1
|
Long-read sequencing identifies novel structural variations in colorectal cancer. PLoS Genet 2023; 19:e1010514. [PMID: 36812239 PMCID: PMC10013895 DOI: 10.1371/journal.pgen.1010514] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/14/2023] [Accepted: 11/08/2022] [Indexed: 02/24/2023] Open
Abstract
Structural variations (SVs) are a key type of cancer genomic alterations, contributing to oncogenesis and progression of many cancers, including colorectal cancer (CRC). However, SVs in CRC remain difficult to be reliably detected due to limited SV-detection capacity of the commonly used short-read sequencing. This study investigated the somatic SVs in 21 pairs of CRC samples by Nanopore whole-genome long-read sequencing. 5200 novel somatic SVs from 21 CRC patients (494 SVs / patient) were identified. A 4.9-Mbp long inversion that silences APC expression (confirmed by RNA-seq) and an 11.2-kbp inversion that structurally alters CFTR were identified. Two novel gene fusions that might functionally impact the oncogene RNF38 and the tumor-suppressor SMAD3 were detected. RNF38 fusion possesses metastasis-promoting ability confirmed by in vitro migration and invasion assay, and in vivo metastasis experiments. This work highlighted the various applications of long-read sequencing in cancer genome analysis, and shed new light on how somatic SVs structurally alter critical genes in CRC. The investigation on somatic SVs via nanopore sequencing revealed the potential of this genomic approach in facilitating precise diagnosis and personalized treatment of CRC.
Collapse
|
2
|
Identification of hub genes in colorectal cancer based on weighted gene co-expression network analysis and clinical data from The Cancer Genome Atlas. Biosci Rep 2021; 41:229248. [PMID: 34308980 PMCID: PMC8314434 DOI: 10.1042/bsr20211280] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors worldwide and is associated with high mortality. Here we performed bioinformatics analysis, which we validated using immunohistochemistry in order to search for hub genes that might serve as biomarkers or therapeutic targets in CRC. Based on data from The Cancer Genome Atlas (TCGA), we identified 4832 genes differentially expressed between CRC and normal samples (1562 up-regulated and 3270 down-regulated in CRC). Gene ontology (GO) analysis showed that up-regulated genes were enriched mainly in organelle fission, cell cycle regulation, and DNA replication; down-regulated genes were enriched primarily in the regulation of ion transmembrane transport and ion homeostasis. Weighted gene co-expression network analysis (WGCNA) identified eight gene modules that were associated with clinical characteristics of CRC patients, including brown and blue modules that were associated with cancer onset. Analysis of the latter two hub modules revealed the following six hub genes: adhesion G protein-coupled receptor B3 (BAI3, also known as ADGRB3), cyclin F (CCNF), cytoskeleton-associated protein 2 like (CKAP2L), diaphanous-related formin 3 (DIAPH3), oxysterol binding protein-like 3 (OSBPL3), and RERG-like protein (RERGL). Expression levels of these hub genes were associated with prognosis, based on Kaplan–Meier survival analysis of data from the Gene Expression Profiling Interactive Analysis database. Immunohistochemistry of CRC tumor tissues confirmed that OSBPL3 is up-regulated in CRC. Our findings suggest that CCNF, DIAPH3, OSBPL3, and RERGL may be useful as therapeutic targets against CRC. BAI3 and CKAP2L may be novel biomarkers of the disease.
Collapse
|
3
|
Overexpression of Long Non-Coding RNA FGF14-AS2 Inhibits Colorectal Cancer Proliferation Via the RERG/Ras/ERK Signaling by Sponging microRNA-1288-3p. Pathol Oncol Res 2020; 26:2659-2667. [PMID: 32654025 DOI: 10.1007/s12253-020-00862-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
Colorectal cancer remains one of most common cancer types with poor prognosis globally. Recent years, numerous studies depicted pivotal roles of lncRNAs in colorectal cancer progression. This study aimed to investigate the role of FGF14-AS2 in colorectal cancer development. FGF14-AS2 was found as a significantly downregulated lncRNA in TCGA dataset. Via RT-qPCR, we confirmed the downregulation of FGF14-AS2 in collected colorectal carcinoma samples. Transfection of plasmid containing full length of FGF14-AS2 repressed cell proliferation and induced elevation of cell apoptosis in colorectal cancer cells. In addition, FGF14-AS2 overexpression inactivated MAPK/ERK signaling in cells. Bioinformatic analysis and subsequent cell-based assays showed that FGF14-AS2 sponging miR-1288-3p, an oncogenic miRNA in colorectal cancer. RERG, the regulator of Ras/ERK pathway, was predicted and verified as target gene of miR-1288. Via downregulation of miR-1288, FGF14-AS2 elevated RERG expression in colorectal cancer cells. Rescue assays indicated that FGF14-AS2 relied on regulation of RERG to control cell proliferation and apoptosis in colorectal cancer. Taken together, the current study demonstrated FGF14-AS2 as a regulator of colorectal cancer development via downregulation of miR-1288-3p and inactivation of Ras/ERK signaling.
Collapse
|
4
|
Human papillomavirus E7 binds Oct4 and regulates its activity in HPV-associated cervical cancers. PLoS Pathog 2020; 16:e1008468. [PMID: 32298395 PMCID: PMC7228134 DOI: 10.1371/journal.ppat.1008468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/15/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Octamer binding transcription factor-4 (Oct4), is highly expressed in stem cells and has indispensable roles in pluripotency and cellular reprogramming. In contrast to other factors used for cellular reprogramming, a role for Oct4 outside embryonic stem cells has been elusive and highly controversial. Emerging evidence implicates Oct4 in the carcinogenic process, but the mechanism through which Oct4 may be functioning in cancers is not fully appreciated. Here, we provide evidence that Oct4 is expressed in human cervical cancer and this expression correlates with the presence of the human papillomavirus (HPV) oncogenes E6 and E7. Surprisingly, the viral oncogenes can complement exogenously provided Oct4 in reprogramming assays, providing functional validation for their ability to activate Oct4 transcription in Mouse Embryonic Fibroblasts (MEFs). To interrogate potential roles of Oct4 in cervical cancers we knocked-down Oct4 in HPV(+) (HeLa & CaSki) and HPV(-) (C33A) cervical cancer cell lines and found that Oct4 knockdown attenuated clonogenesis, only in the HPV(+) cells. More unexpectedly, cell proliferation and migration, were differentially affected in HPV(+) and HPV(-) cell lines. We provide evidence that Oct4 interacts with HPV E7 specifically at the CR3 region of the E7 protein and that introduction of the HPV oncogenes in C33A cells and human immortalised keratinocytes generates Oct4-associated transcriptional and phenotypic patterns, which mimic those seen in HPV(+) cells. We propose that a physical interaction of Oct4 with E7 regulates its activity in HPV(+) cervical cancers in a manner not seen in other cancer types.
Collapse
|
5
|
Kayser K, Degenhardt F, Holzapfel S, Horpaopan S, Peters S, Spier I, Morak M, Vangala D, Rahner N, von Knebel-Doeberitz M, Schackert HK, Engel C, Büttner R, Wijnen J, Doerks T, Bork P, Moebus S, Herms S, Fischer S, Hoffmann P, Aretz S, Steinke-Lange V. Copy number variation analysis and targeted NGS in 77 families with suspected Lynch syndrome reveals novel potential causative genes. Int J Cancer 2018; 143:2800-2813. [PMID: 29987844 DOI: 10.1002/ijc.31725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/10/2018] [Accepted: 03/26/2018] [Indexed: 12/22/2022]
Abstract
In many families with suspected Lynch syndrome (LS), no germline mutation in the causative mismatch repair (MMR) genes is detected during routine diagnostics. To identify novel causative genes for LS, the present study investigated 77 unrelated, mutation-negative patients with clinically suspected LS and a loss of MSH2 in tumor tissue. An analysis for genomic copy number variants (CNV) was performed, with subsequent next generation sequencing (NGS) of selected candidate genes in a subgroup of the cohort. Genomic DNA was genotyped using Illumina's HumanOmniExpress Bead Array. After quality control and filtering, 25 deletions and 16 duplications encompassing 73 genes were identified in 28 patients. No recurrent CNV was detected, and none of the CNVs affected the regulatory regions of MSH2. A total of 49 candidate genes from genomic regions implicated by the present CNV analysis and 30 known or assumed risk genes for colorectal cancer (CRC) were then sequenced in a subset of 38 patients using a customized NGS gene panel and Sanger sequencing. Single nucleotide variants were identified in 14 candidate genes from the CNV analysis. The most promising of these candidate genes were: (i) PRKCA, PRKDC, and MCM4, as a functional relation to MSH2 is predicted by network analysis, and (ii) CSMD1, as this is commonly mutated in CRC. Furthermore, six patients harbored POLE variants outside the exonuclease domain, suggesting that these might be implicated in hereditary CRC. Analyses in larger cohorts of suspected LS patients recruited via international collaborations are warranted to verify the present findings.
Collapse
Affiliation(s)
- Katrin Kayser
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Stefanie Holzapfel
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Center for Hereditary Tumor Syndromes, University of Bonn, Bonn, Germany
| | - Sukanya Horpaopan
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sophia Peters
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Isabel Spier
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Center for Hereditary Tumor Syndromes, University of Bonn, Bonn, Germany
| | - Monika Morak
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany.,Medical Genetics Center (MGZ), Munich, Germany
| | - Deepak Vangala
- Department of Internal Medicine, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Nils Rahner
- Institute of Human Genetics, University of Düsseldorf, Düsseldorf, Germany
| | - Magnus von Knebel-Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans K Schackert
- Department of Surgical Research, Technische Universität Dresden, Dresden, Germany
| | - Christoph Engel
- Institute of Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
| | | | - Juul Wijnen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tobias Doerks
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Susanne Moebus
- Centre for Urban Epidemiology, University Hospital of Duisburg-Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Herms
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany.,Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland.,Insitute of Medical Genetics and Pathology, University Hospital of Basel, Basel, Switzerland
| | - Sascha Fischer
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany.,Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland.,Insitute of Medical Genetics and Pathology, University Hospital of Basel, Basel, Switzerland
| | - Stefan Aretz
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Center for Hereditary Tumor Syndromes, University of Bonn, Bonn, Germany
| | - Verena Steinke-Lange
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany.,Medical Genetics Center (MGZ), Munich, Germany
| |
Collapse
|
6
|
Egger ME, Xiao D, Hao H, Kimbrough CW, Pan J, Rai SN, Cambon AC, Waigel SJ, Zacharias W, McMasters KM. Unique Genes in Tumor-Positive Sentinel Lymph Nodes Associated with Nonsentinel Lymph Node Metastases in Melanoma. Ann Surg Oncol 2018; 25:1296-1303. [PMID: 29497912 DOI: 10.1245/s10434-018-6377-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Current risk assessment tools to estimate the risk of nonsentinel lymph node metastases after completion lymphadenectomy for a positive sentinel lymph node (SLN) biopsy in cutaneous melanoma are based on clinical and pathologic factors. We identified a novel genetic signature that can predict non-SLN metastases in patients with cutaneous melanoma staged with a SLN biopsy. METHODS RNA was collected for tumor-positive SLNs in patients staged by SLN biopsy for cutaneous melanoma. All patients with a tumor-positive SLN biopsy underwent completion lymphadenectomy. A 1:10 case:control series of positive and negative non-SLN patients was analyzed by microarray and quantitative RT-PCR. Candidate differentially expressed genes were validated in a 1:3 case:control separate cohort of positive and negative non-SLN patients. RESULTS The 1:10 case:control discovery set consisted of 7 positive non-SLN cases matched to 70 negative non-SLN controls. The cases and controls were similar with regards to important clinicopathologic factors, such as gender, primary tumor site, age, ulceration, and thickness. Microarray and RT-PCR identified six potential differentially expressed genes for validation. In the 40-patient separate validation set, 10 positive non-SLN patients were matched to 30 negative non-SLN controls based on gender, ulceration, age, and thickness. Five of the six genes were differentially expressed. The five gene panel identified patients at low (7.1%) and high risk (66.7%) for non-SLN metastases. CONCLUSIONS A novel, non-SLN gene score based on differential expressed genes in a tumor-positive SLN can identify patients at high and low risk for non-SLN metastases.
Collapse
Affiliation(s)
- Michael E Egger
- Hiram C. Polk Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Deyi Xiao
- Hiram C. Polk Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Hongying Hao
- Hiram C. Polk Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Charles W Kimbrough
- Hiram C. Polk Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Jianmin Pan
- Biostatistics Shared Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Shesh N Rai
- Biostatistics Shared Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Alexander C Cambon
- Biostatistics Shared Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Sabine J Waigel
- University of Louisville Genomics Facility, Louisville, KY, USA
| | - Wolfgang Zacharias
- University of Louisville Genomics Facility, Louisville, KY, USA.,Departments of Medicine and Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Kelly M McMasters
- Hiram C. Polk Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
7
|
Liu K, He L, Liu Z, Xu J, Liu Y, Kuang Q, Wen Z, Li M. Mutation status coupled with RNA-sequencing data can efficiently identify important non-significantly mutated genes serving as diagnostic biomarkers of endometrial cancer. BMC Bioinformatics 2017; 18:472. [PMID: 29297280 PMCID: PMC5751793 DOI: 10.1186/s12859-017-1891-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Endometrial cancers (ECs) are one of the most common types of malignant tumor in females. Substantial efforts had been made to identify significantly mutated genes (SMGs) in ECs and use them as biomarkers for the classification of histological subtypes and the prediction of clinical outcomes. However, the impact of non-significantly mutated genes (non-SMGs), which may also play important roles in the prognosis of EC patients, has not been extensively studied. Therefore, it is essential for the discovery of biomarkers in ECs to further investigate the non-SMGs that were highly associated with clinical outcomes. Results For the 9681 non-SMGs reported by the mutation annotation pipeline, there were 1053, 1273 and 395 non-SMGs differentially expressed between the patient groups divided by the clinical endpoints of histological grade, histological type as well as the International Federation of Gynecology and Obstetrics (FIGO) stage of ECs, respectively. In the gene set enrichment analysis, the cancer-related pathways, namely neuroactive ligand-receptor interaction signaling pathway, cAMP signaling pathway and calcium signaling pathway, were significantly enriched with the differentially expressed non-SMGs for all the three endpoints. We further identified 23, 19 and 24 non-SMGs, which were highly associated with histological grade, histological type and FIGO stage, respectively, from the differentially expressed non-SMGs by using the variable combination population analysis (VCPA) approach and found that 69.6% (16/23), 78.9% (15/19) and 66.7% (16/24) of the identified non-SMGs had been previously reported to be correlated with cancers. In addition, the averaged areas under the receiver operating characteristic curve (AUCs) achieved by the predictive models with identified non-SMGs as predictors in predicting histological type, histological grade, and FIGO stage were 0.993, 0.961 and 0.832, respectively, which were superior to those achieved by the models with SMGs as features (averaged AUCs = 0.928, 0.864 and 0.535, resp.). Conclusions Besides the SMGs, the non-SMGs reported in the mutation annotation analysis may also involve the crucial genes that were highly associated with clinical outcomes. Combining the mutation status with the gene expression profiles can efficiently identify the cancer-related non-SMGs as predictors for cancer prognostic prediction and provide more supplemental candidates for the discovery of biomarkers. Electronic supplementary material The online version of this article (10.1186/s12859-017-1891-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keqin Liu
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Li He
- Biogas Appliance Quality Supervision and Inspection Center, Biogas Institute of Ministry of Agriculture, Chengdu, Sichuan, China
| | - Zhichao Liu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Junmei Xu
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Liu
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Qifan Kuang
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Zhang D, Li Z, Xu X, Zhou D, Tang S, Yin X, Xu F, Li H, Zhou Y, Zhu T, Deng H, Zhang S, Huang Q, Wang J, Yin W, Zhu Y, Lai M. Deletions at SLC18A1 increased the risk of CRC and lower SLC18A1 expression associated with poor CRC outcome. Carcinogenesis 2017; 38:1057-1062. [PMID: 28968818 DOI: 10.1093/carcin/bgx088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/24/2017] [Indexed: 12/26/2022] Open
Abstract
Copy number variations (CNVs) contribute to the development of colorectal cancer (CRC). We conducted a two-stage association study to identify CNV risk loci for CRC. We performed a gene-based rare CNV study on 694 sporadic CRC and 1641 controls using Illumina Human-OmniExpress-12v1.0 BeadChips, and further replicated in 934 CRC cases and 2680 controls for risk CNVs by using TaqMan Copy Number Assay. Tumor buddings, cancer cells in the center of primary tumor and normal intestinal epithelial cells were captured using laser capture microdissection (LCM) and were assayed using AffymetrixGeneChip® Human Genome U133 Plus 2.0 Array. In addition, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus data were assessed for the effects of risk CNVs. We found that germline deletions affecting the last six exons of SLC18A1 significantly associated with CRC with a combined P value of 6.4 × 10-5 by a two-stage analysis. Both in TCGA CRC RNA seq dataset and GDS4382, SLC18A1 was significantly down regulated in CRC tissues than in paired normal tissues (N = 32 and 17 pairs, P = 0.004 and 0.009, respectively). In LCM samples, similar observations were obtained that the expression levels of SLC18A1 in the tumor buddings, cancer cells in the center of primary tumor, and stroma of both tumor budding and cancer cells were lower than normal intestinal epithelial and stromal cells (fold change = 0.17-0.62, 0.12-0.57 and 0.37-0.68, respectively). In summary, the germline deletions at SLC18A1 contributed to the development of CRC. The role of SLC18A1 required further exploration.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| | - Zhenli Li
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| | - Xiaohong Xu
- Clinical laboratory, The Affiliated Zhejiang Cancer Hospital of Zhejiang Chinese Medical University, Hangzhou 310022, China
| | - Dan Zhou
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| | - Shunli Tang
- The Second Department of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoyang Yin
- The Second Department of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fangying Xu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| | - Hui Li
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| | - Yuan Zhou
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| | - Tao Zhu
- Departments of Pathology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Hong Deng
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| | - Shuai Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| | - Qiong Huang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| | - Jing Wang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| | - Wei Yin
- The Core Facilities, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou 310058, China
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
9
|
Kumaran M, Cass CE, Graham K, Mackey JR, Hubaux R, Lam W, Yasui Y, Damaraju S. Germline copy number variations are associated with breast cancer risk and prognosis. Sci Rep 2017; 7:14621. [PMID: 29116104 PMCID: PMC5677082 DOI: 10.1038/s41598-017-14799-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most common cancers among women, and susceptibility is explained by genetic, lifestyle and environmental components. Copy Number Variants (CNVs) are structural DNA variations that contribute to diverse phenotypes via gene-dosage effects or cis-regulation. In this study, we aimed to identify germline CNVs associated with breast cancer susceptibility and their relevance to prognosis. We performed whole genome CNV genotyping in 422 cases and 348 controls using Human Affymetrix SNP 6 array. Principal component analysis for population stratification revealed 84 outliers leaving 366 cases and 320 controls of Caucasian ancestry for association analysis; CNVs with frequency > 10% and overlapping with protein coding genes were considered for breast cancer risk and prognostic relevance. Coding genes within the CNVs identified were interrogated for gene- dosage effects by correlating copy number status with gene expression profiles in breast tumor tissue. We identified 200 CNVs associated with breast cancer (q-value < 0.05). Of these, 21 CNV regions (overlapping with 22 genes) also showed association with prognosis. We validated representative CNVs overlapping with APOBEC3B and GSTM1 genes using the TaqMan assay. Germline CNVs conferred dosage effects on gene expression in breast tissue. The candidate CNVs identified in this study warrant independent replication.
Collapse
Affiliation(s)
- Mahalakshmi Kumaran
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Carol E Cass
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Kathryn Graham
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - John R Mackey
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Wan Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Yutaka Yasui
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada. .,Cross Cancer Institute, Alberta Health Services, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Thean LF, Low YS, Lo M, Teo YY, Koh WP, Yuan JM, Chew MH, Tang CL, Cheah PY. Genome-wide association study identified copy number variants associated with sporadic colorectal cancer risk. J Med Genet 2017; 55:181-188. [DOI: 10.1136/jmedgenet-2017-104913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022]
Abstract
BackgroundMultiple single nucleotide polymorphisms (SNPs) have been associated with colorectal cancer (CRC) risk. The role of structural or copy number variants (CNV) in CRC, however, remained unclear. We investigated the role of CNVs in patients with sporadic CRC.MethodsA genome-wide association study (GWAS) was performed on 1000 Singapore Chinese patients aged 50 years or more with no family history of CRC and 1000 ethnicity-matched, age-matched and gender-matched healthy controls using the Affymetrix SNP 6 platform. After 16 principal component corrections, univariate and multivariate segmentations followed by association testing were performed on 1830 samples that passed quality assurance tests.ResultsA rare CNV region (CNVR) at chromosome 14q11 (OR=1.92 (95% CI 1.59 to 2.32), p=2.7e-12) encompassing CHD8, and common CNVR at chromosomes 3q13.12 (OR=1.54 (95% CI 1.33 to 1.77), p=2.9e-9) and 12p12.3 (OR=1.69 (95% CI 1.41 to 2.01), p=2.8e-9) encompassing CD47 and RERG/ARHGDIB, respectively, were significantly associated with CRC risk. CNV loci were validated in an independent replication panel using an optimised copy number assay. Whole-genome expression data in matched tumours of a subset of cases demonstrated that copy number loss at CHD8 was significantly associated with dysregulation of several genes that perturb the Wnt, TP53 and inflammatory pathways.ConclusionsA rare CNVR at 14q11 encompassing the chromatin modifier CHD8 was significantly associated with sporadic CRC risk. Copy number loss at CHD8 altered expressions of genes implicated in colorectal tumourigenesis.
Collapse
|
11
|
Zhao W, Mo Y, Wang S, Midorikawa K, Ma N, Hiraku Y, Oikawa S, Huang G, Zhang Z, Murata M, Takeuchi K. Quantitation of DNA methylation in Epstein-Barr virus-associated nasopharyngeal carcinoma by bisulfite amplicon sequencing. BMC Cancer 2017; 17:489. [PMID: 28716111 PMCID: PMC5514474 DOI: 10.1186/s12885-017-3482-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022] Open
Abstract
Background Epigenetic changes, including DNA methylation, disrupt normal cell function, thus contributing to multiple steps of carcinogenesis. Nasopharyngeal carcinoma (NPC) is endemic in southern China and is highly associated with Epstein-Barr virus (EBV) infection. Significant changes of the host cell methylome are observed in EBV-associated NPC with cancer development. Epigenetic marks for NPC diagnosis are urgently needed. In order to explore DNA methylation marks, we investigated DNA methylation of candidate genes in EBV-associated nasopharyngeal carcinoma. Methods We first employed methyl-capture sequencing and cDNA microarrays to compare the genome-wide methylation profiles of seven NPC tissues and five non-cancer nasopharyngeal epithelium (NNE) tissues. We found 150 hypermethylated CpG islands spanning promoter regions and down-regulated genes. Furthermore, we quantified the methylation rates of seven candidate genes using bisulfite amplicon sequencing for nine NPC and nine NNE tissues. Results All seven candidate genes showed significantly higher methylation rates in NPC than in NNE tissues, and the ratios (NPC/NNE) were in descending order as follows: ITGA4 > RERG > ZNF671 > SHISA3 > ZNF549 > CR2 > RRAD. In particular, methylation levels of ITGA4, RERG, and ZNF671 could distinguish NPC patients from NNE subjects. Conclusions We identified the DNA methylation rates of previously unidentified NPC candidate genes. The combination of genome-wide and targeted methylation profiling by next-generation sequencers should provide useful information regarding cancer-specific aberrant methylation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3482-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weilin Zhao
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Otorhinolaryngology, Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan.,Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Present address: Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shumin Wang
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Present address: Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Guangwu Huang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Kazuhiko Takeuchi
- Department of Otorhinolaryngology, Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| |
Collapse
|
12
|
Liu HY, Zhang CJ. Identification of differentially expressed genes and their upstream regulators in colorectal cancer. Cancer Gene Ther 2017; 24:244-250. [DOI: 10.1038/cgt.2017.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/23/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
|
13
|
Thean LF, Wong YH, Lo M, Loi C, Chew MH, Tang CL, Cheah PY. Chromosome 19q13 disruption alters expressions of CYP2A7, MIA and MIA-RAB4B lncRNA and contributes to FAP-like phenotype in APC mutation-negative familial colorectal cancer patients. PLoS One 2017; 12:e0173772. [PMID: 28306719 PMCID: PMC5357012 DOI: 10.1371/journal.pone.0173772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022] Open
Abstract
Familial adenomatous polyposis (FAP) is an autosomal-dominantly inherited form of colorectal cancer (CRC) caused by mutation in the adenomatous polyposis coli (APC) gene. Our ability to exhaustively screen for APC mutations identify microsatellite-stable and APC-mutation negative familial CRC patients, enabling us to search for novel genes. We performed genome-wide scan on two affected siblings of one family and 88 ethnicity- and gender-matched healthy controls to identify deletions shared by the siblings. Combined loss of heterozygosity, copy number and allelic-specific copy number analysis uncovered 5 shared deletions. Long-range polymerase chain reaction (PCR) confirmed chromosome 19q13 deletion, which was subsequently found in one other family. The 32 kb deleted region harbors the CYP2A7 gene and was enriched with enhancer, repressor and insulator sites. The wildtype allele was lost in the polyps of the proband. Further, real-time RT-PCR assays showed that expressions of MIA and MIA-RAB4B located 35 kb upstream of the deletion, were up-regulated in the polyps compared to the matched mucosa of the proband. MIA-RAB4B, the read-through long non-coding RNA (lncRNA), RAB4B, PIM2 and TAOK1 share common binding site of a microRNA, miR-24, in their 3'UTRs. PIM2 and TAOK1, two target oncogenes of miR-24, were co-ordinately up-regulated with MIA-RAB4B in the polyps, suggesting that MIA-RAB4B could function as competitive endogenous RNA to titrate miR-24 away from its other targets. The data suggest that the 19.13 deletion disrupted chromatin boundary, leading to altered expression of several genes and lncRNA, could contribute to colorectal cancer via novel genetic and epigenetic mechanisms.
Collapse
Affiliation(s)
- Lai Fun Thean
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Yu Hui Wong
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Michelle Lo
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Carol Loi
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Min Hoe Chew
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Choong Leong Tang
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
14
|
Hyper-Methylated Loci Persisting from Sessile Serrated Polyps to Serrated Cancers. Int J Mol Sci 2017; 18:ijms18030535. [PMID: 28257124 PMCID: PMC5372551 DOI: 10.3390/ijms18030535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Although serrated polyps were historically considered to pose little risk, it is now understood that progression down the serrated pathway could account for as many as 15%-35% of colorectal cancers. The sessile serrated adenoma/polyp (SSA/P) is the most prevalent pre-invasive serrated lesion. Our objective was to identify the CpG loci that are persistently hyper-methylated during serrated carcinogenesis, from the early SSA/P lesion through the later cancer phases of neoplasia development. We queried the loci hyper-methylated in serrated cancers within our rightsided SSA/Ps from the New Hampshire Colonoscopy Registry, using the Illumina Infinium Human Methylation 450 k panel to comprehensively assess the DNA methylation status. We identified CpG loci and regions consistently hyper-methylated throughout the serrated carcinogenesis spectrum, in both our SSA/P specimens and in serrated cancers. Hyper-methylated CpG loci included the known the tumor suppressor gene RET (p = 5.72 x 10-10), as well as loci in differentially methylated regions for GSG1L, MIR4493, NTNG1, MCIDAS, ZNF568, and RERG. The hyper-methylated loci that we identified help characterize the biology of SSA/P development, and could be useful as therapeutic targets, or for future identification of patients who may benefit from shorter surveillance intervals.
Collapse
|
15
|
Shi J, Zhou W, Zhu B, Hyland PL, Bennett H, Xiao Y, Zhang X, Burke LS, Song L, Hsu CH, Yan C, Chen Q, Meerzaman D, Dagnall CL, Burdette L, Hicks B, Freedman ND, Chanock SJ, Yeager M, Tucker MA, Goldstein AM, Yang XR. Rare Germline Copy Number Variations and Disease Susceptibility in Familial Melanoma. J Invest Dermatol 2016; 136:2436-2443. [PMID: 27476724 PMCID: PMC5123914 DOI: 10.1016/j.jid.2016.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/02/2016] [Accepted: 07/05/2016] [Indexed: 01/12/2023]
Abstract
Mounting evidence suggests that copy number variations (CNVs) can contribute to cancer susceptibility. The main goal of this study was to evaluate the role of germline CNVs in melanoma predisposition in high-risk melanoma families. We used genome-wide tiling comparative genomic hybridization and single nucleotide polymorphism arrays to characterize CNVs in 335 individuals (240 melanoma cases) from American melanoma-prone families (22 with germline CDKN2A or CDK4 mutations). We found that the global burden of overall CNVs (or deletions or duplications separately) was not significantly associated with case-control or CDKN2A/CDK4 mutation status after accounting for the familial dependence. However, we identified several rare CNVs that either involved known melanoma genes (e.g., PARP1, CDKN2A) or cosegregated with melanoma (duplication on 10q23.23, 3p12.2 and deletions on 8q424.3, 2q22.1) in families without mutations in known melanoma high-risk genes. Some of these CNVs were correlated with expression changes in disrupted genes based on RNASeq data from a subset of melanoma cases included in the CNV study. These results suggest that rare cosegregating CNVs may influence melanoma susceptibility in some melanoma-prone families and genes found in our study warrant further evaluation in future genetic analyses of melanoma.
Collapse
Affiliation(s)
- Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Weiyin Zhou
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Paula L Hyland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Hunter Bennett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Xijun Zhang
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Laura S Burke
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA; Statistics Collaborative, Inc., Washington, DC, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Chih Hao Hsu
- Computational Genomics Research Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Chunhua Yan
- Computational Genomics Research Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Qingrong Chen
- Computational Genomics Research Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Daoud Meerzaman
- Computational Genomics Research Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Casey L Dagnall
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Laurie Burdette
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA.
| |
Collapse
|
16
|
Park C, Kim JI, Hong SN, Jung HM, Kim TJ, Lee S, Kim SJ, Kim HC, Kim DH, Cho B, Park JH, Sung J, Lee DS, Kang M, Son HJ, Kim YH. A copy number variation in PKD1L2 is associated with colorectal cancer predisposition in korean population. Int J Cancer 2016; 140:86-94. [PMID: 27605020 DOI: 10.1002/ijc.30421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/15/2016] [Indexed: 12/30/2022]
Abstract
Recently reported genome-wide association studies have identified more than 20 common low-penetrance colorectal cancer (CRC) susceptibility loci. Recent studies have reported that copy number variations (CNVs) are considered important human genomic variants related to cancer, while the contribution of CNVs remains unclear. We performed array comparative genomic hybridization (aCGH) in 36 CRC patients and 47 controls. Using breakpoint PCR, we confirmed the breakpoint of the PKD1L2 deletion region. High frequency of PKD1L2 CNV was observed in CRC cases. We validated the association between PKD1L2 variation and CRC risk in 1,874 cases and 2,088 controls (OR = 1.44, 95% CI = 1.04-1.98, p = 0.028). Additionally, PKD1L2 CNV is associated with increased CRC risk in patients younger than 50 years (OR = 2.14, 95% CI 1.39-3.30, p = 5.8 × 10-4 ). In subgroup analysis according to body mass index (BMI), we found that the CN loss of PKD1L2 with BMI above or equal to 25 exhibited a significant increase in CRC risk (OR = 2.29, 95% CI 1.29-4.05, p = 0.005). PKD1L2 CNV with BMI above or equal to 25 and age below 50 is associated with a remarkably increased risk of colorectal cancer (OR = 5.24, 95% CI 2.36-11.64, p= 4.8 × 10-5 ). Moreover, we found that PKD1L2 variation in obese patients (BMI ≥ 25) was associated with poor survival rate (p = 0.026). Our results suggest that the common PKD1L2 CNV is associated with CRC, and PKD1L2 CNV with high BMI and/or age below 50 exhibited a significant increased risk of CRC. In obese patients, PKD1L2 variation was associated with poor survival.
Collapse
Affiliation(s)
- Changho Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hey Mi Jung
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Jun Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seungbok Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University, Seoul, Korea
| | - Seong Jin Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Belong Cho
- Department of Family Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Joohon Sung
- Complex Disease and Genome Epidemiology Branch, Department of Epidemiology, School of Public Health, Seoul National University, Seoul, Korea
| | - Dong-Sung Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University, Seoul, Korea
| | - Mingon Kang
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Jung Son
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Li Z, Yu D, Gan M, Shan Q, Yin X, Tang S, Zhang S, Shi Y, Zhu Y, Lai M, Zhang D. A genome-wide assessment of rare copy number variants in colorectal cancer. Oncotarget 2016; 6:26411-23. [PMID: 26315111 PMCID: PMC4694911 DOI: 10.18632/oncotarget.4621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/06/2015] [Indexed: 12/30/2022] Open
Abstract
Colorectal cancer (CRC) is a complex disease with an estimated heritability of approximately 35%. However, known CRC-related common single nucleotide polymorphisms (SNPs) can only explain ~0.65% of the heritability. This “missing heritability” may be explained partially by rare copy number variants (CNVs). In this study, we performed a genome-wide scan using Illumina Human-Omni Express BeadChip, 694 sporadic CRC cases and 1641 controls were eventually included in our analysis after quality control. The global burden analysis revealed a 1.53-fold excess of rare CNVs in CRC cases compared with controls (P < 1 × 10−6), and the difference being more pronounced for genic rare CNVs and CNVs overlapped with coding regions (1.65-fold and 1.84-fold, respectively, both P < 1 × 10−6). Interestingly, both the cases in the lowest and middle tertile of age carried a higher burden of rare CNVs comparing to the highest tertile. Furthermore, 639 CNV-disrupted genes exclusive to CRC cases were found to be significantly enriched in gene ontology (GO) terms concerning nucleosome assembly and olfactory receptor activity. Our study was the first to evaluate the burden of rare CNVs in sporadic CRC and suggested that rare CNVs contributed to the missing heritability of CRC.
Collapse
Affiliation(s)
- Zhenli Li
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Dan Yu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Meifu Gan
- Department of Pathology, Taizhou Hospital, Linhai, Zhejiang, 317000, China
| | - Qiaonan Shan
- Zhejiang University School of Clinical Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xiaoyang Yin
- Zhejiang University School of Clinical Medicine, Hangzhou, Zhejiang, 310058, China
| | - Shunli Tang
- Zhejiang University School of Clinical Medicine, Hangzhou, Zhejiang, 310058, China
| | - Shuai Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Dandan Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
18
|
Tracking Cancer Genetic Evolution using OncoTrack. Sci Rep 2016; 6:29647. [PMID: 27412732 PMCID: PMC4944131 DOI: 10.1038/srep29647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/20/2016] [Indexed: 02/07/2023] Open
Abstract
It is difficult for existing methods to quantify, and track the constant evolution of cancers due to high heterogeneity of mutations. However, structural variations associated with nucleotide number changes show repeatable patterns in localized regions of the genome. Here we introduce SPKMG, which generalizes nucleotide number based properties of genes, in statistical terms, at the genome-wide scale. It is measured from the normalized amount of aligned NGS reads in exonic regions of a gene. SPKMG values are calculated within OncoTrack. SPKMG values being continuous numeric variables provide a statistical metric to track DNA level changes. We show that SPKMG measures of cancer DNA show a normative pattern at the genome-wide scale. The analysis leads to the discovery of core cancer genes and also provides novel dynamic insights into the stage of cancer, including cancer development, progression, and metastasis. This technique will allow exome data to also be used for quantitative LOH/CNV analysis for tracking tumour progression and evolution with a higher efficiency.
Collapse
|
19
|
Marczok S, Bortz B, Wang C, Pospisil H. Comprehensive Analysis of Genome Rearrangements in Eight Human Malignant Tumor Tissues. PLoS One 2016; 11:e0158995. [PMID: 27391163 PMCID: PMC4938598 DOI: 10.1371/journal.pone.0158995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/25/2016] [Indexed: 11/19/2022] Open
Abstract
Carcinogenesis is a complex multifactorial, multistage process, but the precise mechanisms are not well understood. In this study, we performed a genome-wide analysis of the copy number variation (CNV), breakpoint region (BPR) and fragile sites in 2,737 tumor samples from eight tumor entities and in 432 normal samples. CNV detection and BPR identification revealed that BPRs tended to accumulate in specific genomic regions in tumor samples whereas being dispersed genome-wide in the normal samples. Hotspots were observed, at which segments with similar alteration in copy number were overlapped along with BPRs adjacently clustered. Evaluation of BPR occurrence frequency showed that at least one was detected in about and more than 15% of samples for each tumor entity while BPRs were maximal in 12% of the normal samples. 127 of 2,716 tumor-relevant BPRs (termed 'common BPRs') exhibited also a noticeable occurrence frequency in the normal samples. Colocalization assessment identified 20,077 CNV-affecting genes and 169 of these being known tumor-related genes. The most noteworthy genes are KIAA0513 important for immunologic, synaptic and apoptotic signal pathways, intergenic non-coding RNA RP11-115C21.2 possibly acting as oncogene or tumor suppressor by changing the structure of chromatin, and ADAM32 likely importance in cancer cell proliferation and progression by ectodomain-shedding of diverse growth factors, and the well-known tumor suppressor gene p53. The BPR distributions indicate that CNV mutations are likely non-random in tumor genomes. The marked recurrence of BPRs at specific regions supports common progression mechanisms in tumors. The presence of hotspots together with common BPRs, despite its small group size, imply a relation between fragile sites and cancer-gene alteration. Our data further suggest that both protein-coding and non-coding genes possessing a range of biological functions might play a causative or functional role in tumor biology. This research enhances our understanding of the mechanisms for tumorigenesis and progression.
Collapse
Affiliation(s)
- Stefanie Marczok
- University of Applied Sciences Wildau, High Performance Computing in Life Sciences, Institute for Applied Biosciences, Wildau, Germany
| | - Birgit Bortz
- University of Applied Sciences Wildau, High Performance Computing in Life Sciences, Institute for Applied Biosciences, Wildau, Germany
| | - Chong Wang
- University of Applied Sciences Wildau, High Performance Computing in Life Sciences, Institute for Applied Biosciences, Wildau, Germany
| | - Heike Pospisil
- University of Applied Sciences Wildau, High Performance Computing in Life Sciences, Institute for Applied Biosciences, Wildau, Germany
- * E-mail:
| |
Collapse
|
20
|
Villacis RAR, Abreu FB, Miranda PM, Domingues MAC, Carraro DM, Santos EMM, Andrade VP, Rossi BM, Achatz MI, Rogatto SR. ROBO1 deletion as a novel germline alteration in breast and colorectal cancer patients. Tumour Biol 2016; 37:3145-53. [PMID: 26427657 DOI: 10.1007/s13277-015-4145-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 01/22/2023] Open
Abstract
Despite one third of breast (BC) and colorectal cancer (CRC) cases having a hereditary component, only a small proportion can be explained by germline mutations. The aim of this study was to identify potential genomic alterations related to cancer predisposition. Copy number variations (CNVs) were interrogated in 113 unrelated cases fulfilling the criteria for hereditary BC/CRC and presenting non-pathogenic mutations in BRCA1, BRCA2, MLH1, MSH2, TP53, and CHEK2 genes. An identical germline deep intronic deletion of ROBO1 was identified in three index patients using two microarray platforms (Agilent 4x180K and Affymetrix CytoScan HD). The ROBO1 deletion was confirmed by quantitative PCR (qPCR). Six relatives were also evaluated by CytoScan HD Array. Genomic analysis confirmed a co-segregation of the ROBO1 deletion with the occurrence of cancer in two families. Direct sequencing revealed no pathogenic ROBO1 point mutations. Transcriptomic analysis (HTA 2.0, Affymetrix) in two breast carcinomas from a single patient revealed ROBO1 down-expression with no splicing events near the intronic deletion. Deeper in silico analysis showed several enhancer regions and a histone methylation mark in the deleted region. The ROBO1 deletion in a putative transcriptional regulatory region, its down-expression in tumor samples, and the results of the co-segregation analysis revealing the presence of the alteration in affected individuals suggest a pathogenic effect of the ROBO1 in cancer predisposition.
Collapse
Affiliation(s)
- Rolando A R Villacis
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil
| | - Francine B Abreu
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil
| | - Priscila M Miranda
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil
| | - Maria A C Domingues
- Department of Pathology, Faculty of Medicine, University of São Paulo State (UNESP), Botucatu, SP, Brazil
| | - Dirce M Carraro
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil
| | | | - Victor P Andrade
- Department of Pathology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Maria I Achatz
- Department of Oncogenetics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Silvia R Rogatto
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil.
- Department of Urology, Faculty of Medicine, University of São Paulo State (UNESP), CEP: 18618-970, Botucatu, SP, Brazil.
| |
Collapse
|
21
|
Villacis RAR, Miranda PM, Gomy I, Santos EMM, Carraro DM, Achatz MI, Rossi BM, Rogatto SR. Contribution of rare germline copy number variations and common susceptibility loci in Lynch syndrome patients negative for mutations in the mismatch repair genes. Int J Cancer 2015; 138:1928-35. [PMID: 26620301 DOI: 10.1002/ijc.29948] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
Abstract
In colorectal carcinoma (CRC), 35% of cases are known to have a hereditary component, while a lower proportion (∼ 5%) can be explained by known genetic factors. In this study, copy number variations (CNVs) were evaluated in 45 unrelated patients with clinical hypothesis of Lynch syndrome (Amsterdam or Bethesda criteria); negative for MLH1, MSH2, MSH6, PMS2, CHEK2*1100delC and TP53 pathogenic mutations; aiming to reveal new predisposing genes. Analyses with two different microarray platforms (Agilent 180K and Affymetrix CytoScan HD) revealed 35 rare CNVs covering 67 known genes in 22 patients. Gains (GALNT6 and GALNT11) and losses (SEMA3C) involving the same gene families related to CRC susceptibility were found among the rare CNVs. Segregation analysis performed on four relatives from one family suggested the involvement of GALNT11 and KMT2C in those at risk of developing CRC. Notably, in silico molecular analysis revealed that 61% (41/67) of the genes covered by rare CNVs were associated with cancer, mainly colorectal (17 genes). Ten common SNPs, previously associated with CRC, were genotyped in 39 index patients and 100 sporadic CRC cases. Although no significant, an increased number of risk alleles was detected in the index cases compared with the sporadic CRC patients. None of the SNPs were covered by CNVs, suggesting an independent effect of each alteration in cancer susceptibility. In conclusion, rare germline CNVs and common SNPs may contribute to an increased risk for hereditary CRC in patients with mismatch repair proficiency.
Collapse
Affiliation(s)
- Rolando A R Villacis
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Priscila M Miranda
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Israel Gomy
- Institute of Hematology and Oncology, Faculties Little Prince, Curitiba, PR, Brazil
| | | | - Dirce M Carraro
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Maria I Achatz
- Department of Oncogenetics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Silvia R Rogatto
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil.,Department of Urology, Faculty of Medicine, University of São Paulo State (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
22
|
Walker LC, Wiggins GAR, Pearson JF. The Role of Constitutional Copy Number Variants in Breast Cancer. ACTA ACUST UNITED AC 2015; 4:407-23. [PMID: 27600231 PMCID: PMC4996380 DOI: 10.3390/microarrays4030407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 01/16/2023]
Abstract
Constitutional copy number variants (CNVs) include inherited and de novo deviations from a diploid state at a defined genomic region. These variants contribute significantly to genetic variation and disease in humans, including breast cancer susceptibility. Identification of genetic risk factors for breast cancer in recent years has been dominated by the use of genome-wide technologies, such as single nucleotide polymorphism (SNP)-arrays, with a significant focus on single nucleotide variants. To date, these large datasets have been underutilised for generating genome-wide CNV profiles despite offering a massive resource for assessing the contribution of these structural variants to breast cancer risk. Technical challenges remain in determining the location and distribution of CNVs across the human genome due to the accuracy of computational prediction algorithms and resolution of the array data. Moreover, better methods are required for interpreting the functional effect of newly discovered CNVs. In this review, we explore current and future application of SNP array technology to assess rare and common CNVs in association with breast cancer risk in humans.
Collapse
Affiliation(s)
- Logan C Walker
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch 8140, New Zealand.
| | - George A R Wiggins
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch 8140, New Zealand.
| | - John F Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch 8140, New Zealand.
| |
Collapse
|
23
|
Yang Z, Zhuan B, Yan Y, Jiang S, Wang T. Integrated analyses of copy number variations and gene differential expression in lung squamous-cell carcinoma. Biol Res 2015; 48:47. [PMID: 26297502 PMCID: PMC4546326 DOI: 10.1186/s40659-015-0038-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022] Open
Abstract
Background Although numerous efforts have been made, the pathogenesis underlying lung squamous-cell carcinoma (SCC) remains unclear. This study aimed to identify the CNV-driven genes by an integrated analysis of both the gene differential expression and copy number variation (CNV). Results A higher burden of the CNVs was found in 10–50 kb length. The 16 CNV-driven genes mainly located in chr 1 and chr 3 were enriched in immune response [e.g. complement factor H (CFH) and Fc fragment of IgG, low affinity IIIa, receptor (FCGR3A)], starch and sucrose metabolism [e.g. amylase alpha 2A (AMY2A)]. Furthermore, 38 TFs were screened for the 9 CNV-driven genes and then the regulatory network was constructed, in which the GATA-binding factor 1, 2, and 3 (GATA1, GATA2, GATA3) jointly regulated the expression of TP63. Conclusions The above CNV-driven genes might be potential contributors to the development of lung SCC.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Department of Respiratory and Critical Care Medicine, Ningxia People's Hospital, Yinchuan, 750011, China.
| | - Bing Zhuan
- Department of Respiratory and Critical Care Medicine, Ningxia People's Hospital, Yinchuan, 750011, China.
| | - Ying Yan
- Department of Respiratory and Critical Care Medicine, Ningxia People's Hospital, Yinchuan, 750011, China.
| | - Simin Jiang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
24
|
Wang H, Liang L, Fang JY, Xu J. Somatic gene copy number alterations in colorectal cancer: new quest for cancer drivers and biomarkers. Oncogene 2015; 35:2011-9. [PMID: 26257062 DOI: 10.1038/onc.2015.304] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/07/2015] [Accepted: 07/12/2015] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) results from the accumulation of genetic alterations, and somatic copy number alterations (CNAs) are crucial for the development of CRC. Genome-wide survey of CNAs provides opportunities for identifying cancer driver genes in an unbiased manner. The detection of aberrant CNAs may provide novel markers for the early diagnosis and personalized treatment of CRC. A major challenge in array-based profiling of CNAs is to distinguish the alterations that play causative roles from the random alterations that accumulate during colorectal carcinogenesis. In this view, we systematically discuss the frequent CNAs in CRC, focusing on functional genes that have potential diagnostic, prognostic and therapeutic significance.
Collapse
Affiliation(s)
- H Wang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - L Liang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - J-Y Fang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - J Xu
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
25
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
26
|
Moir-Meyer GL, Pearson JF, Lose F, Scott RJ, McEvoy M, Attia J, Holliday EG, Pharoah PD, Dunning AM, Thompson DJ, Easton DF, Spurdle AB, Walker LC. Rare germline copy number deletions of likely functional importance are implicated in endometrial cancer predisposition. Hum Genet 2015; 134:269-78. [PMID: 25381466 DOI: 10.1007/s00439-014-1507-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/29/2014] [Indexed: 01/15/2023]
Abstract
Endometrial cancer is the most common invasive gynaecological cancer in women, and relatively little is known about inherited risk factors for this disease. This is the first genome-wide study to explore the role of common and rare germline copy number variants (CNVs) in predisposition to endometrial cancer. CNVs were called from germline DNA of 1,209 endometrioid endometrial cancer cases and 528 cancer-unaffected female controls. Overall CNV load of deletions or DNA gains did not differ significantly between cases and controls (P > 0.05), but cases presented with an excess of rare germline deletions overlapping likely functional genomic regions including genes (P = 8 × 10(-10)), CpG islands (P = 1 × 10(-7)) and sno/miRNAs regions (P = 3 × 10(-9)). On average, at least one additional gene and two additional CpG islands were disrupted by rare deletions in cases compared to controls. The most pronounced difference was that over 30 sno/miRNAs were disrupted by rare deletions in cases for every single disruption event in controls. A total of 13 DNA repair genes were disrupted by rare deletions in 19/1,209 cases (1.6%) compared to one gene in 1/528 controls (0.2%; P = 0.007), and this increased DNA repair gene loss in cases persisted after excluding five individuals carrying CNVs disrupting mismatch repair genes MLH1, MSH2 and MSH6 (P = 0.03). There were 34 miRNA regions deleted in at least one case but not in controls, the most frequent of which encompassed hsa-mir-661 and hsa-mir-203. Our study implicates rare germline deletions of functional and regulatory regions as possible mechanisms conferring endometrial cancer risk, and has identified specific regulatory elements as candidates for further investigation.
Collapse
Affiliation(s)
- Gemma L Moir-Meyer
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Copy Number Variation in Chickens: A Review and Future Prospects. MICROARRAYS 2014; 3:24-38. [PMID: 27605028 PMCID: PMC5003453 DOI: 10.3390/microarrays3010024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 12/19/2022]
Abstract
DNA sequence variations include nucleotide substitution, deletion, insertion, translocation and inversion. Deletion or insertion of a large DNA segment in the genome, referred to as copy number variation (CNV), has caught the attention of many researchers recently. It is believed that CNVs contribute significantly to genome variability, and thus contribute to phenotypic variability. In chickens, genome-wide surveys with array comparative genome hybridization (aCGH), SNP chip detection or whole genome sequencing have revealed a large number of CNVs. A large portion of chicken CNVs involves protein coding or regulatory sequences. A few CNVs have been demonstrated to be the determinant factors for single gene traits, such as late-feathering, pea-comb and dermal hyperpigmentation. The phenotypic effects of the majority of chicken CNVs are to be delineated.
Collapse
|