1
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Wang Z, Liu Q, Huang P, Cai G. miR-299-3p suppresses cell progression and induces apoptosis by downregulating PAX3 in gastric cancer. Open Life Sci 2021; 16:266-276. [PMID: 33817318 PMCID: PMC8005920 DOI: 10.1515/biol-2021-0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is ranked the fourth leading cause of cancer-related death, with an over 75% mortality rate worldwide. In recent years, miR-299-3p has been identified as a biomarker in multiple cancers, such as acute promyelocytic leukemia, thyroid cancer, and lung cancer. However, the regulatory mechanism of miR-299-3p in GC cell progression is still largely unclear. Cell viability and apoptosis tests were performed by CCK8 and flow cytometry assay, respectively. Transwell assay was recruited to examine cell invasion ability. The interaction between miR-299-3p and PAX3 was determined by the luciferase reporter system. PAX3 protein level was evaluated by western blot assay. The expression of miR-299-3p was downregulated in GC tissues and cell lines (MKN-45, AGS, and MGC-803) compared with the normal tissues and cells. Besides, overexpression of miR-299-3p significantly suppressed proliferation and invasion and promoted apoptosis in GC. Next, we clarified that PAX3 expression was regulated by miR-299-3p using a luciferase reporter system, qRT-PCR, and western blot assay. Additionally, downregulation of PAX3 repressed GC cell progression. The rescue experiments indicated that restoration of PAX3 inversed miR-299-3p-mediated inhibition on cell proliferation and invasion. miR-299-3p suppresses cell proliferation and invasion as well as induces apoptosis by regulating PAX3 expression in GC, representing desirable biomarkers for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Zhenfen Wang
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| | - Qing Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| | - Ping Huang
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| | - Guohao Cai
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| |
Collapse
|
3
|
Zhu X, Liu C, Shi J, Zhou Z, Chen S, Jami SA. Circular RNA circANKIB1 promotes the progression of osteosarcoma by regulating miR-217/PAX3 axis. J Bone Oncol 2021; 27:100347. [PMID: 33552886 PMCID: PMC7844576 DOI: 10.1016/j.jbo.2021.100347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been discovered to exert essential roles in human cancers, including osteosarcoma (OS). The aim of this study was to investigate the exact roles and regulatory mechanism of circRNA ankyrin repeat and IBR domain containing 1 (circANKIB1) in OS. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression levels of circANKIB1, microRNA-217 (miR-217) and paired box 3 (PAX3). Cell proliferation was assessed by colony formation assay. Cell cycle distribution and apoptosis rate were determined by flow cytometry analysis. Wound healing assay and transwell assay were employed to evaluate cell migration and invasion abilities. Western blot assay was used to analyze the protein levels of PAX3, E-cadherin and Vimentin. Targeting relationship between miR-217 and circANKIB1 or PAX3 was predicted by Circular RNA Interactome or TargetScan and demonstrated by dual-luciferase reporter assay. The mice xenograft model was established to confirm the role of circANKIB1 in vivo. Results CircANKIB1 and PAX3 were high-expressed, whereas miR-217 was low-expressed in OS tissues and cells. Knockdown of circANKIB1 inhibited the progression of OS by reducing cell proliferation, migration, invasion, and tumor growth (in vivo), and inducing apoptosis. MiR-217 was a direct target of circANKIB1, and its inhibition reversed the inhibitory effect of circANKIB1 knockdown on the progression of OS cells. Moreover, PAX3 was a direct target of miR-217, and miR-217 exerted the anti-tumor role in OS cells by targeting PAX3. Furthermore, circANKIB1 positively regulated PAX3 expression by sponging miR-217. Conclusion Knockdown of circANKIB1 suppressed OS progression by upregulating miR-217 and downregulating PAX3, which might provide a novel insight into the pathogenesis of OS.
Collapse
Affiliation(s)
- Xi Zhu
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Changhao Liu
- Department of Spinal Surgery, Ningxia Medical University, Ningxia, China
| | - Jiandang Shi
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Ningxia, China
- Corresponding author at: Department of Spinal Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan City, Ningxia Hui Autonomous Region 750004, China.
| | - Zhanwen Zhou
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Suoli Chen
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Sayed Abdulla Jami
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| |
Collapse
|
4
|
Niu G, Deng L, Zhang X, Hu Z, Han S, Xu K, Hong R, Meng H, Ke C. GABRD promotes progression and predicts poor prognosis in colorectal cancer. Open Med (Wars) 2020; 15:1172-1183. [PMID: 33336074 PMCID: PMC7718617 DOI: 10.1515/med-2020-0128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Little is known about the functional roles of gamma-aminobutyric acid type A receptor subunit delta (GABRD) in colorectal cancer (CRC). The expression of GABRD between CRCs and adjacent normal tissues (NTs), metastasis and primary tumors was compared using public transcriptomic datasets. A tissue microarray and immunohistochemical staining (IHC) were used to determine the clinical and prognostic significance of the GABRD in CRC. We used gain-of-function and loss-of-function experiments to investigate the in vitro roles of GABRD in cultured CRC cells. We characterized the potential mechanism of GABRD’s activities in CRC using a Gene Set Enrichment Analysis (GSEA) with The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) dataset. We found that the GABRD expression was significantly increased in CRCs compared to that in NTs, but was similar between metastasis and primary tumors. Overexpression of GABRD was significantly associated with later pTNM stages and unfavorable patient survival. Overexpression of GABRD accelerated while knock-down of GABRD inhibited cell growth and migration. Mechanistically, the function of GABRD might be ascribed to its influence on major oncogenic events such as epithelial–mesenchymal transition (EMT), angiogenesis, and hedgehog signaling. Collectively, GABRD could be a novel prognostic predictor for CRC that deserves further investigation.
Collapse
Affiliation(s)
- Gengming Niu
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| | - Li Deng
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| | - Xiaotian Zhang
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| | - Zhiqing Hu
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| | - Shanliang Han
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| | - Ke Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Runqi Hong
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| | - He Meng
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chongwei Ke
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| |
Collapse
|
5
|
Zeng K, Xie W, Huang J, Yang J, Deng K, Luo X. PAX3 silencing inhibits prostate cancer progression through the suppression of the TGF-β/Smad signaling axis. Cell Biol Int 2020; 44:2131-2139. [PMID: 32672875 DOI: 10.1002/cbin.11421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 01/20/2023]
Abstract
Multiple studies have confirmed the pro-oncogenic effects of PAX3 in an array of cancers, but its role in prostate cancer (PCa) remains largely undefined. The aim of this study is to investigate the role of PAX3 in PCa. PAX3 expression was compared between PCa tumor tissue and nontumor tissues and PCa cell lines and normal prostate epithelial cells (PNT2) by western blot analysis and immunohistochemistry staining. MTT and immunofluorescence assays were used to detect PCa cell proliferation. Flow cytometry was used to evaluate cell apoptosis in PCa. Transwell assays were used for the determination of cell migration and PCa cell invasion. PAX3 expression was higher in PCa tissues and human PCa cell lines. Moreover, PAX3 silencing inhibited the proliferation, metastasis, and epithelial-mesenchymal transition (EMT) of PCa cells, and increased the rates of apoptosis. PAX3 silencing inhibited transforming growth factor-β (TGF-β)/Smad signaling in PCa cells. The effects of si-PAX3 on the proliferation, apoptosis, metastasis, and EMT of PCa cells were alleviated by TGF-β1 treatment. PAX3 silencing inhibits PCa progression through the inhibition of TGF-β/Smad signaling. This reveals PAX3 as a novel biomarker and therapeutic target for future PCa treatments.
Collapse
Affiliation(s)
- Ke Zeng
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Wenxian Xie
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China
| | - Jun Huang
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Jian Yang
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Kefei Deng
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Xiaohui Luo
- Department of Urology, Baoji Central Hospital, Baoji, Shaanxi, China
| |
Collapse
|
6
|
Xie S, Chang Y, Jin H, Yang F, Xu Y, Yan X, Lin A, Shu Q, Zhou T. Non-coding RNAs in gastric cancer. Cancer Lett 2020; 493:55-70. [PMID: 32712234 DOI: 10.1016/j.canlet.2020.06.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that play crucial regulatory roles in many fundamental biological processes. The dysregulation of ncRNAs is significantly associated with the progression of human cancers, including gastric cancer. In this review, we have summarized the oncogenic or tumor-suppressive roles and the regulatory mechanisms of lncRNAs, miRNAs, circRNAs and piRNAs, and have discussed their potential as biomarkers or therapeutic targets in gastric cancer.
Collapse
Affiliation(s)
- Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongxia Chang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Jin
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Feng Yang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yanjun Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xiaoyi Yan
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Tianhua Zhou
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
7
|
Zhan H, Tu S, Zhang F, Shao A, Lin J. MicroRNAs and Long Non-coding RNAs in c-Met-Regulated Cancers. Front Cell Dev Biol 2020; 8:145. [PMID: 32219093 PMCID: PMC7078111 DOI: 10.3389/fcell.2020.00145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are components of many signaling pathways associated with tumor aggressiveness and cancer metastasis. Some lncRNAs are classified as competitive endogenous RNAs (ceRNAs) that bind to specific miRNAs to prevent interaction with target mRNAs. Studies have shown that the hepatocyte growth factor/mesenchymal-epithelial transition factor (HGF/c-Met) pathway is involved in physiological and pathological processes such as cell growth, angiogenesis, and embryogenesis. Overexpression of c-Met can lead to sustained activation of downstream signals, resulting in carcinogenesis, metastasis, and resistance to targeted therapies. In this review, we evaluated the effects of anti-oncogenic and oncogenic non-coding RNAs (ncRNAs) on c-Met, and the interactions among lncRNAs, miRNAs, and c-Met in cancer using clinical and tissue chromatin immunoprecipition (ChIP) analysis data. We summarized current knowledge of the mechanisms and effects of the lncRNAs/miR-34a/c-Met axis in various tumor types, and evaluated the potential therapeutic value of lncRNAs and/or miRNAs targeted to c-Met on drug-resistance. Furthermore, we discussed the functions of lncRNAs and miRNAs in c-Met-related carcinogenesis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Hong Zhan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhang
- School of Medicine, Zhejiang University Hangzhou, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Cancer exosomal microRNAs from gefitinib-resistant lung cancer cells cause therapeutic resistance in gefitinib-sensitive cells. Surg Today 2020; 50:1099-1106. [PMID: 32052182 DOI: 10.1007/s00595-020-01976-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Exosomes and their cargo microRNAs play a significant role in various biological processes in cancer. We hypothesized that microRNAs in exosomes secreted by gefitinib-resistant lung cancer cells might induce resistant phenotypes in otherwise gefitinib-sensitive lung cancer cells. METHODS We isolated exosomes generated by the gefitinib-resistant human lung adenocarcinoma cell line PS-9/ZD. PC-9, which is a gefitinib-sensitive cell line, was treated with the PC-9/ZD exosomes, and these PC-9 cells were analyzed for cell proliferation after treatment with gefitinib. miRNA arrays were analyzed in PC-9 and PC-9/ZD cells, and we isolated microRNAs that were expressed at elevated levels in PC-9/ZD cells. Furthermore, we transfected these microRNAs into PC-9 cells and analyzed the effects on the cells' sensitivity to gefitinib. RESULTS Exosomes isolated from PC-9/ZD cells significantly increased the proliferation of PC-9 cells during gefitinib treatment. A microRNA array analysis showed that miR-564, miR-658, miR-3652, miR-3126-5p, miR-3682-3p and miR-6810-5p were significantly upregulated in PC-9/ZD cells. PC-9 cells transfected with miR-564 or miR-658 showed chemo-resistant phenotypes. CONCLUSION Exosomal miR-564 and miR-658 derived from gefitinib-resistant lung cancer cells induce drug resistance in sensitive cells. Cell-to-cell interaction via exosomal microRNAs may be a novel mechanism and therapeutic target of resistance against gefitinib.
Collapse
|
9
|
Liu X, Sun R, Chen J, Liu L, Cui X, Shen S, Cui G, Ren Z, Yu Z. Crosstalk Mechanisms Between HGF/c-Met Axis and ncRNAs in Malignancy. Front Cell Dev Biol 2020; 8:23. [PMID: 32083078 PMCID: PMC7004951 DOI: 10.3389/fcell.2020.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Several lines of evidence have confirmed the magnitude of crosstalk between HGF/c-Met axis (hepatocyte growth factor and its high-affinity receptor c-mesenchymal-epithelial transition factor) and non-coding RNAs (ncRNAs) in tumorigenesis. Through activating canonical or non-canonical signaling pathways, the HGF/c-Met axis mediates a range of oncogenic processes such as cell proliferation, invasion, apoptosis, and angiogenesis and is increasingly becoming a promising target for cancer therapy. Meanwhile, ncRNAs are a cluster of functional RNA molecules that perform their biological roles at the RNA level and are essential regulators of gene expression. The expression of ncRNAs is cell/tissue/tumor-specific, which makes them excellent candidates for cancer research. Many studies have revealed that ncRNAs play a crucial role in cancer initiation and progression by regulating different downstream genes or signal transduction pathways, including HGF/c-Met axis. In this review, we discuss the regulatory association between ncRNAs and the HGF/c-Met axis by providing a comprehensive understanding of their potential mechanisms and roles in cancer development. These findings could reveal their possible clinical applications as biomarkers for therapeutic interventions.
Collapse
Affiliation(s)
- Xin Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianan Chen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xichun Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shen Shen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Han GH, Chay DB, Nam S, Cho H, Chung JY, Kim JH. Prognostic implications of forkhead box protein O1 (FOXO1) and paired box 3 (PAX3) in epithelial ovarian cancer. BMC Cancer 2019; 19:1202. [PMID: 31823759 PMCID: PMC6905044 DOI: 10.1186/s12885-019-6406-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcription factors forkhead box protein O1 (FOXO1) and paired box 3 (PAX3) have been reported to play important roles in various cancers. However, their role in epithelial ovarian cancer (EOC) has not been elucidated yet. Therefore, we evaluated the expression and clinical significance of FOXO1 and PAX3 in EOC. METHODS Immunohistochemical analyses of FOXO1 and PAX3 in 212 EOCs, 57 borderline ovarian tumors, 153 benign epithelial ovarian tumors, and 79 nonadjacent normal epithelial tissues were performed using tissue microarray. Various clinicopathological variables, including the survival of EOC patients, were compared. In addition, the effect of FOXO1 on cell growth was assessed in EOC cell lines. RESULTS FOXO1 and PAX3 protein expression levels were significantly higher in EOC tissues than in nonadjacent normal epithelial tissues, benign tissues, and borderline tumors (all p < 0.001). In EOC tissues, FOXO1 expression was positively correlated with PAX3 expression (Spearman's rho = 0.118, p = 0.149). Multivariate survival analysis revealed that high FOXO1 expression (hazard ratio = 2.77 [95% CI, 1.48-5.18], p = 0.001) could be an independent prognostic factor for overall survival. Most importantly, high expression of both FOXO1 and PAX3 showed a high hazard ratio (4.60 [95% CI, 2.00-10.55], p < 0.001) for overall survival. Also in vitro results demonstrated that knockdown of FOXO1 was associated with decreased cell viability, migration, and colony formation. CONCLUSIONS This study revealed that high expression of FOXO1/PAX3 is an indicator of poor prognosis in EOC. Our results suggest the promising potential of FOXO1 and PAX3 as prognostic and therapeutic markers. The possible link between biological functions of FOXO1 and PAX3 in EOC warrants further studies.
Collapse
Affiliation(s)
- Gwan Hee Han
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Doo Byung Chay
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sanghee Nam
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, Seoul, 06273, South Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Forkhead box protein O1 (FOXO1) and paired box gene 3 (PAX3) overexpression is associated with poor prognosis in patients with cervical cancer. Int J Clin Oncol 2019; 24:1429-1439. [PMID: 31302815 DOI: 10.1007/s10147-019-01507-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/16/2019] [Indexed: 01/04/2023]
Abstract
PURPOSE Forkhead box protein O1 (FOXO1) and paired box gene 3 (PAX3) have been reported to play an imported role in human cancers, but their role in cervical cancer has not yet been clarified. In this study, we evaluated the functional role of FOXO1 in cervical cancer cells and investigated the expression and clinical significance of FOXO1 and PAX3 in cervical lesions. METHODS In vitro assessment of cell function by cell viability, migration, and invasion assays were performed on FOXO1-knockdown cervical cancer cells. Immunohistochemical (IHC) staining analyses of FOXO1 and PAX3 were performed with a tissue microarray (TMA). The clinical significance was evaluated by comparing the data with various clinicopathologic characteristics, including survival of patients with cervical cancer. RESULTS In vitro results revealed that knockdown of FOXO1 is associated with decreased cell viability (p < 0.001), migration (p < 0.001), and invasion (p < 0.05), supporting the oncogenic role of FOXO1 in cervical cancer. FOXO1 and PAX3 expression was significantly higher in CIN (both p < 0.001) and cancer tissue (both p < 0.001) than in normal tissue. Multivariate analysis indicated that FOXO1 expression (hazard ratio 4.01 [95% CI 1.22-13.10], p = 0.021) and an advanced FIGO stage (hazard ratio 3.89 [95% CI 1.35-11.19], p = 0.012) were independent prognostic factors for overall survival. CONCLUSIONS This study reveals increased FOXO1 and PAX3 expression in cervical cancers and indicates an oncogenic role of FOXO1 in cervical cancer cells that correlates with poor patient survival.
Collapse
|
12
|
Zhu ZY, Wang XL, Li DP. Silencing of MEOX1 Gene Inhibits Proliferation and Promotes Apoptosis of LNCaP Cells in Prostate Cancer. Cancer Biother Radiopharm 2019; 34:91-102. [DOI: 10.1089/cbr.2018.2545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zhi-Yuan Zhu
- Department of Drug and Equipment, The 86th Hospital of PLA, Ma'anshan, China
| | - Xiao-Le Wang
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Da-Peng Li
- Department of General Surgery, Shanghai General Hospital, Shanghai, China
| |
Collapse
|
13
|
Zhan FB, Zhang XW, Feng SL, Cheng J, Zhang Y, Li B, Xie LZ, Deng QR. MicroRNA-206 Reduces Osteosarcoma Cell Malignancy In Vitro by Targeting the PAX3-MET Axis. Yonsei Med J 2019; 60:163-173. [PMID: 30666838 PMCID: PMC6342722 DOI: 10.3349/ymj.2019.60.2.163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE This study was undertaken to explore how miR-206 represses osteosarcoma (OS) development. MATERIALS AND METHODS Expression levels of miR-206, PAX3, and MET mRNA were explored in paired OS and adjacent tissue specimens. A patient-derived OS cell line was established. miR-206 overexpression and knockdown were achieved by lentiviral transduction. PAX3 and MET overexpression were achieved by plasmid transfection. Treatment with hepatocyte growth factor (HGF) was utilized to activate c-Met receptor. Associations between miR-206 and PAX3 or MET mRNA in OS cells were verified by AGO2-RNA immunoprecipitation assay and miRNA pulldown assay. OS cell malignancy was evaluated in vitro by cell proliferation, metastasis, and apoptosis assays. PAX3 and MET gene expression in OS cells was assayed by RT-qPCR and Western blot. Activation of PI3K-AKT and MAPK-ERK in OS cells were assayed by evaluating Akt1 Ser473 phosphorylation and total threonine phosphorylation of Erk1/2, respectively. RESULTS Expression levels of miR-206 were significantly decreased in OS tissue specimens, compared to adjacent counterparts, and were inversely correlated with expression of PAX3 and MET mRNA. miR-206 directly interacted with PAX3 and MET mRNA in OS cells. miR-206 overexpression significantly reduced PAX3 and MET gene expression in OS cells in vitro, resulting in significant decreases in Akt1 and Erk1/2 activation, cell proliferation, and metastasis, as well as increases in cell apoptosis, while miR-206 knockdown showed the opposite effects. The effects of miR-206 overexpression on OS cells were reversed by PAX3 or MET overexpression, but only partially attenuated by HGF treatment. CONCLUSION miR-206 reduces OS cell malignancy in vitro by targeting PAX3 and MET gene expression.
Collapse
Affiliation(s)
- Fang Biao Zhan
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Xian Wei Zhang
- Department of Neurology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Shi Long Feng
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Jun Cheng
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - You Zhang
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Bo Li
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Li Zhong Xie
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Qian Rong Deng
- Department of Internal Medicine, Chongqing Wanzhou District Traditional Chinese Hospital, Chongqing, China.
| |
Collapse
|
14
|
He Q, Du H, Li Y. Retracted Article: MiR-206 reduced the malignancy of hepatocellular carcinoma cells in vitro by inhibiting MET and CTNNB1 gene expressions. RSC Adv 2019; 9:1717-1725. [PMID: 35518051 PMCID: PMC9059747 DOI: 10.1039/c8ra09229j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/08/2019] [Indexed: 11/21/2022] Open
Abstract
The anti-cancer role of miR-206 in hepatocellular carcinoma (HCC) cells has been reported, but its mechanism of action remains poorly understood.
Collapse
Affiliation(s)
- Qiang He
- Department of Hepatobiliary Surgery
- Linyi People's Hospital
- Linyi
- China
| | - Haiyan Du
- Pediatric Intensive Care Unit
- Linyi People's Hospital
- Linyi
- China
| | - Yundong Li
- Department of Oncology
- Jining No. 1 People's Hospital
- Jining
- China
| |
Collapse
|
15
|
PAX3: A Molecule with Oncogenic or Tumor Suppressor Function Is Involved in Cancer. BIOMED RESEARCH INTERNATIONAL 2018. [DOI: 10.1155/2018/1095459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metastasis is the most deadly aspect of cancer and results from acquired gene regulation abnormalities in tumor cells. Transcriptional regulation is an essential component of controlling of gene function and its failure could contribute to tumor progression and metastasis. During cancer progression, deregulation of oncogenic or tumor suppressive transcription factors, as well as master cell fate regulators, collectively influences multiple steps of the metastasis cascade, including local invasion and dissemination of the tumor to distant organs. Transcription factor PAX3/Pax3, which contributes to diverse cell lineages during embryonic development, plays a major role in tumorigenesis. Mutations in this gene can cause neurodevelopmental disease and the existing literature supports that there is a potential link between aberrant expression of PAX3 genes in adult tissues and a wide variety of cancers. PAX3 function is tissue-specific and could contribute to tumorigenesis either directly as oncogene or as a tumor suppressor by losing its function. In this review, we discuss comprehensively the differential role played by PAX3 in various tissues and how its aberrant expression is implicated in disease development. This review particularly highlights the oncogenic and tumor suppressor role played by PAX3 in different cancers and underlines the importance of precisely identifying tissue-specific role of PAX3 in order to determine its exact role in development of cancer.
Collapse
|
16
|
Zhu H, Wang H, Huang Q, Liu Q, Guo Y, Lu J, Li X, Xue C, Han Q. Transcriptional Repression of p53 by PAX3 Contributes to Gliomagenesis and Differentiation of Glioma Stem Cells. Front Mol Neurosci 2018; 11:187. [PMID: 29937714 PMCID: PMC6003214 DOI: 10.3389/fnmol.2018.00187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
Although there are available therapies as surgery, chemotherapy and radiation, glioblastoma (GBM) still has been considered as the most common and overwhelming primary tumor of brain. In GBM, the brain glioma stem cells (BGSCs) were identified and played a crucial role in resistance of GBM to conventional therapies described above. PAX3 was previously identified by our group as a diagnostic/prognostic marker and a therapeutic regulator in the therapy of GBM. Here, we hypothesized PAX3/p53 axis promoted the process of differentiation, regulating to the cancer stem cell properties, such as proliferation and migration. The correlation between PAX3 and p53 in GBM were first clarified. Immunofluorescence of p53 was shown activated following BGSCs differentiation. We further identified that PAX3 might specifically bind to the promoter of p53 gene, and transcriptionally repressed p53 expression. ChIP assay further confirmed that PAX3/p53 axis regulated the differentiation process of BGSCs. Then, the function of PAX3 in BGSCs were sequentially investigated in vitro and in vivo. Ectopic PAX3 expression promoted BGSCs growth and migration while PAX3 knockdown suppressed BGSCs growth, migration in vitro and in vivo. Similar to PAX3 overexpression, p53 inhibition also showed increase in growth and migration of differentiated BGSCs. Regarding the functional interaction between PAX3 and p53, PAX3 knockdown-mediated decrease in proliferation was partially rescued by p53 inhibition. Hypoxia significantly promoted the migration potential of BGSCs. In addition, hypoxia inducible factor-1α (HIF-1α) might be a potential upstream regulator of PAX3 in differentiated BGSCs under hypoxia. Our work may provide a supplementary mechanism in regulation of the BGSCs differentiation and their functions, which should provide novel therapeutic targets for GBM in future.
Collapse
Affiliation(s)
- Hui Zhu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qingfeng Huang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Qianqian Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yibing Guo
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingjing Lu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaohong Li
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Chengbin Xue
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qianqian Han
- National Institute for Food and Drug Control, Beijing, China
| |
Collapse
|
17
|
Wu Y, Wan X, Ji F, Song Z, Fang X. Serum miR-658 induces metastasis of gastric cancer by activating PAX3-MET pathway: A population-based study. Cancer Biomark 2018; 22:111-118. [PMID: 29630524 DOI: 10.3233/cbm-171045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article has been retracted, and the online PDF replaced with this retraction notice.
Collapse
Affiliation(s)
- Yuanyu Wu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoyu Wan
- Department of Breast and Thyroid Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fujian Ji
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zheyu Song
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
18
|
Boudjadi S, Chatterjee B, Sun W, Vemu P, Barr FG. The expression and function of PAX3 in development and disease. Gene 2018; 666:145-157. [PMID: 29730428 DOI: 10.1016/j.gene.2018.04.087] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
The PAX3 gene encodes a member of the PAX family of transcription factors that is characterized by a highly conserved paired box motif. The PAX3 protein is a transcription factor consisting of an N-terminal DNA binding domain (containing a paired box and homeodomain) and a C-terminal transcriptional activation domain. This protein is expressed during development of skeletal muscle, central nervous system and neural crest derivatives, and regulates expression of target genes that impact on proliferation, survival, differentiation and motility in these lineages. Germline mutations of the murine Pax3 and human PAX3 genes cause deficiencies in these developmental lineages and result in the Splotch phenotype and Waardenburg syndrome, respectively. Somatic genetic rearrangements that juxtapose the PAX3 DNA binding domain to the transcriptional activation domain of other transcription factors deregulate PAX3 function and contribute to the pathogenesis of the soft tissue cancers alveolar rhabdomyosarcoma and biphenotypic sinonasal sarcoma. The wild-type PAX3 protein is also expressed in other cancers related to developmental lineages that normally express this protein and exerts phenotypic effects related to its normal developmental role.
Collapse
Affiliation(s)
- Salah Boudjadi
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | | | - Wenyue Sun
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Prasantha Vemu
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
19
|
Yuan X, Wang W, Li J, Zheng P, Dong P, Chen L, Zhou Y, Xie G, Xu D, Liu Y, Shen L. Gelsolin suppresses gastric cancer metastasis through inhibition of PKR-p38 signaling. Oncotarget 2018; 7:53459-53470. [PMID: 27419625 PMCID: PMC5288199 DOI: 10.18632/oncotarget.10557] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/05/2016] [Indexed: 01/22/2023] Open
Abstract
The biological function of gelsolin in gastric cancer and its mechanism remained undefined. Here, we demonstrated that gelsolin was down-regulated in human gastric cancer tissues, and lower tumorous gelsolin significantly correlated with gastric cancer metastasis. Functionally, gelsolin suppressed the migration of gastric cancer cells in vitro and inhibited lung metastasis in vivo. In mechanism, gelsolin decreased epithelial–mesenchymal transition (EMT) inducing cytoskeleton remolding through inhibition of p38 signaling to suppress the migration of gastric cancer cell. Moreover, gelsolin bound to and decreased the phosphorylation of PKR, and then inhibited p38 signaling pathway. Finally, similar to the gastric cancer cell lines, PKR-p38 signaling pathway proteins tend to be activated and correlated with low expression of gelsolin in clinical gastric cancer tissues. Altogether, these results highlight the importance of gelsolin in suppression of gastric cancer metastasis through inhibition of PKR-p38 signaling pathway.
Collapse
Affiliation(s)
- Xiangliang Yuan
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Junhua Li
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Peiming Zheng
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ping Dong
- Department of Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lei Chen
- Department of Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Dakang Xu
- MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia.,Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China
| | - Yingbin Liu
- Department of Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
20
|
Liu W, Sui F, Liu J, Wang M, Tian S, Ji M, Shi B, Hou P. PAX3 is a novel tumor suppressor by regulating the activities of major signaling pathways and transcription factor FOXO3a in thyroid cancer. Oncotarget 2018; 7:54744-54757. [PMID: 27458157 PMCID: PMC5342378 DOI: 10.18632/oncotarget.10753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022] Open
Abstract
Paired box 3 (PAX3) is expressed early during embryonic development in spatially restricted domains in the nervous system and in some mesodermally-derived structure. In recent years, it is found to be overexpressed in different types of cancer tissues and cell lines including glioblastomas, neuroblastomas, melanomas, rhabdomyosarcomas, Ewing sarcomas and gastric cancers, suggesting that it may function as an oncogene in these cancers. However, its role in thyroid cancer remains totally unclear. The aim of this study was to explore the functions and related molecular mechanism of PAX3 in thyroid tumorigenesis. Using quantitative RT-PCR (qRT-PCR) and Methylation-specific PCR (MSP) assays, we demonstrated that PAX3 was frequently down-regulated by promoter methylation in both primary thyroid cancer tissues and thyroid cancer cell lines. In addition, our data showed that ectopic expression of PAX3 dramatically inhibited thyroid cancer cell proliferation, colony formation, migration and invasion, induced cell cycle arrest and apoptosis and retarded tumorigenic potential in nude mice. Mechanically, PAX3 exerted its tumor suppressor function by inhibiting the activity of major signaling pathways including the phosphatidylinositol-3-kinase (PI3K)/Akt and MAPK/Erk pathways, and enhancing expression and activity of transcription factor FOXO3a. Altogether, our findings provided insight into the role of PAX3 as a novel functional tumor suppressor in thyroid cancer through modulating the activities of PI3K/Akt and MAPK signaling pathways and transcription factor FOXO3a, and demonstrated that epigenetic alterations such as promoter methylation should be a major mechanism of PAX3 inactivation in this cancer.
Collapse
Affiliation(s)
- Wei Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Fang Sui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jiazhe Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Meichen Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Sijia Tian
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| |
Collapse
|
21
|
Gong YC, Ren GL, Liu B, Li F, Zhao HP, Chen JB, Li YP, Yu HH. miR‑206 inhibits cancer initiating cells by targeting EHF in gastric cancer. Oncol Rep 2017; 38:1688-1694. [PMID: 28714026 DOI: 10.3892/or.2017.5794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 06/08/2017] [Indexed: 11/05/2022] Open
Abstract
Cancer initiating cells (CIC) are defined as the unique subpopulation in the tumors that possess the ability to initiate tumor growth and sustain self-renewal as well as metastatic potential. In this study, we found that EHF overexpression promoted formation of CIC traits and silencing it inhibited the traits in gastric cancer NCI‑N87 cells. Overexpressing EHF downregulated the antitumor effect of 5-fluorouracil (5-FU) in NCI‑N87 cells. We found that miR‑206 downregulated EHF protein expression by targeting its 3'UTR in NCI‑N87 cells and GES-1 cells. Overexpressing miR‑206 inhibited formation of CIC in NCI‑N87 cells. In gastric cancer tissues, EHF protein expression was upregulated and miR‑206 was downregulated. We identified a negative correlation between EHF protein and miR‑206 expression in gastric cancer tissues. Thus, we concluded that miR‑206 inhibits formation of CICs by targeting EHF in gastric cancer.
Collapse
Affiliation(s)
- Yan-Cui Gong
- Health Management Center, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Guo-Liang Ren
- Intensive Care Unit (ICU), Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Bo Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Feng Li
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Hong-Peng Zhao
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Jing-Bo Chen
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Yu-Peng Li
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Hai-Hua Yu
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
22
|
Zheng Q, Chen C, Guan H, Kang W, Yu C. Prognostic role of microRNAs in human gastrointestinal cancer: A systematic review and meta-analysis. Oncotarget 2017; 8:46611-46623. [PMID: 28402940 PMCID: PMC5542297 DOI: 10.18632/oncotarget.16679] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gastrointestinal cancers (GICs) mainly including esophageal, gastric and colorectal cancer, are the most common cause of cancer-related death and lead into high mortality worldwide. We performed this systematic review and meta-analysis to elucidate relationship between multiple microRNAs (miRs) expression and survival of GIC patients. METHODS We searched a wide range of database. Fixed-effects and random-effects models were used to calculate the pooled hazard ratio values of overall survival and disease free survival. In addition, funnel plots were used to qualitatively analyze the publication bias and verified by Begg's test while it seems asymmetry. RESULTS 60 studies involving a total of 6225 patients (1271 with esophageal cancer, 3467 with gastric cancer and 1517 with colorectal cancer) were included in our meta-analysis. The pooled hazard ratio values of overall survival related to different miRs expression in esophageal, gastric, colorectal and gastrointestinal cancer were 2.10 (1.78-2.49), 2.02 (1.83-2.23), 2.54 (2.14-3.02) and 2.15 (1.99-2.31), respectively. We have identified a total of 59 miRs including 23 significantly up-regulated expression miRs (miR-214, miR-17, miR-20a, miR-200c, miR-107, miR-27a, etc.) and 36 significantly down-regulated expression miRs (miR-433, let-7g, miR-125a-5p, miR-760, miR-206, miR-26a, miR-200b, miR-185, etc.) correlated with poor prognosis in GIC patients. Moreover, 35 of them revealed mechanisms. CONCLUSION Overall, specific miRs are significantly associated with the prognosis of GIC patients and potentially eligible for the prediction of patients survival. It also provides a potential value for clinical decision-making development and may serve as a promising miR-based target therapy waiting for further elucidation.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Changyu Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Traditional Medical University, Hefei, China
| | - Haiyang Guan
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Weibiao Kang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Changjun Yu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
miR-206 inhibits renal cell cancer growth by targeting GAK. ACTA ACUST UNITED AC 2016; 36:852-858. [PMID: 27924503 DOI: 10.1007/s11596-016-1674-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 10/18/2016] [Indexed: 12/17/2022]
Abstract
Renal cell cancer (RCC) remains one of the most lethal types of cancer in adults. MicroRNAs (miRNAs) play key roles in the pathogenesis of RCC. The role of miR-206 in RCC has not been fully understood. The purpose of this study was to examine the role of miR-206 in the regulation of proliferation and metastasis of RCC and the possible mechanism. miR-206 expression was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in RCC cell lines (786-O and OS-RC-2 cells) and clinical samples. MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] method, colony formation and transwell assay were used to detect the tumor-suppressing ability of miR-206 in RCC. Luciferase assay was performed to verify the precise target of miR-206. The results showed that the expression of miR-206 was significantly down-regulated in RCC tissues and cells. The expression level of cyclin G-associated kinase (GAK), a master regulator of tumor proliferation and metastasis, was up-regulated with the decrease in miR-206 in RCC tissues as well as RCC cell lines. In addition, the miR-206 inhibitor promoted the proliferation, migration and invasion of 786-O and OS-RC-2 cells. Bioinformatics combined with luciferase and Western blot assays revealed that miR-206 inhibited the expression of GAK. Moreover, miR-206 regulates RCC cell growth partly through targeting GAK. Our study indicated that miR-206 functions as a tumor suppressor in regulating the proliferation, migration and invasion of RCC by directly targeting GAK, and it holds promises as a potential therapeutic target for RCC.
Collapse
|
24
|
Tie J, Zhang X, Fan D. Epigenetic roles in the malignant transformation of gastric mucosal cells. Cell Mol Life Sci 2016; 73:4599-4610. [PMID: 27464701 PMCID: PMC5097112 DOI: 10.1007/s00018-016-2308-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/10/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022]
Abstract
Gastric carcinogenesis occurs when gastric epithelial cells transition through the initial, immortal, premalignant, and malignant stages of transformation. Epigenetic regulations contribute to this multistep process. Due to the critical role of epigenetic modifications , these changes are highly likely to be of clinical use in the future as new biomarkers and therapeutic targets for the early detection and treatment of cancers. Here, we summarize the recent findings on how epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, regulate gastric carcinogenesis, and we discuss potential new strategies for the diagnosis and treatments of gastric cancer. The strategies may be helpful in the further understanding of epigenetic regulation in human diseases.
Collapse
Affiliation(s)
- Jun Tie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Xiangyuan Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
25
|
Xie M, Dart DA, Owen S, Wen X, Ji J, Jiang W. Insights into roles of the miR-1, -133 and -206 family in gastric cancer (Review). Oncol Rep 2016; 36:1191-8. [PMID: 27349337 DOI: 10.3892/or.2016.4908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/27/2016] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) remains the third most common cause of cancer deaths worldwide and carries a high rate of metastatic risk contributing to the main cause of treatment failure. An accumulation of data has resulted in a better understanding of the molecular network of GC, however, gaps still exist between the unique bio-resources and clinical application. MicroRNAs are an important part of non-coding RNAs and behave as major regulators of tumour biology, alongside their well-known roles as intrinsic factors of gene expression in cellular processes, via their post-transcriptional regulation of components of signalling pathways in a coordinated manner. Deregulation of the miR-1, -133 and -206 family plays a key role in tumorigenesis, progression, invasion and metastasis. This review aims to provide a summary of recent findings on the miR-1, -133 and -206 family in GC and how this knowledge might be exploited for the development of future miRNA-based therapies for the treatment of GC.
Collapse
Affiliation(s)
- Meng Xie
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Dafydd Alwyn Dart
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Xianzi Wen
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Jiafu Ji
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| |
Collapse
|
26
|
Ju HQ, Zhuang ZN, Li H, Tian T, Lu YX, Fan XQ, Zhou HJ, Mo HY, Sheng H, Chiao PJ, Xu RH. Regulation of the Nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer. Cancer Lett 2016; 379:1-11. [PMID: 27233476 DOI: 10.1016/j.canlet.2016.05.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 02/08/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a crucial cofactor for the redox reactions in the metabolic pathways of cancer cells that have elevated aerobic glycolysis (Warburg effect). Cancer cells are reported to rely on NAD recycling and inhibition of the NAD salvage pathway causes metabolic collapse and cell death. However, the underlying regulatory mechanisms and clinical implications for the NAD salvage pathway in pancreatic ductal adenocarcinoma (PDAC) remain unclear. This study showed that the expression of Nampt, the rate-limiting enzyme of the NAD salvage pathway, was significantly increased in PDAC cells and PDAC tissues. Additionally, inhibition of Nampt impaired tumor growth in vitro and tumorigenesis in vivo, which was accompanied by a decreased cellular NAD level and glycolytic activity. Mechanistically, the Nampt expression was independent of Kras and p16 status, but it was directly regulated by miR-206, which was inversely correlated with the expression of Nampt in PDAC tissues. Importantly, pharmacological inhibition of Nampt by its inhibitor, FK866, significantly enhanced the antitumor activity of gemcitabine in PDAC cells and in orthotopic xenograft mouse models. In conclusion, the present study revealed a novel regulatory mechanism for Nampt in PDAC and suggested that Nampt inhibition may override gemcitabine resistance by decreasing the NAD level and suppressing glycolytic activity, warranting further clinical investigation for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhuo-Nan Zhuang
- Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of General Surgery, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua University, Beijing 102218, China
| | - Hao Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tian Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yun-Xin Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xiao-Qiang Fan
- Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hai-Jun Zhou
- Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hai-Yu Mo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hui Sheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Paul J Chiao
- Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
27
|
Ma J, Hong L, Xu G, Hao J, Wang R, Guo H, Liu J, Zhang Y, Nie Y, Fan D. miR-483-3p plays an oncogenic role in esophageal squamous cell carcinoma by targeting tumor suppressor EI24. Cell Biol Int 2016; 40:448-55. [PMID: 26801660 DOI: 10.1002/cbin.10585] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022]
Abstract
microRNAs (miRNAs), through negatively regulating their target genes, influence the development and progression of many cancers. Previously, we found miR-483 was overexpressed in esophageal squamous cell carcinoma (ESCC) tissues, and its overexpression was negatively correlated with the prognosis and positively correlated with multidrug resistance of ESCC, but whether it could affect the biological role of proliferation and migration in ESCC cell lines is unknown. In the present study, we found miR-483-3p was overexpressed in ESCC cell lines as compared with the normal esophageal squamous epithelial cell line. Functional experiments in vitro showed that miR-483-3p could promote the proliferation, migration, transformation of cell cycle from G1 phase to G2 phase of ESCC cells and could inhibit cells' sensitivity to chemotherapy drugs. Nude mouse tumorigenicity assay indicated that miR-483-3p could promote the growth of ESCC cells in vivo. Western blot assay showed that ectopic expression of miR-483-3p in ESCC cells could downregulate the protein level of etoposide induced 2.4 (EI24), which is a tumor suppressor and has not been reported in ESCC. Luciferase reporter assay demonstrated that EI24 was a direct target of miR-483-3p. Collectively, our study demonstrated that miR-483-3p could promote ESCC progression at least in part through directly targeting EI24, supplying a potential strategy for miRNA-based ESCC therapy.
Collapse
Affiliation(s)
- Jiaojiao Ma
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Guanghui Xu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Junfeng Hao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Rui Wang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Hao Guo
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| |
Collapse
|