1
|
Niland S, Eble JA. Decoding the MMP14 Integrin Link: Key Player in the Secretome Landscape. Matrix Biol 2025:S0945-053X(25)00010-1. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
2
|
Kwon MJ. Matrix metalloproteinases as therapeutic targets in breast cancer. Front Oncol 2023; 12:1108695. [PMID: 36741729 PMCID: PMC9897057 DOI: 10.3389/fonc.2022.1108695] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are the most prominent proteinases involved in tumorigenesis. They were initially recognized to promote tumor progression by remodeling the extracellular matrix through their proteolytic activity. However, accumulating evidence has revealed that some MMPs have protective roles in cancer progression, and the same MMP can exert opposing roles depending on the cell type in which it is expressed or the stage of cancer. Moreover, studies have shown that MMPs are involved in cancer progression through their roles in other biological processes such as cell signaling and immune regulation, independent of their catalytic activity. Despite the prognostic significance of tumoral or stromal expression of MMPs in breast cancer, their roles and molecular mechanisms in breast cancer progression remain unclear. As the failures of early clinical trials with broad-spectrum MMP inhibitors were mainly due to a lack of drug specificity, substantial efforts have been made to develop highly selective MMP inhibitors. Some recently developed MMP inhibitory monoclonal antibodies demonstrated promising anti-tumor effects in preclinical models of breast cancer. Importantly, anti-tumor effects of these antibodies were associated with the modulation of tumor immune microenvironment, suggesting that the use of MMP inhibitors in combination with immunotherapy can improve the efficacy of immunotherapy in HER2-positive or triple-negative breast cancer. In this review, the current understanding of the roles of tumoral or stromal MMPs in breast cancer is summarized, and recent advances in the development of highly selective MMP inhibitors are discussed.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- Vessel-Organ Interaction Research Center (MRC), College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea,BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea,*Correspondence: Mi Jeong Kwon,
| |
Collapse
|
3
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
4
|
Kou L, Jiang X, Lin X, Huang H, Wang J, Yao Q, Chen R. Matrix Metalloproteinase Inspired Therapeutic Strategies for Bone Diseases. Curr Pharm Biotechnol 2021; 22:451-467. [PMID: 32603279 DOI: 10.2174/1389201021666200630140735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2020] [Revised: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023]
Abstract
Matrix Metalloproteinases (MMPs), as a family of zinc-containing enzymes, show the function of decomposing Extracellular Matrix (ECM) and participate in the physiological processes of cell migration, growth, inflammation, and metabolism. Clinical and experimental studies have indicated that MMPs play an essential role in tissue injury and repair as well as tumor diagnosis, metastasis, and prognosis. An increasing number of researchers have paid attention to their functions and mechanisms in bone health and diseases. The present review focuses on MMPs-inspired therapeutic strategies for the treatment of bone-related diseases. We introduce the role of MMPs in bone diseases, highlight the MMPs-inspired therapeutic options, and posit MMPs as a trigger for smart cell/drug delivery.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinlu Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Wang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Endoglin in the Spotlight to Treat Cancer. Int J Mol Sci 2021; 22:ijms22063186. [PMID: 33804796 PMCID: PMC8003971 DOI: 10.3390/ijms22063186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
A spotlight has been shone on endoglin in recent years due to that fact of its potential to serve as both a reliable disease biomarker and a therapeutic target. Indeed, endoglin has now been assigned many roles in both physiological and pathological processes. From a molecular point of view, endoglin mainly acts as a co-receptor in the canonical TGFβ pathway, but also it may be shed and released from the membrane, giving rise to the soluble form, which also plays important roles in cell signaling. In cancer, in particular, endoglin may contribute to either an oncogenic or a non-oncogenic phenotype depending on the cell context. The fact that endoglin is expressed by neoplastic and non-neoplastic cells within the tumor microenvironment suggests new possibilities for targeted therapies. Here, we aimed to review and discuss the many roles played by endoglin in different tumor types, as well as the strong evidence provided by pre-clinical and clinical studies that supports the therapeutic targeting of endoglin as a novel clinical strategy.
Collapse
|
6
|
Niland S, Eble JA. Hold on or Cut? Integrin- and MMP-Mediated Cell-Matrix Interactions in the Tumor Microenvironment. Int J Mol Sci 2020; 22:ijms22010238. [PMID: 33379400 PMCID: PMC7794804 DOI: 10.3390/ijms22010238] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.
Collapse
|
7
|
Igreja Sá IC, Tripska K, Hroch M, Hyspler R, Ticha A, Lastuvkova H, Schreiberova J, Dolezelova E, Eissazadeh S, Vitverova B, Najmanova I, Vasinova M, Pericacho M, Micuda S, Nachtigal P. Soluble Endoglin as a Potential Biomarker of Nonalcoholic Steatohepatitis (NASH) Development, Participating in Aggravation of NASH-Related Changes in Mouse Liver. Int J Mol Sci 2020; 21:E9021. [PMID: 33261044 PMCID: PMC7731045 DOI: 10.3390/ijms21239021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is characterized by hepatic steatosis with inflammation and fibrosis. Membrane endoglin (Eng) expression is shown to participate in fibrosis, and plasma concentrations of soluble endoglin (sEng) are increased in patients with hypercholesterolemia and type 2 diabetes mellitus. We hypothesize that NASH increases both hepatic Eng expression and sEng in blood and that high levels of sEng modulate cholesterol and bile acid (BA) metabolism and affect NASH progression. Three-month-old transgenic male mice overexpressing human sEng and their wild type littermates are fed for six months with either a high-saturated fat, high-fructose high-cholesterol (FFC) diet or a chow diet. Evaluation of NASH, Liquid chromatography-mass spectrometry (LC/MS) analysis of BA, hepatic expression of Eng, inflammation, fibrosis markers, enzymes and transporters involved in hepatic cholesterol and BA metabolism are assessed using Real-Time Quantitative Reverse Transcription Polymerase Chain reaction (qRT-PCR) and Western blot. The FFC diet significantly increases mouse sEng levels and increases hepatic expression of Eng. High levels of human sEng results in increased hepatic deposition of cholesterol due to reduced conversion into BA, as well as redirects the metabolism of triglycerides (TAG) to its accumulation in the liver, via reduced TAG elimination by β-oxidation combined with reduced hepatic efflux. We propose that sEng might be a biomarker of NASH development, and the presence of high levels of sEng might support NASH aggravation by impairing the essential defensive mechanism protecting NASH liver against excessive TAG and cholesterol accumulation, suggesting the importance of high sEng levels in patients prone to develop NASH.
Collapse
Affiliation(s)
- Ivone Cristina Igreja Sá
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| | - Katarina Tripska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| | - Milos Hroch
- Department of Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic;
| | - Radomir Hyspler
- Centrum for Research and Development University Hospital, Hradec Kralove, 500 03 Hradec Kralove, Czech Republic; (R.H.); (A.T.)
| | - Alena Ticha
- Centrum for Research and Development University Hospital, Hradec Kralove, 500 03 Hradec Kralove, Czech Republic; (R.H.); (A.T.)
| | - Hana Lastuvkova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.L.); (J.S.); (E.D.)
| | - Jolana Schreiberova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.L.); (J.S.); (E.D.)
| | - Eva Dolezelova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.L.); (J.S.); (E.D.)
| | - Samira Eissazadeh
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| | - Barbora Vitverova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| | - Iveta Najmanova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| | - Martina Vasinova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| | - Miguel Pericacho
- Biomedical Research Institute of Salamanca and Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca, 370 06 Salamanca, Spain;
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.L.); (J.S.); (E.D.)
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| |
Collapse
|
8
|
Jiang S, Awadasseid A, Narva S, Cao S, Tanaka Y, Wu Y, Fu W, Zhao X, Wei C, Zhang W. Anti-cancer activity of benzoxazinone derivatives via targeting c-Myc G-quadruplex structure. Life Sci 2020; 258:118252. [PMID: 32791149 DOI: 10.1016/j.lfs.2020.118252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022]
Abstract
AIMS This study aimed to analyze the impact of four synthesized benzoxazinone derivatives as screening drugs on c-Myc-overexpressed cancer cells (H7402, HeLa, SK-RC-42, SGC7901, and A549) and to explore their interaction mechanisms in detail. MATERIALS AND METHODS Using morphological analysis, real-time cytotoxicity analysis, wound healing assay, reverse transcription PCR, electrophoretic mobility shift assay, and circular dichroism spectroscopy techniques. KEY FINDINGS Results revealed that these four compounds could inhibit proliferation of SK-RC-42, SGC7901, and A549 cells in five cancer cell lines to varying degrees and significantly hinder migration. More importantly, the RT-PCR assay showed that the compounds could surprisingly downregulate the expression of c-Myc mRNA in a dose-dependent manner in the five cancer cells, which may be one of the causes of cancer cell proliferation in vitro inhibition. Further EMSA assays demonstrated that at the molecular level of DNA, four compounds can induce the formation of G-quadruplexes (G4-DNAs) in the c-Myc gene promoter. In addition, the CD result of compound 1 clearly indicates that it specifically induces a c-Myc GC-rich 36mer double-stranded DNA in the c-Myc promoter to form a G-quadruplex hybrid configuration. In conclusion, the compounds studied could dose-dependently inhibit the growth and migration of the cancer cells being investigated. This is positively associated with the reduction of overexpression of the c-Myc gene, which may be significantly regulated by the association of compounds with the G-quadruplexes produced in the c-Myc gene promoter region. SIGNIFICANCE We conclude that three compounds merit further study, particularly against non-small-cell lung cancer, as leading compounds of anticancer drugs.
Collapse
Affiliation(s)
- Shikun Jiang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Suresh Narva
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Song Cao
- College of Pharmacy, East China University of Science and Technology, Shanghai 021, China.
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Wei Fu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyin Zhao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chuanhe Wei
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
9
|
Abstract
Matrix metalloproteinases (MMPs) and their endogenous inhibitors have been studied in the myocardium for the past 2 decades. An incomplete knowledge base and experimental design issues with inhibitors have hampered attempts at translation, but clinical interest remains high because of strong associations between MMPs and outcomes after myocardial infarction (MI) as well as mechanistic studies showing MMP involvement at multiple stages of the MI wound-healing process. This Review focuses on how our understanding of MMPs has evolved from a one-dimensional early focus on measuring MMP activity, monitoring MMP:inhibitor ratios, and evaluating one MMP-substrate pair to the current use of systems biology approaches to integrate the whole MMP repertoire of roles in the left ventricular response to MI. MMP9 is used as an example MMP to explain these concepts and to provide a template for examining MMPs as mechanistic mediators of cardiac remodelling.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA. .,Research Service,, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
10
|
Begum HM, Ta HP, Zhou H, Ando Y, Kang D, Nemes K, Mariano CF, Hao J, Yu M, Shen K. Spatial Regulation of Mitochondrial Heterogeneity by Stromal Confinement in Micropatterned Tumor Models. Sci Rep 2019; 9:11187. [PMID: 31371796 PMCID: PMC6671984 DOI: 10.1038/s41598-019-47593-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2019] [Accepted: 07/19/2019] [Indexed: 01/16/2023] Open
Abstract
Heterogeneity of mitochondrial activities in cancer cells exists across different disease stages and even in the same patient, with increased mitochondrial activities associated with invasive cancer phenotypes and circulating tumor cells. Here, we use a micropatterned tumor-stromal assay (μTSA) comprised of MCF-7 breast cancer cells and bone marrow stromal cells (BMSCs) as a model to investigate the role of stromal constraints in altering the mitochondrial activities of cancer cells within the tumor microenvironment (TME). Using microdissection and RNA sequencing, we revealed a differentially regulated pattern of gene expression related to mitochondrial activities and metastatic potential at the tumor-stromal interface. Gene expression was confirmed by immunostaining of mitochondrial mass, and live microscopic imaging of mitochondrial membrane potential (ΔΨm) and optical redox ratio. We demonstrated that physical constraints by the stromal cells play a major role in ΔΨm heterogeneity, which was positively associated with nuclear translocation of the YAP/TAZ transcriptional co-activators. Importantly, inhibiting actin polymerization and Rho-associated protein kinase disrupted the differential ΔΨm pattern. In addition, we showed a positive correlation between ΔΨm level and metastatic burden in vivo in mice injected with MDA-MB-231 breast cancer cells. This study supports a new regulatory role for the TME in mitochondrial heterogeneity and metastatic potential.
Collapse
Affiliation(s)
- Hydari Masuma Begum
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hoang P Ta
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hao Zhou
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yuta Ando
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Diane Kang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kristen Nemes
- Mork Family Department of Chemical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jia Hao
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- USC Stem Cell, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
11
|
Eltoukhy HS, Sinha G, Moore CA, Gergues M, Rameshwar P. Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie 2018; 155:92-103. [PMID: 29859990 DOI: 10.1016/j.biochi.2018.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
The secretome produced by cells within the bone marrow is significant to homeostasis. The bone marrow, a well-studied organ, has multiple niches with distinct roles for supporting stem cell functions. Thus, an understanding of mediators involved in the regulation of stem cells could serve as a model for clinical problems and solutions such as tissue repair and regeneration. The exosome secretome of bone marrow stem cells is a developing area of research with respect to the regenerative potential by bone marrow cell, particularly the mesenchymal stem cells. The bone marrow niche regulates endogenous processes such as hematopoiesis but could also support the survival of tumors such as facilitating the cancer stem cells to exist in dormancy for decades. The bone marrow-derived secretome will be critical to future development of therapeutic strategies for oncologic diseases, in addition to regenerative medicine. This article discusses the importance for parallel studies to determine how the same secretome may compromise safety during the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Hussam S Eltoukhy
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Garima Sinha
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Caitlyn A Moore
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Marina Gergues
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
12
|
Alsamman M, Sterzer V, Meurer SK, Sahin H, Schaeper U, Kuscuoglu D, Strnad P, Weiskirchen R, Trautwein C, Scholten D. Endoglin in human liver disease and murine models of liver fibrosis-A protective factor against liver fibrosis. Liver Int 2018; 38:858-867. [PMID: 28941022 PMCID: PMC5947658 DOI: 10.1111/liv.13595] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/28/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Liver fibrosis is the outcome of chronic liver injury. Transforming growth factor-β (TGF-β) is a major profibrogenic cytokine modulating hepatic stellate cell (HSC) activation and extracellular matrix homeostasis. This study analyses the effect of Endoglin (Eng), a TGF-β type III auxiliary receptor, on fibrogenesis in two models of liver injury by HSC-specific endoglin deletion. METHODS Eng expression was measured in human and murine samples of liver injury. After generating GFAPCre(+) EngΔHSC mice, the impact of Endoglin deletion on chronic liver fibrosis was analysed. For in vitro analysis, Engflox/flox HSCs were infected with Cre-expressing virus to deplete Endoglin and fibrogenic responses were analysed. RESULTS Endoglin is upregulated in human liver injury. The receptor is expressed in liver tissues and mesenchymal liver cells with much higher abundance of the L-Eng splice variant. Comparing GFAPCre(-) Engf/f to GFAPCre(+) EngΔHSC mice in toxic liver injury, livers of GFAPCre(+) EngΔHSC mice showed 39.9% (P < .01) higher Hydroxyproline content compared to GFAPCre(-) Engf/f littermates. Sirius Red staining underlined these findings, showing 58.8% (P < .05) more Collagen deposition in livers of GFAPCre(+) EngΔHSC mice. Similar results were obtained in mice subjected to cholestatic injury. CONCLUSION Endoglin isoforms are differentially upregulated in liver samples of patients with chronic and acute liver injury. Endoglin deficiency in HSC significantly aggravates fibrosis in response to injury in two different murine models of liver fibrosis and increases α-SMA and fibronectin expression in vitro. This suggests that Endoglin protects against fibrotic injury, likely through modulation of TGF-β signalling.
Collapse
Affiliation(s)
- Muhammad Alsamman
- Department of Internal Medicine IIIRWTH University Hospital AachenAachenGermany
| | - Viktor Sterzer
- Department of Internal Medicine IIIRWTH University Hospital AachenAachenGermany
| | - Steffen K. Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical ChemistryRWTH University Hospital AachenAachenGermany
| | - Hacer Sahin
- Department of Internal Medicine IIIRWTH University Hospital AachenAachenGermany
| | | | - Deniz Kuscuoglu
- Department of Internal Medicine IIIRWTH University Hospital AachenAachenGermany
| | - Pavel Strnad
- Department of Internal Medicine IIIRWTH University Hospital AachenAachenGermany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical ChemistryRWTH University Hospital AachenAachenGermany
| | - Christian Trautwein
- Department of Internal Medicine IIIRWTH University Hospital AachenAachenGermany
| | - David Scholten
- Department of Internal Medicine IIIRWTH University Hospital AachenAachenGermany
| |
Collapse
|
13
|
Oloyo AK, Ambele MA, Pepper MS. Contrasting Views on the Role of Mesenchymal Stromal/Stem Cells in Tumour Growth: A Systematic Review of Experimental Design. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:103-124. [DOI: 10.1007/5584_2017_118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
|
14
|
Rose M, Meurer SK, Kloten V, Weiskirchen R, Denecke B, Antonopoulos W, Deckert M, Knüchel R, Dahl E. ITIH5 induces a shift in TGF-β superfamily signaling involving Endoglin and reduces risk for breast cancer metastasis and tumor death. Mol Carcinog 2017; 57:167-181. [PMID: 28940371 DOI: 10.1002/mc.22742] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2017] [Revised: 09/07/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
ITIH5 has been proposed being a novel tumor suppressor in various tumor entities including breast cancer. Recently, ITIH5 was furthermore identified as metastasis suppressor gene in pancreatic carcinoma. In this study we aimed to specify the impact of ITIH5 on metastasis in breast cancer. Therefore, DNA methylation of ITIH5 promoter regions was assessed in breast cancer metastases using the TCGA portal and methylation-specific PCR (MSP). We reveal that the ITIH5 upstream promoter region is particularly responsible for ITIH5 gene inactivation predicting shorter survival of patients. Notably, methylation of this upstream ITIH5 promoter region was associated with disease progression, for example, abundantly found in distant metastases. In vitro, stably ITIH5-overexpressing MDA-MB-231 breast cancer clones were used to analyze cell invasion and to identify novel ITIH5-downstream targets. Indeed, ITIH5 re-expression suppresses invasive growth of MDA-MB-231 breast cancer cells while modulating expression of genes involved in metastasis including Endoglin (ENG), an accessory TGF-β receptor, which was furthermore co-expressed with ITIH5 in primary breast tumors. By performing in vitro stimulation of TGF-β signaling using TGF-β1 and BMP-2 we show that ITIH5 triggered a TGF-β superfamily signaling switch contributing to downregulation of targets like Id1, known to endorse metastasis. Moreover, ITIH5 predicts longer overall survival (OS) only in those breast tumors that feature high ENG expression or inversely regulated ID1 suggesting a clinical and functional impact of an ITIH5-ENG axis for breast cancer progression. Hence, we provide evidence that ITIH5 may represent a novel modulator of TGF-β superfamily signaling involved in suppressing breast cancer metastasis.
Collapse
Affiliation(s)
- Michael Rose
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Vera Kloten
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Bernd Denecke
- IZKF Aachen, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wiebke Antonopoulos
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Martina Deckert
- Department of Neuropathology, University of Cologne, Cologne, Germany
| | - Ruth Knüchel
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Kallens V, Tobar N, Molina J, Bidegain A, Smith PC, Porras O, Martínez J. Glucose Promotes a Pro-Oxidant and Pro-Inflammatory Stromal Microenvironment Which Favors Motile Properties in Breast Tumor Cells. J Cell Biochem 2017; 118:994-1002. [DOI: 10.1002/jcb.25650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Violeta Kallens
- Laboratorio de Biología Celular y Molecular, INTA; Universidad de Chile; Santiago 7830490 Chile
| | - Nicolás Tobar
- Laboratorio de Biología Celular y Molecular, INTA; Universidad de Chile; Santiago 7830490 Chile
| | - Jessica Molina
- Laboratorio de Biología Celular y Molecular, INTA; Universidad de Chile; Santiago 7830490 Chile
| | - Arantzazú Bidegain
- Laboratorio de Biología Celular y Molecular, INTA; Universidad de Chile; Santiago 7830490 Chile
| | - Patricio C. Smith
- Laboratorio de Fisiología Periodontal; Facultad de Medicina; Pontificia Universidad Católica de Chile; Santiago 8330024 Chile
| | - Omar Porras
- Laboratorio de Biología Celular y Molecular, INTA; Universidad de Chile; Santiago 7830490 Chile
| | - Jorge Martínez
- Laboratorio de Biología Celular y Molecular, INTA; Universidad de Chile; Santiago 7830490 Chile
| |
Collapse
|
16
|
Mohsen A, Collery P, Garnotel R, Brassart B, Etique N, Mohamed Sabry G, Elsherif Hassan R, Jeannesson P, Desmaële D, Morjani H. A new gallium complex inhibits tumor cell invasion and matrix metalloproteinase MMP-14 expression and activity. Metallomics 2017; 9:1176-1184. [DOI: 10.1039/c7mt00049a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
In this study, we investigated the effect of [N-(5-chloro-2-hydroxyphenyl)-l-aspartato] chlorogallate (GS2) on tumor cell invasion and on the expression and activity of MMPs.
Collapse
|
17
|
Zhao J, Kong Z, Xu F, Shen W. A role of MMP-14 in the regulation of invasiveness of nasopharyngeal carcinoma. Tumour Biol 2015; 36:8609-15. [PMID: 26040767 DOI: 10.1007/s13277-015-3558-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2015] [Accepted: 05/11/2015] [Indexed: 11/28/2022] Open
Abstract
Although matrix metalloproteinase 14 (MMP-14) has been shown to play a substantial role in the carcinogenesis of some types of cancer, its involvement in the pathogenesis of nasopharyngeal carcinoma (NPC) has not been reported. Here, we analyzed MMP-14 levels in the NPC specimens from patients and compared with the paired normal nasopharynx (NNP) tissues. We found that NPC had significantly higher messenger RNA (mRNA) and protein levels of MMP-14. Moreover, higher levels of MMP-14 correlated with more advanced status of clinical stage and lymphatic metastasis. In vitro, MMP-14 levels determined the potential of invasiveness of NPC cells, possibly through induction of EMT-associated genes. Our data thus highlight MMP-14 as a novel therapeutic target for NPC.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Otorhinolaryngology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, China
| | - Zhongyu Kong
- Department of Otorhinolaryngology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, China
| | - Feng Xu
- Department of Otorhinolaryngology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, China
| | - Wei Shen
- Department of Otorhinolaryngology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, China.
| |
Collapse
|
18
|
Hirschhorn T, di Clemente N, Amsalem AR, Pepinsky RB, Picard JY, Smorodinsky NI, Cate RL, Ehrlich M. Constitutive negative regulation in the processing of the anti-Müllerian hormone receptor II. J Cell Sci 2015; 128:1352-64. [PMID: 25663701 DOI: 10.1242/jcs.160143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
The levels and intracellular localization of wild-type transforming growth factor β superfamily (TGFβ-SF) receptors are tightly regulated by endocytic trafficking, shedding and degradation. In contrast, a main regulatory mechanism of mutation-bearing receptors involves their intracellular retention. Anti-Müllerian hormone receptor II (AMHRII, also known as AMHR2) is the type-II receptor for anti-Müllerian hormone (AMH), a TGFβ-SF ligand that mediates Müllerian duct regression in males. Here, we studied AMHRII processing and identified novel mechanisms of its constitutive negative regulation. Immunoblot analysis revealed that a significant portion of AMHRII was missing most of its extracellular domain (ECD) and, although glycosylated, was unfolded and retained in the endoplasmic reticulum. Exogenous expression of AMHRII, but not of type-II TGF-β receptor (TβRII, also known as TGFR2), resulted in its disulfide-bond-mediated homo-oligomerization and intracellular retention, and in a decrease in its AMH-binding capacity. At the plasma membrane, AMHRII differed from TβRII, forming high levels of non-covalent homomeric complexes, which exhibited a clustered distribution and restricted lateral mobility. This study identifies novel mechanisms of negative regulation of a type-II TGFβ-SF receptor through cleavage, intracellular retention and/or promiscuous disulfide-bond mediated homo-oligomerization.
Collapse
Affiliation(s)
- Tal Hirschhorn
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel 69978
| | - Nathalie di Clemente
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013 Paris, France CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, F-75013 Paris, France INSERM U1133, Physiologie de l'Axe Gonadotrope, F-75013 Paris, France
| | - Ayelet R Amsalem
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - R Blake Pepinsky
- Biogen-Idec, Inc., 14 Cambridge Center, Cambridge, MA 02142, USA
| | - Jean-Yves Picard
- INSERM U1133, Physiologie de l'Axe Gonadotrope, F-75013 Paris, France
| | - Nechama I Smorodinsky
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel 69978
| | - Richard L Cate
- INSERM U1133, Physiologie de l'Axe Gonadotrope, F-75013 Paris, France Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel 69978
| |
Collapse
|
19
|
del Castillo G, Sánchez-Blanco E, Martín-Villar E, Valbuena-Diez AC, Langa C, Pérez-Gómez E, Renart J, Bernabéu C, Quintanilla M. Soluble endoglin antagonizes Met signaling in spindle carcinoma cells. Carcinogenesis 2014; 36:212-22. [PMID: 25503931 DOI: 10.1093/carcin/bgu240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Increased levels of soluble endoglin (Sol-Eng) correlate with poor outcome in human cancer. We have previously shown that shedding of membrane endoglin, and concomitant release of Sol-Eng is a late event in chemical mouse skin carcinogenesis associated with the development of undifferentiated spindle cell carcinomas (SpCCs). In this report, we show that mouse skin SpCCs exhibit a high expression of hepatocyte growth factor (HGF) and an elevated ratio of its active tyrosine kinase receptor Met versus total Met levels. We have evaluated the effect of Sol-Eng in spindle carcinoma cells by transfection of a cDNA encoding most of the endoglin ectodomain or by using purified recombinant Sol-Eng. We found that Sol-Eng inhibited both mitogen-activated protein kinase (MAPK) activity and cell growth in vitro and in vivo. Sol-Eng also blocked MAPK activation by transforming growth factor-β1 (TGF-β1) and impaired both basal and HGF-induced activation of Met and downstream MAPK. Moreover, Sol-Eng strongly reduced basal and HGF-stimulated spindle cell migration and invasion. Both Sol-Eng and full-length endoglin were shown to interact with Met by coimmunoprecipitation experiments. However, full-length endoglin expressed at the plasma membrane of spindle carcinoma cells had no effect on Met signaling activity, and was unable to inhibit HGF-induced cell migration/invasion. These results point to a paradoxical suppressor role for Sol-Eng in carcinogenesis.
Collapse
Affiliation(s)
- Gaelle del Castillo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain and Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain Present address: Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Esther Sánchez-Blanco
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain and Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain Present address: Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Ester Martín-Villar
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain and Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain Present address: Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Ana C Valbuena-Diez
- Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Carmen Langa
- Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Eduardo Pérez-Gómez
- Present address: Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Jaime Renart
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain and Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain Present address: Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Carmelo Bernabéu
- Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain and Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain Present address: Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|