment. Apoptosis in breast cancer cells was significantly increased. In vivo xenograft models were used to further verify that NK1R-Tr and TGFβ promoted tumour growth. After TGFβ treatment, the binding capacity of Smad4 to the NK1R promoter, as well as luciferase activity, was enhanced. CONCLUSIONS The expression levels of TGFβ and NK1R-Tr were higher in breast cancer tissues than in normal tissues, and both were correlated with a poor patient prognosis. TGFβ and NK1R-Tr promoted cell proliferation and inhibited apoptosis, and TGFβ regulated the expression of NK1R-Tr via Smad4.
Collapse
Affiliation(s)
- Lushan Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China; Department of Clinical Laboratory, Tianjin Children's Hospital, Tianjin, China
| | - Ning Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Runshi Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Dong Dong
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lufang Zhang
- Department of Laboratory, Aviation General Hospital, Beijing, China
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Man Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Yunli Zhou
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
13
|
Franco-Martínez L, Gelemanović A, Horvatić A, Contreras-Aguilar MD, Dąbrowski R, Mrljak V, Cerón JJ, Martínez-Subiela S, Tvarijonaviciute A. Changes in Serum and Salivary Proteins in Canine Mammary Tumors. Animals (Basel) 2020; 10:E741. [PMID: 32344524 PMCID: PMC7222850 DOI: 10.3390/ani10040741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to evaluate changes in serum and saliva proteomes in canine mammary tumors (CMT) using a high-throughput quantitative proteomic analysis in order to potentially discover possible biomarkers of this disease. Proteomes of paired serum and saliva samples from healthy controls (HC group, n = 5) and bitches with CMT (CMT group, n = 5) were analysed using a Tandem Mass Tags-based approach. Twenty-five dogs were used to validate serum albumin as a candidate biomarker in an independent sample set. The proteomic analysis quantified 379 and 730 proteins in serum and saliva, respectively. Of those, 35 proteins in serum and 49 in saliva were differentially represented. The verification of albumin in serum was in concordance with the proteomic data, showing lower levels in CMT when compared to the HC group. Some of the modulated proteins found in the present study such as haptoglobin or S100A4 have been related to CMT or human breast cancer previously, while others such as kallikrein-1 and immunoglobulin gamma-heavy chains A and D are described here for the first time. Our results indicate that saliva and serum proteomes can reflect physiopathological changes that occur in CMT in dogs and can be a potential source of biomarkers of the disease.
Collapse
Affiliation(s)
- Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (M.D.C.-A.); (J.J.C.); (A.T.)
| | - Andrea Gelemanović
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia;
| | - Anita Horvatić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (A.H.); (V.M.)
| | - María Dolores Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (M.D.C.-A.); (J.J.C.); (A.T.)
| | - Roman Dąbrowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 30 Gleboka St., 20-612 Lublin, Poland;
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (A.H.); (V.M.)
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (M.D.C.-A.); (J.J.C.); (A.T.)
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (M.D.C.-A.); (J.J.C.); (A.T.)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (M.D.C.-A.); (J.J.C.); (A.T.)
| |
Collapse
|
14
|
Wang X, Yang Y, Ren D, Xia Y, He W, Wu Q, Zhang J, Liu M, Du Y, Ren C, Li B, Shen J, Zhang Y. JQ1, a bromodomain inhibitor, suppresses Th17 effectors by blocking p300-mediated acetylation of RORγt. Br J Pharmacol 2020; 177:2959-2973. [PMID: 32060899 DOI: 10.1111/bph.15023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Th17 cells play critical roles in chronic inflammation, including fibrosis. Histone acetyltransferase p300, a bromodomain-containing protein, acetylates RORγt and promotes Th17 cell development. The bromodomain inhibitor JQ1 was shown to alleviate Th17-mediated pathologies, but the underlying mechanism remains unclear. We hypothesized that JQ1 suppresses the response of Th17 cells by impairing p300-mediated acetylation of RORγt. EXPERIMENTAL APPROACH The effect of JQ1 on p300-mediated acetylation of RORγt was investigated in HEK293T (overexpressing Flag-p300 and Myc-RORγt) and human Th17 cells through immunoprecipitation and western blotting. To determine the regions of p300 responsible for JQ1-mediated suppression of HAT activity, we performed HAT assays on recombinant p300 fragments with/without the bromodomain, after exposure to JQ1. Additionally, the effect of JQ1 on p300-mediated acetylation of RORγt and Th17 cell function was verified in vivo, using murine Schistosoma-induced fibrosis models. Liver injury was assessed by histopathological examination and measurement of serum enzyme levels. Expression of Th17 effectors was detected by qRT-PCR, whereas IL-17- and RORγt-positive granuloma cells were detected by FACS. KEY RESULTS JQ1 impaired p300-mediated RORγt acetylation in human Th17 and HEK293T cells. JQ1 failed to suppress the acetyltransferase activity of p300 fragments lacking the bromodomain. JQ1 treatment attenuated Schistosoma-induced fibrosis in mice, by inhibiting RORγt acetylation and IL-17 expression. CONCLUSIONS AND IMPLICATIONS JQ1 impairs p300-mediated RORγt acetylation, thus reducing the expression of RORγt target genes, including Th17-specific cytokines. JQ1-mediated inhibition of p300 acetylase activity requires the p300 bromodomain. Strategies targeting p300 may provide new therapeutic approaches for controlling Th17-related diseases.
Collapse
Affiliation(s)
- Xiunan Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Yan Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Dandan Ren
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China.,Department of Pathology, Hefei BOE Hospital, Hefei, Anhui, China
| | - Yuanyuan Xia
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Wenguang He
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Qingsi Wu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Junling Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Miao Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Yinan Du
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Cuiping Ren
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jijia Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Yuxia Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
15
|
Basnet S, Sharma S, Costea DE, Sapkota D. Expression profile and functional role of S100A14 in human cancer. Oncotarget 2019; 10:2996-3012. [PMID: 31105881 PMCID: PMC6508202 DOI: 10.18632/oncotarget.26861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/23/2019] [Indexed: 12/17/2022] Open
Abstract
S100A14 is one of the new members of the multi-functional S100 protein family. Expression of S100A14 is highly heterogeneous among normal human tissues, suggesting that the regulation of S100A14 expression and its function may be tissue- and context-specific. Compared to the normal counterparts, S100A14 mRNA and protein levels have been found to be deregulated in several cancer types, indicating a functional link between S100A14 and malignancies. Accordingly, S100A14 is functionally linked with a number of key signaling molecules such as p53, p21, MMP1, MMP9, MMP13, RAGE, NF-kB, JunB, actin and HER2. Of interest, S100A14 seems to have seemingly opposite functions in malignancies arising from the gastrointestional tract (tissues rich in epithelial components) compared to cancers in the other parts of the body (tissues rich in mesenchymal components). The underlying mechanism for these observations are currently unclear and may be related to the relative abundance and differences in the type of interaction partners (effector protein) in different cancer types and tissues. In addition, several studies indicate that the expression pattern of S100A14 has a potential to be clinically useful as prognostic biomarker in several cancer types. This review attempts to provide a comprehensive summary on the expression pattern and functional roles/related molecular pathways in different cancer types. Additionally, the prognostic potential of S100A14 in the management of human malignancies will be discussed.
Collapse
Affiliation(s)
- Suyog Basnet
- Department of BioSciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Sunita Sharma
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Shan J, Sun Z, Yang J, Xu J, Shi W, Wu Y, Fan Y, Li H. Discovery and preclinical validation of proteomic biomarkers in saliva for early detection of oral squamous cell carcinomas. Oral Dis 2018; 25:97-107. [PMID: 30169911 DOI: 10.1111/odi.12971] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/18/2018] [Accepted: 08/26/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jing Shan
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - Zhida Sun
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - Jingjing Yang
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - Juanyong Xu
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - Wei Shi
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - You Wu
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - Yuan Fan
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - Huaiqi Li
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral and Maxillofacial Surgery Affiliated Hospital of Stomatology, Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
17
|
Ansardamavandi A, Tafazzoli-Shadpour M, Shokrgozar MA. Behavioral remodeling of normal and cancerous epithelial cell lines with differing invasion potential induced by substrate elastic modulus. Cell Adh Migr 2018; 12:472-488. [PMID: 29969940 PMCID: PMC6363025 DOI: 10.1080/19336918.2018.1475803] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
The micro-environment of cancer cells in the body is mechanically stiffer than that of normal cells. We cultured three breast cell lines of MCF10A-normal, MCF7-noninvasive, and MDA-MB-231-invasive on PDMS substrates with different elastic moduli and different cellular features were examined.Effects of substrate stiffness on cell behavior were evident among all cell lines. Cancerous cells were more sensitive to substrate stiffness for cell behaviors related to cell motility and migration which are necessary for invasion. The invasive cancerous cells were the most motile on substrates with moderate stiffness followed by non-invasive cancerous cells. Gene markers alterations were generally according to the analyzed cell movement parameters. Results suggest that alterations in matrix stiffness may be related to cancer disease and progression.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | | |
Collapse
|
18
|
A review of S100 protein family in lung cancer. Clin Chim Acta 2017; 476:54-59. [PMID: 29146477 DOI: 10.1016/j.cca.2017.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 02/08/2023]
Abstract
S100 protein family, representing 25 relatively small calcium binding proteins, has been reported to be involved in multiple stages of tumorigenesis and progression. These proteins are considered having potential value to be adopted as novel biomarkers in the detection and accurate prediction of many kinds of tumors, including lung cancer. As the one having the highest morbidity and mortality among all cancers, lung carcinoma is still occult for detection, especially at early stage. S100 proteins take participation in the lung neoplasia through playing intracellular and/or extracellular functions, therefore getting involved in a variety of biological processes such as differentiation, proliferation, and migration. A few members have also been testified to modulate TGF-β/Smad-3 mediated transcriptional activity of target genes involved in tumor promotion. In addition to that, a number of proteins in this family have already been reported to experience an abnormal trend in lung cancer at cell, serum and tissue levels. Thus, S100 proteins may serve as effective biomarkers for suspected or already diagnosed lung cancer patients. In future, S100 protein family might be applied as therapeutic targets in clinical treatment of lung cancer. In this review, we firstly summed up the biological and clinical evidence connecting S100 proteins and lung cancer, which has not been summarized before.
Collapse
|
19
|
Nawaz Z, Patil V, Thinagararjan S, Rao SA, Hegde AS, Arivazhagan A, Santosh V, Somasundaram K. Impact of somatic copy number alterations on the glioblastoma miRNome: miR-4484 is a genomically deleted tumour suppressor. Mol Oncol 2017; 11:927-944. [PMID: 28378523 PMCID: PMC5537698 DOI: 10.1002/1878-0261.12060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/15/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and most malignant primary brain tumour in adults. GBMs have a unique landscape of somatic copy number alterations (SCNAs), with the concomitant appearance of numerous driver amplifications and deletions. Here, we examined the genomic regions harbouring SCNAs and their impact on the GBM miRNome. We found that 40% of SCNA events covering 70–88% of the genomically altered regions, as identified by GISTIC and RAE algorithms, carried miRNA genes. Of 1426 annotated mature miRNAs analysed, ~ 14% (n = 198) were mapped to such fragile loci. Further, we identified an intragenic miRNA, miR‐4484 located on chromosome‐10, as a deleted and downregulated miRNA in GBM. miR‐4484 exhibited a strong positive correlation with the expression of its host gene uroporphyrinogen III synthase (UROS), thereby indicating that the loss of miR‐4484 is a codeletion event in GBM. Overexpression of miR‐4484 reduced the colony‐forming ability and suppressed the migratory capacity of glioma cells. Analysis of the RNA‐seq‐derived transcriptome upon exogenous miR‐4484 overexpression in conjunction with an integrative bioinformatics approach revealed several putative targets of miR‐4484. Unbiased functional enrichment of these targets through DAVID identified a cohort of important gene ontology terms, which possibly explain the functional role of miR‐4484 in gliomagenesis. Selected targets were validated and, importantly, were found to be upregulated in GBM. In brief, our study identified a panel of miRNAs that are likely to be regulated by genomic deletions and amplifications. Further, miR‐4484 was found to be deleted and acts as a tumour suppressor miRNA in GBM.
Collapse
Affiliation(s)
- Zahid Nawaz
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Soumya A Rao
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Alangar S Hegde
- Department of Neurosurgery, Sri Satya Sai Institute of Higher Medical Sciences, Bangalore, Karnataka, India
| | - Arimappamagan Arivazhagan
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
20
|
Büsselberg D, Florea AM. Targeting Intracellular Calcium Signaling ([Ca 2+] i) to Overcome Acquired Multidrug Resistance of Cancer Cells: A Mini-Overview. Cancers (Basel) 2017; 9:cancers9050048. [PMID: 28486397 PMCID: PMC5447958 DOI: 10.3390/cancers9050048] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer is a main public health problem all over the world. It affects millions of humans no matter their age, gender, education, or social status. Although chemotherapy is the main strategy for the treatment of cancer, a major problem limiting its success is the intrinsic or acquired drug resistance. Therefore, cancer drug resistance is a major impediment in medical oncology resulting in a failure of a successful cancer treatment. This mini-overview focuses on the interdependent relationship between intracellular calcium ([Ca2+]i) signaling and multidrug resistance of cancer cells, acquired upon treatment of tumors with anticancer drugs. We propose that [Ca2+]i signaling modulates gene expression of multidrug resistant (MDR) genes which in turn can be modulated by epigenetic factors which in turn leads to modified protein expression in drug resistant tumor cells. A precise knowledge of these mechanisms will help to develop new therapeutic strategies for drug resistant tumors and will improve current chemotherapy.
Collapse
Affiliation(s)
- Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, POB 24144 Doha, Qatar.
| | - Ana-Maria Florea
- Institute of Neuropathology, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
21
|
Diaz-Romero J, Nesic D. S100A1 and S100B: Calcium Sensors at the Cross-Roads of Multiple Chondrogenic Pathways. J Cell Physiol 2017; 232:1979-1987. [DOI: 10.1002/jcp.25720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 01/13/2023]
Affiliation(s)
- José Diaz-Romero
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
| | - Dobrila Nesic
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
| |
Collapse
|
22
|
Wang T, Liang Y, Thakur A, Zhang S, Liu F, Khan H, Shi P, Wang N, Chen M, Ren H. Expression and clinicopathological significance of S100 calcium binding protein A2 in lung cancer patients of Chinese Han ethnicity. Clin Chim Acta 2016; 464:118-122. [PMID: 27876462 DOI: 10.1016/j.cca.2016.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/02/2016] [Accepted: 11/17/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND S100 family of calcium-binding proteins plays a significant role in the process of many kinds of tumors, including lung cancer. As an important member of this family, S100 calcium binding protein A2 (S100A2) has been confirmed to be associated with many biological processes, and has an abnormal expression in non-small cell lung cancer (NSCLC). However, the S100A2 status in lung cancer is still controversial and undefined. METHODS We evaluated the pattern and distribution of S100A2 in 109 cases of lung cancer, including five histological types (47 adenocarcinoma, 46 squamous cell carcinoma, 7 small cell carcinoma, 3 large cell carcinoma, and 6 atypical carcinoid), and 30 cases of paired adjacent normal lung tissues by means of immunohistochemistry. RESULTS Compared with the normal tissues (0/30), S100A2 experienced a dramatically upward trend of positive expression in lung cancer, with a positive rate of 68/109 (P<0.001). Specifically, squamous cell carcinoma, with 34/12, had the highest expression ratio, followed by large cell carcinoma (2/1), adenocarcinoma (31/16), and atypical carcinoid (1/5) respectively, while no S100A2 protein was detected in small cell carcinoma. Meanwhile, we firstly demonstrated that the high expression of S100A2 was significantly associated with the incidence of lymph node metastasis in adenocarcinoma (P=0.013). CONCLUSIONS The association between high S100A2 expression and NSCLC at the level of tissue, and S100A2 may serve as an effective biomarker for the diagnosis and prognosis of NSCLC in future.
Collapse
Affiliation(s)
- Ting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Respiratory Medicine, Xi'an No.4 Hospital, Xi'an 710004, PR China
| | - Yiqian Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Asmitananda Thakur
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Internal Medicine, Life Guard Hospital, Biratnagar, Nepal; S.R. Laboratory and Diagnostic Center, Biratnagar, Nepal
| | - Shuo Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Feng Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Hamadhaider Khan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Puyu Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Ning Wang
- Department of Respiratory Medicine, Xi'an No.4 Hospital, Xi'an 710004, PR China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
23
|
Global analysis of chromosome 1 genes among patients with lung adenocarcinoma, squamous carcinoma, large-cell carcinoma, small-cell carcinoma, or non-cancer. Cancer Metastasis Rev 2016; 34:249-64. [PMID: 25937073 DOI: 10.1007/s10555-015-9558-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study aimed at investigating genetic variations, specific signal pathways, or biological processes of chromosome 1 genes between subtypes and stages of lung cancer and prediction of selected targeting genes for patient survival rate. About 537 patients with lung adenocarcinoma (ADC), 140 with lung squamous carcinoma (SCC), 9 with lung large-cell carcinoma (LCC), 56 with small-cell lung cancer (SCLC), and 590 without caner were integrated from 16 databases and analyzed in the present study. Three (ASPM, CDC20, KIAA1799) or 28 genes significantly up- or down-expressed in four subtypes of lung cancer. The activated cell division and down-regulated immune responses were identified in patients with lung cancer. Keratinocyte development associated genes S100 and SPRR families dominantly up-expressed in SCC and AKT3 and NRAS in SCLC. Subtype-specific genes of ADC, SCC, LCC, or SCLC were also identified. C1orf106, CAPN8, CDC20, COL11A1, CRABP2, and NBPF9 up-expressed at four stages of ADC. Fifty six related with keratinocytes or potassium channels up-expressed in three stages of SCC. CDC20, IL10, ECM1, GABPB2, CRABP2, and COL11A1 significantly predicted the poor overall survival of ADC patients and S100A2 and TIMM17A in SCC patients. Our data indicate that a number of altered chromosome 1 genes have the subtype and stage specificities of lung cancer and can be considered as diagnostic and prognosis biomarkers.
Collapse
|
24
|
Gonzalez-Perez A. Circuits of cancer drivers revealed by convergent misregulation of transcription factor targets across tumor types. Genome Med 2016; 8:6. [PMID: 26792175 PMCID: PMC4719577 DOI: 10.1186/s13073-015-0260-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Large tumor genome sequencing projects have now uncovered a few hundred genes involved in the onset of tumorigenesis, or drivers, in some two dozen malignancies. One of the main challenges emerging from this catalog of drivers is how to make sense of their heterogeneity in most cancer types. This is key not only to understand how carcinogenesis appears and develops in these malignancies to be able to early diagnose them, but also to open up the possibility to employ therapeutic strategies targeting a driver protein to counteract the alteration of another connected driver. METHODS Here, I focus on driver transcription factors and their connection to tumorigensis in several tumor types through the alteration of the expression of their targets. First, I explore their involvement in tumorigenesis as mutational drivers in 28 different tumor types. Then, I collect a list of downstream targets of the all driver transcription factors (TFs), and identify which of them exhibit a differential expression upon alterations of driver transcription factors. RESULTS I identify the subset of targets of each TF most likely mediating the tumorigenic effect of their driver alterations in each tumor type, and explore their overlap. Furthermore, I am able to identify other driver genes that cause tumorigenesis through the alteration of very similar sets of targets. CONCLUSIONS I thus uncover these circuits of connected drivers which cause tumorigenesis through the perturbation of overlapping cellular pathways in a pan-cancer manner across 15 malignancies. The systematic detection of these circuits may be key to propose novel therapeutic strategies indirectly targeting driver alterations in tumors.
Collapse
Affiliation(s)
- Abel Gonzalez-Perez
- Research Program on Biomedical Informatics, IMIM Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
25
|
Wang T, Liang Y, Thakur A, Zhang S, Yang T, Chen T, Gao L, Chen M, Ren H. Diagnostic significance of S100A2 and S100A6 levels in sera of patients with non-small cell lung cancer. Tumour Biol 2015; 37:2299-304. [PMID: 26361956 DOI: 10.1007/s13277-015-4057-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022] Open
Abstract
Biochemical markers play a significant role in the diagnosis of lung cancer. Recent studies have demonstrated a link involving S100 Calcium Binding Proteins (S100A2, S100A6) and non-small cell lung cancer (NSCLC), but the expediency of their serum levels in NSCLC has not been established. In this study, we evaluate the potential of serum S100A2 and S100A6 levels as diagnostic markers for NSCLC. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the levels of S100A2 and S100A6 in 141 NSCLC patients and 150 healthy subjects. Serum levels of the two proteins in patients with NSCLC were higher compared to healthy controls (P = 0.0002 for S100A2 and P < 0.0001 for S100A6). Moreover, the levels of S100A2 and S100A6 were higher in the sera of stage I/II NSCLC patients compared to healthy controls with P = 0.01 and <0.0001, respectively. Receiver operating characteristic (ROC) analysis showed that S100A2 could distinguish NSCLC patients from healthy controls (AUC = 0.646), and S100A6 could also identify NSCLC (AUC = 0.668). Meanwhile, these two proteins showed notable capabilities for distinguishing stage I/II NSCLC from healthy controls (AUC = 0.708 for S100A2 and AUC = 0.702 for S100A6). Our results indicate that serum levels of S100A2 and S100A6 are significantly elevated in early stage NSCLC and may have the potential for NSCLC biomarker. Further studies with large sample population would help validate our findings.
Collapse
Affiliation(s)
- Ting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, 710061, People's Republic of China.,Department of Respiratory Medicine, Xi'an No.4 Hospital, Xi'an, 710004, People's Republic of China
| | - Yiqian Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, 710061, People's Republic of China
| | - Asmitananda Thakur
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, 710061, People's Republic of China.,Department of Internal Medicine, Life Guard Hospital, Biratnagar, Nepal.,S.R. Laboratory and Diagnostic Center, Biratnagar, Nepal
| | - Shuo Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, 710061, People's Republic of China
| | - Tian Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, 710061, People's Republic of China
| | - Tianjun Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, 710061, People's Republic of China
| | - Lei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, 710061, People's Republic of China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, 710061, People's Republic of China.
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
26
|
Comparative Proteomic Analysis of Human Cholangiocarcinoma Cell Lines: S100A2 as a Potential Candidate Protein Inducer of Invasion. DISEASE MARKERS 2015; 2015:629367. [PMID: 25999659 PMCID: PMC4426780 DOI: 10.1155/2015/629367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
Cholangiocarcinoma (CCA) is a bile duct cancer, commonly found in Asia including Thailand and especially in the northeastern region of Thailand. To identify the proteins involved in carcinogenesis and metastasis of CCA, protein expression profiles of high-invasive KKU-M213 and low-invasive KKU-100 cell lines were compared using a comparative GeLC-MS/MS proteomics analysis. A total of 651 differentially expressed proteins were detected of which 27 protein candidates were identified as having functions involved in cell motility. A total of 22 proteins were significantly upregulated in KKU-M213, whereas 5 proteins were downregulated in KKU-M213. S100A2, a calcium-binding protein in S100 protein family, is upregulated in KKU-M213. S100A2 is implicated in metastasis development in several cancers. The protein expression level of S100A2 was verified by Western blot analysis. Intriguingly, high-invasive KKU-M213 cells showed higher expression of S100A2 than KKU-100 cells, consistent with proteomic data, suggesting that S100A2 may be a key protein involved in the progression of CCA. However, the biological function of S100A2 in cholangiocarcinoma remains to be elucidated. S100A2 might be a potential biomarker as well as a novel therapeutic target in CCA metastasis.
Collapse
|
27
|
Chopra S, Kumar N, Rangarajan A, Kondaiah P. Context dependent non canonical WNT signaling mediates activation of fibroblasts by transforming growth factor-β. Exp Cell Res 2015; 334:246-59. [PMID: 25773780 DOI: 10.1016/j.yexcr.2015.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 11/16/2022]
Abstract
Actions of transforming growth factor-β are largely context dependent. For instance, TGF-β is growth inhibitory to epithelial cells and many tumor cell-lines while it stimulates the growth of mesenchymal cells. TGF-β also activates fibroblast cells to a myofibroblastic phenotype. In order to understand how the responsiveness of fibroblasts to TGF-β would change in the context of transformation, we have compared the differential gene regulation by TGF-β in immortal fibroblasts (hFhTERT), transformed fibroblasts (hFhTERT-LTgRAS) and a human fibrosarcoma cell-line (HT1080). The analysis revealed regulation of 6735, 4163, and 3478 probe-sets by TGF-β in hFhTERT, hFhTERT-LTgRAS and HT1080 cells respectively. Intriguingly, 5291 probe-sets were found to be either regulated in hFhTERT or hFhTERT-LTgRAS cells while 2274 probe-sets were regulated either in hFhTERT or HT1080 cells suggesting that the response of immortal hFhTERT cells to TGF-β is vastly different compared to the response of both the transformed cells hFhTERT-LTgRAS and HT1080 to TGF-β. Strikingly, WNT pathway showed enrichment in the hFhTERT cells in Gene Set Enrichment Analysis. Functional studies showed induction of WNT4 by TGF-β in hFhTERT cells and TGF-β conferred action of these cells was mediated by WNT4. While TGF-β activated both canonical and non-canonical WNT pathways in hFhTERT cells, Erk1/2 and p38 Mitogen Activated Protein Kinase pathways were activated in hFhTERT-LTgRAS and HT1080 cells. This suggests that transformation of immortal hFhTERT cells by SV40 large T antigen and activated RAS caused a switch in their response to TGF-β which matched with the response of HT1080 cells to TGF-β. These data suggest context dependent activation of non-canonical signaling by TGF-β.
Collapse
Affiliation(s)
- Sunita Chopra
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Neeraj Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
28
|
Kang M, Lee HS, Lee YJ, Choi WS, Park YH, Jeong CW, Ku JH, Kim HH, Kwak C. S100A3 Suppression Inhibits In Vitro and In Vivo Tumor Growth and Invasion of Human Castration-resistant Prostate Cancer Cells. Urology 2015; 85:273.e9-15. [PMID: 25440760 DOI: 10.1016/j.urology.2014.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 01/24/2023]
|
29
|
S100A2 protein and non-small cell lung cancer. The dual role concept. Tumour Biol 2014; 35:7327-33. [PMID: 24863947 DOI: 10.1007/s13277-014-2117-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/19/2014] [Indexed: 02/03/2023] Open
Abstract
S100A2 is a member of the EF-hand motif family S100. Its role has been recently implicated in carcinogenesis and metastasis. Although its precise role in NSCLC patients is debated and conflicting results have been published, it has been associated with patient survival. S100A2 expression was downregulated in some studies while others disagree that S100A2 is strongly expressed in lung cancer. It has been recently published by Hountis et al. that there is a significant association between nuclear S100A2 positivity and better disease-free interval. Intensity of expression was the highest in the early and advanced stages, and equally distributed in the middle stages. This is indicative for a dual role of this protein in carcinogenesis. The expression of S100A2 in operable NSCLC varies widely, and this differential location and expression pattern (nuclear or cytoplasmic or both) seem to correlate with prognosis. The precise role for the movement of S100A2 protein between cytoplasm and nucleus is still unclear. We present here a literature review, and we propose the dual concept on its substantial role as a prognostic or predictive indicator in this unfavorable group of patients.
Collapse
|