1
|
Hu M, Yuan L, Zhu J. The Dual Role of NRF2 in Colorectal Cancer: Targeting NRF2 as a Potential Therapeutic Approach. J Inflamm Res 2024; 17:5985-6004. [PMID: 39247839 PMCID: PMC11380863 DOI: 10.2147/jir.s479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC), as the third most common bisexual cancer worldwide, requires urgent research on its underlying mechanisms and intervention methods. NRF2 is an important transcription factor involved in the regulation of redox homeostasis, protein degradation, DNA repair, and other cancer processes, playing an important role in cancer. In recent years, the complex role of NRF2 in CRC has been continuously revealed: on the one hand, it exhibits a chemopreventive effect on cancer by protecting normal cells from oxidative stress, and on the other hand, it also exhibits a protective effect on malignant cells. Therefore, this article explores the dual role of NRF2 and its related signaling pathways in CRC, including their chemical protective properties and promoting effects in the occurrence, development, metastasis, and chemotherapy resistance of CRC. In addition, this article focuses on exploring the regulation of NRF2 in CRC ferroptosis, as well as NRF2 drug modulators (activators and inhibitors) targeting CRC, including natural products, compounds, and traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Mengyun Hu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingling Yuan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jie Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Oncology Department II, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Dupuy J, Fouché E, Noirot C, Martin P, Buisson C, Guéraud F, Pierre F, Héliès-Toussaint C. A dual model of normal vs isogenic Nrf2-depleted murine epithelial cells to explore oxidative stress involvement. Sci Rep 2024; 14:10905. [PMID: 38740939 DOI: 10.1038/s41598-024-60938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Cancer-derived cell lines are useful tools for studying cellular metabolism and xenobiotic toxicity, but they are not suitable for modeling the biological effects of food contaminants or natural biomolecules on healthy colonic epithelial cells in a normal genetic context. The toxicological properties of such compounds may rely on their oxidative properties. Therefore, it appears to be necessary to develop a dual-cell model in a normal genetic context that allows to define the importance of oxidative stress in the observed toxicity. Given that the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered to be the master regulator of antioxidant defenses, our aim was to develop a cellular model comparing normal and Nrf2-depleted isogenic cells to qualify oxidative stress-related toxicity. We generated these cells by using the CRISPR/Cas9 technique. Whole-genome sequencing enabled us to confirm that our cell lines were free of cancer-related mutations. We used 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product closely related to oxidative stress, as a model molecule. Here we report significant differences between the two cell lines in glutathione levels, gene regulation, and cell viability after HNE treatment. The results support the ability of our dual-cell model to study the role of oxidative stress in xenobiotic toxicity.
Collapse
Affiliation(s)
- Jacques Dupuy
- National Research Institute for Agriculture and Environment (INRAE), Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, BP93173, 31027, Toulouse Cedex 3, France
| | - Edwin Fouché
- National Research Institute for Agriculture and Environment (INRAE), Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, BP93173, 31027, Toulouse Cedex 3, France
| | - Céline Noirot
- National Research Institute for Agriculture and Environment (INRAE), Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31326, Castanet-Tolosan, France
| | - Pierre Martin
- National Research Institute for Agriculture and Environment (INRAE), Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31326, Castanet-Tolosan, France
| | - Charline Buisson
- National Research Institute for Agriculture and Environment (INRAE), Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, BP93173, 31027, Toulouse Cedex 3, France
| | - Françoise Guéraud
- National Research Institute for Agriculture and Environment (INRAE), Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, BP93173, 31027, Toulouse Cedex 3, France
| | - Fabrice Pierre
- National Research Institute for Agriculture and Environment (INRAE), Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, BP93173, 31027, Toulouse Cedex 3, France
| | - Cécile Héliès-Toussaint
- National Research Institute for Agriculture and Environment (INRAE), Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, BP93173, 31027, Toulouse Cedex 3, France.
| |
Collapse
|
3
|
Guéraud F, Buisson C, Promeyrat A, Naud N, Fouché E, Bézirard V, Dupuy J, Plaisancié P, Héliès-Toussaint C, Trouilh L, Martin JL, Jeuge S, Keuleyan E, Petit N, Aubry L, Théodorou V, Frémaux B, Olier M, Caderni G, Kostka T, Nassy G, Santé-Lhoutellier V, Pierre F. Effects of sodium nitrite reduction, removal or replacement on cured and cooked meat for microbiological growth, food safety, colon ecosystem, and colorectal carcinogenesis in Fischer 344 rats. NPJ Sci Food 2023; 7:53. [PMID: 37805637 PMCID: PMC10560221 DOI: 10.1038/s41538-023-00228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023] Open
Abstract
Epidemiological and experimental evidence indicated that processed meat consumption is associated with colorectal cancer risks. Several studies suggest the involvement of nitrite or nitrate additives via N-nitroso-compound formation (NOCs). Compared to the reference level (120 mg/kg of ham), sodium nitrite removal and reduction (90 mg/kg) similarly decreased preneoplastic lesions in F344 rats, but only reduction had an inhibitory effect on Listeria monocytogenes growth comparable to that obtained using the reference nitrite level and an effective lipid peroxidation control. Among the three nitrite salt alternatives tested, none of them led to a significant gain when compared to the reference level: vegetable stock, due to nitrate presence, was very similar to this reference nitrite level, yeast extract induced a strong luminal peroxidation and no decrease in preneoplastic lesions in rats despite the absence of NOCs, and polyphenol rich extract induced the clearest downward trend on preneoplastic lesions in rats but the concomitant presence of nitrosyl iron in feces. Except the vegetable stock, other alternatives were less efficient than sodium nitrite in reducing L. monocytogenes growth.
Collapse
Affiliation(s)
- Françoise Guéraud
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Charline Buisson
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Nathalie Naud
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Edwin Fouché
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Valérie Bézirard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Jacques Dupuy
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Pascale Plaisancié
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cécile Héliès-Toussaint
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Lidwine Trouilh
- Plateforme Genome et Transcriptome (GeT-Biopuces), Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077, Toulouse, France
| | - Jean-Luc Martin
- IFIP-Institut Du Porc, La Motte au Vicomte, 35651, Le Rheu, France
| | - Sabine Jeuge
- IFIP-Institut Du Porc, La Motte au Vicomte, 35651, Le Rheu, France
| | - Eléna Keuleyan
- INRAE, UR370 QuaPA, 63122, Saint-Genès-Champanelle, France
| | - Noémie Petit
- INRAE, UR370 QuaPA, 63122, Saint-Genès-Champanelle, France
| | - Laurent Aubry
- INRAE, UR370 QuaPA, 63122, Saint-Genès-Champanelle, France
| | - Vassilia Théodorou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Bastien Frémaux
- IFIP-Institut Du Porc, La Motte au Vicomte, 35651, Le Rheu, France
| | - Maïwenn Olier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Giovanna Caderni
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Tina Kostka
- Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167, Hannover, Germany
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Gilles Nassy
- IFIP-Institut Du Porc, La Motte au Vicomte, 35651, Le Rheu, France
| | | | - Fabrice Pierre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
4
|
Huang L, Li W, Lu Y, Ju Q, Ouyang M. Iron metabolism in colorectal cancer. Front Oncol 2023; 13:1098501. [PMID: 36910614 PMCID: PMC9992732 DOI: 10.3389/fonc.2023.1098501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Iron, as one of the essential trace elements in the human body, is involved in a wide range of critical biochemical reactions and physiological processes, including the maintenance of the normal cell cycle, mitochondrial function, nucleotide metabolism, and immune response. In this context, iron is naturally associated with cancer occurrence. Cellular iron deficiency can induce apoptosis, however, iron can also engage in potentially harmful reactions that produce free radicals because of its capacity to gain and lose electrons. Studies suggest that dietary iron, particularly heme iron, may be one of the leading causes of colorectal cancer (CRC). Moreover, patients with CRC have abnormal iron absorption, storage, utilization, and exportation. Therefore, iron is crucial for the development and progression of CRC. Elaborating on the alterations in iron metabolism during the onset and advancement of CRC would help to further explain the role and mechanism of iron inside the body. Thus, we reviewed the alterations in numerous iron metabolism-related molecules and their roles in CRC, which may provide new clues between iron metabolism and CRC.
Collapse
Affiliation(s)
- Luji Huang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wangji Li
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Lu
- Good Clinical Practice (GCP) Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Guangdong, China
| | - Qinuo Ju
- Guangdong Country Garden School, Shunde, Foshan, Guangdong, China
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| |
Collapse
|
5
|
L’engraissement des bovins avec des rations à base d’herbe améliore la qualité nutritionnelle des acides gras de leur viande. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2022. [DOI: 10.1016/j.cnd.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Jaganjac M, Zarkovic N. Lipid Peroxidation Linking Diabetes and Cancer: The Importance of 4-Hydroxynonenal. Antioxid Redox Signal 2022; 37:1222-1233. [PMID: 36242098 DOI: 10.1089/ars.2022.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: It is commonly believed that diabetes mellitus may be associated with cancer. Hence, diabetic patients are at higher risk for hepatocellular carcinoma, pancreatic cancer, colorectal cancer, and breast cancer, but the mechanisms that may link these two severe diseases are not well understood. Recent Advances: A number of factors have been suggested to promote tumorigenesis in diabetic patients, including insulin resistance, hyperglycemia, dyslipidemia, inflammation, and elevated insulin-like growth factor-1 (IGF-1), which may also promote pro-oxidants, and thereby alter redox homeostasis. The consequent oxidative stress associated with lipid peroxidation appears to be a possible pathogenic link between cancer and diabetes. Critical Issues: Having summarized the above aspects of diabetes and cancer pathology, we propose that the major bioactive product of oxidative degradation of polyunsaturated fatty acids (PUFAs), the reactive aldehyde 4-hydroxynonenal (4-HNE), which is also considered a second messenger of free radicals, may be the key pathogenic factor linking diabetes and cancer. Future Directions: Because the bioactivities of 4-HNE are cell-type and concentration-dependent, are often associated with inflammation, and are involved in signaling processes that regulate antioxidant activities, proliferation, differentiation, and apoptosis, we believe that further research in this direction could reveal options for better control of diabetes and cancer. Controlling the production of 4-HNE to avoid its cytotoxicity to normal but not cancer cells while preventing its diabetogenic activities could be an important aspect of modern integrative biomedicine. Antioxid. Redox Signal. 37, 1222-1233.
Collapse
Affiliation(s)
- Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
7
|
Study of the colonic epithelial-mesenchymal dialogue through establishment of two activated or not mesenchymal cell lines: Activated and resting ones differentially modulate colonocytes in co-culture. PLoS One 2022; 17:e0273858. [PMID: 36040985 PMCID: PMC9426876 DOI: 10.1371/journal.pone.0273858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Continuous and rapid renewal of the colonic epithelium is crucial to resist the plethora of luminal deleterious agents. Subepithelial fibroblasts contribute to this turnover by regulating epithelial proliferation and differentiation. However, when intestinal homeostasis is disturbed, fibroblasts can acquire an activated phenotype and play a major role in the progression of intestinal pathologies. To evaluate the involvement of fibroblasts in the regulation of colonocytes under homeostatic or pathological conditions, we established resting and activated conditionally immortalized fibroblast cell lines (nF and mF) from mouse colonic mucosa. We then studied the epithelial-mesenchymal interactions between activated or resting fibroblasts and the normal mouse colonocytes (Co) using a co-culture model. Both fibroblastic cell lines were characterized by RT-qPCR, western blot and immunofluorescence assay. Our results showed that nF and mF cells were positive for fibroblastic markers such as vimentin and collagen 1, and negative for cytokeratin 18 and E-cadherin, attesting to their fibroblastic type. They also expressed proteins characteristic of the epithelial stem cell niche such as Grem1, CD90 or Wnt5a. Only rare nF fibroblasts were positive for α-SMA, whereas all mF fibroblasts strongly expressed this marker, supporting that mF cells were activated fibroblasts/myofibroblasts. In coculture, nF fibroblasts and Co cells strongly interacted via paracrine exchanges resulting in BMP4 production in nF fibroblasts, activation of BMP signaling in Co colonocytes, and decreased growth of colonocytes. Activated-type mF fibroblasts did not exert the same effects on Co cells, allowing colonocytes free to proliferate. In conclusion, these two colonic fibroblast lines, associated with Co cells in coculture, should allow to better understand the role of mesenchymal cells in the preservation of homeostasis and the development of intestinal pathologies.
Collapse
|
8
|
Arnaud LC, Gauthier T, Le Naour A, Hashim S, Naud N, Shay JW, Pierre FH, Boutet-Robinet E, Huc L. Short-Term and Long-Term Carcinogenic Effects of Food Contaminants (4-Hydroxynonenal and Pesticides) on Colorectal Human Cells: Involvement of Genotoxic and Non-Genomic Mechanisms. Cancers (Basel) 2021; 13:cancers13174337. [PMID: 34503147 PMCID: PMC8431687 DOI: 10.3390/cancers13174337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary One’s environment, including diet, play a major role in the occurrence and the development of colorectal cancer (CRC). In this study, we are interested in two western diet associated food contaminants: 4-hydroxynonenal (HNE), a major lipid peroxidation product neoformed during digestion, and a mixture of pesticides to which we are commonly exposed to via fruit and vegetable consumption. The aim of this study was to analyse the impact of acute and long-term exposure to these contaminants, alone or in combination, on colorectal carcinogenesis. We used in vitro models of human colonic cells, either exhibiting or not different genetic susceptibilities to CRC. After acute exposure, we did not observe major alteration. However, long-term exposure to contaminants induce malignant transformation with different cellular mechanisms, depending on genetic susceptibility and contaminants alone or in mixtures. Abstract To investigate environmental impacts upon colorectal carcinogenesis (CRC) by diet, we assessed two western diet food contaminants: 4-hydroxynonenal (HNE), a major lipid peroxidation product neoformed during digestion, and a mixture of pesticides. We used human colonic cell lines ectopically eliciting varied genetic susceptibilities to CRC: the non-transformed human epithelial colonic cells (HCECs) and their five isogenic cell lines with the loss of APC (Adenomatous polyposis coli) and TP53 (Tumor protein 53) and/or ectopic expression of mutated KRAS (Kristen-ras). These cell lines have been exposed for either for a short time (2–24 h) or for a long period (3 weeks) to 1 µM HNE and/or 10 µM pesticides. After acute exposure, we did not observe any cytotoxicity or major DNA damage. However, long-term exposure to pesticides alone and in mixture with HNE induced clonogenic transformation in normal HCECs, as well as in cells representing later stages of carcinogenesis. It was associated with genotoxic and non-genomic mechanisms (cell growth, metabolic reprogramming, cell mobility and epithelial-mesenchymal transition) depending on genetic susceptibility. This study demonstrated a potential initiating and promoting effect of food contaminants on CRC after long-term exposure. It supports that these contaminants can accelerate carcinogenesis when mutations in oncogenes or tumor suppressor genes occur.
Collapse
Affiliation(s)
- Liana C. Arnaud
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Thierry Gauthier
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Augustin Le Naour
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Saleha Hashim
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Nathalie Naud
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Jerry W. Shay
- Southwestern Medical Center Dallas, Department of Cell Biology, The University of Texas, Dallas, TX 75390, USA;
| | - Fabrice H. Pierre
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
| | - Laurence Huc
- Toxalim (Research Centre in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (L.C.A.); (T.G.); (A.L.N.); (S.H.); (N.N.); (F.H.P.); (E.B.-R.)
- Correspondence: ; Tel.: +33-5-8206-6320
| |
Collapse
|
9
|
Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Cancers (Basel) 2021; 13:4142. [PMID: 34439295 PMCID: PMC8393563 DOI: 10.3390/cancers13164142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (T.W.); (A.A.); (P.M.); (A.R.D.); (M.D.C.C.C.); (P.S.A.)
| |
Collapse
|
10
|
Prache S, Schreurs N, Guillier L. Review: Factors affecting sheep carcass and meat quality attributes. Animal 2021; 16 Suppl 1:100330. [PMID: 34400114 DOI: 10.1016/j.animal.2021.100330] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Sheep meat comes from a wide variety of farming systems utilising outdoor extensive to indoor intensive with animals of various ages at slaughter. In Europe, slaughter may occur from 4 weeks of age in suckling light lambs to adult ages. More than any other animal species used for meat production, there are strong country-specific preferences for sheep meat quality linked to production system characteristics such as dairy or grassland-based systems. This article critically reviews the current state of knowledge on factors affecting sheep carcass and meat quality. Quality has been broken down into six core attributes: commercial, organoleptic, nutritional, technological, safety and image, the latter covering aspects of ethics, culture and environment associated with the way the meat is produced and its origin, which are particularly valued in the many quality labels in Europe. The quality of meat is built but can also deteriorate along the continuum from the conception of the animal to the consumer. Our review pinpoints critical periods, such as the gestation and the preslaughter and slaughter periods, and key factors, such as the animal diet, via its direct effect on the fatty acid profile, the antioxidant and volatile content, and indirect effects mediated via the age of the animal. It also pinpoints methodological difficulties in predicting organoleptic attributes, particularly odour and flavour. Potential antagonisms between different dimensions of quality are highlighted. For example, pasture-feeding has positive effects on the image and nutritional attributes (through its effect on the fatty acid profile of meat lipids), but it increases the risk of off-odours and off-flavours for sensitive consumersand the variability in meat quality linked to variability of animal age at slaughter. The orientation towards more agro-ecological, low-input farming systems may therefore present benefits for the image and nutritional properties of the meat, but also risks for the commercial (insufficient carcass fatness, feed deficiencies at key periods of the production cycle, irregularity in supply), organoleptic (stronger flavour and darker colour of the meat) and variability of sheep carcass and meat quality. Furthermore, the genetic selection for lean meat yield has been effective in producing carcasses that yield more meat, but at a penalty to the intramuscular fat content and eating quality of the meat, and making it more difficult to finish lambs on grass. Various tools to assess and predict quality are in development to better consider the various dimensions of quality in consumer information, payment to farmers and genetic selection.
Collapse
Affiliation(s)
- S Prache
- Université d'Auvergne, INRA, Vetagro Sup, UMR Herbivores, 63122 St-Genès-Champanelle, France.
| | - N Schreurs
- Animal Science, School of Agriculture and Environment, PN433, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - L Guillier
- Université Paris Est, Anses, Risk Assessment Department, 94701 Maisons-Alfort, France
| |
Collapse
|
11
|
Stenvinkel P, Meyer CJ, Block GA, Chertow GM, Shiels PG. Understanding the role of the cytoprotective transcription factor nuclear factor erythroid 2-related factor 2-lessons from evolution, the animal kingdom and rare progeroid syndromes. Nephrol Dial Transplant 2021; 35:2036-2045. [PMID: 31302696 PMCID: PMC7716811 DOI: 10.1093/ndt/gfz120] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
The cytoprotective transcriptor factor nuclear factor erythroid 2– related factor 2 (NRF2) is part of a complex regulatory network that responds to environmental cues. To better understand its role in a cluster of inflammatory and pro-oxidative burden of lifestyle diseases that accumulate with age, lessons can be learned from evolution, the animal kingdom and progeroid syndromes. When levels of oxygen increased in the atmosphere, mammals required ways to protect themselves from the metabolic toxicity that arose from the production of reactive oxygen species. The evolutionary origin of the NRF2–Kelch-like ECH-associated protein 1 (KEAP1) signalling pathway from primitive origins has been a prerequisite for a successful life on earth, with checkpoints in antioxidant gene expression, inflammation, detoxification and protein homoeostasis. Examples from the animal kingdom suggest that superior antioxidant defense mechanisms with enhanced NRF2 expression have been developed during evolution to protect animals during extreme environmental conditions, such as deep sea diving, hibernation and habitual hypoxia. The NRF2–KEAP1 signalling pathway is repressed in progeroid (accelerated ageing) syndromes and a cluster of burden of lifestyle disorders that accumulate with age. Compelling links exist between tissue hypoxia, senescence and a repressed NRF2 system. Effects of interventions that activate NRF2, including nutrients, and more potent (semi)synthetic NRF2 agonists on clinical outcomes are of major interest. Given the broad-ranging actions of NRF2, we need to better understand the mechanisms of activation, biological function and regulation of NRF2 and its inhibitor, KEAP1, in different clinical conditions to ensure that modulation of this thiol-based system will not result in major adverse effects. Lessons from evolution, the animal kingdom and conditions of accelerated ageing clarify a major role of a controlled NRF2–KEAP1 system in healthy ageing and well-being.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Glenn M Chertow
- Department of Medicine, Division of Nephrology, Stanford University, Stanford, CA, USA
| | - Paul G Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
12
|
DEVECİ E, TEL-ÇAYAN G, KARAKURT S, DURU ME. Cytotoxic Activities of Methanol Extract and Compounds of Porodaedalea pini Against Colorectal Cancer. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2021. [DOI: 10.21448/ijsm.793715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron. Cell Death Dis 2020; 11:787. [PMID: 32968051 PMCID: PMC7511955 DOI: 10.1038/s41419-020-02950-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
The consumption of red meat is probably carcinogenic to humans and is associated with an increased risk to develop colorectal cancer (CRC). Red meat contains high amounts of heme iron, which is thought to play a causal role in tumor formation. In this study, we investigated the genotoxic and cytotoxic effects of heme iron (i.e., hemin) versus inorganic iron in human colonic epithelial cells (HCEC), human CRC cell lines and murine intestinal organoids. Hemin catalyzed the formation of reactive oxygen species (ROS) and induced oxidative DNA damage as well as DNA strand breaks in both HCEC and CRC cells. In contrast, inorganic iron hardly affected ROS levels and only slightly increased DNA damage. Hemin, but not inorganic iron, caused cell death and reduced cell viability. This occurred preferentially in non-malignant HCEC, which was corroborated in intestinal organoids. Both hemin and inorganic iron were taken up into HCEC and CRC cells, however with differential kinetics and efficiency. Hemin caused stabilization and nuclear translocation of Nrf2, which induced heme oxygenase-1 (HO-1) and ferritin heavy chain (FtH). This was not observed after inorganic iron treatment. Chemical inhibition or genetic knockdown of HO-1 potentiated hemin-triggered ROS generation and oxidative DNA damage preferentially in HCEC. Furthermore, HO-1 abrogation strongly augmented the cytotoxic effects of hemin in HCEC, revealing its pivotal function in colonocytes and highlighting the toxicity of free intracellular heme iron. Taken together, this study demonstrated that hemin, but not inorganic iron, induces ROS and DNA damage, resulting in a preferential cytotoxicity in non-malignant intestinal epithelial cells. Importantly, HO-1 conferred protection against the detrimental effects of hemin.
Collapse
|
14
|
Jamin EL, Costantino R, Mervant L, Martin JF, Jouanin I, Blas-Y-Estrada F, Guéraud F, Debrauwer L. Global Profiling of Toxicologically Relevant Metabolites in Urine: Case Study of Reactive Aldehydes. Anal Chem 2020; 92:1746-1754. [PMID: 31854978 DOI: 10.1021/acs.analchem.9b03146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Among the numerous unknown metabolites representative of our exposure, focusing on toxic compounds should provide more relevant data to link exposure and health. For that purpose, we developed and applied a global method using data independent acquisition (DIA) in mass spectrometry to profile specifically electrophilic compounds originating metabolites. These compounds are most of the time toxic, due to their chemical reactivity toward nucleophilic sites present in biomacromolecules. The main line of cellular defense against these electrophilic molecules is conjugation to glutathione, then metabolization into mercapturic acid conjugates (MACs). Interestingly, MACs display a characteristic neutral loss in MS/MS experiments that makes it possible to detect all the metabolites displaying this characteristic loss, thanks to the DIA mode, and therefore to highlight the corresponding reactive metabolites. As a proof of concept, our workflow was applied to the toxicological issue of the oxidation of dietary polyunsaturated fatty acids, leading in particular to the formation of toxic alkenals, which lead to MACs upon glutathione conjugation and metabolization. By this way, dozens of MACs were detected and identified. Interestingly, multivariate statistical analyses carried out only on extracted HRMS signals of MACs yield a better characterization of the studied groups compared to results obtained from a classic untargeted metabolomics approach.
Collapse
Affiliation(s)
- Emilien L Jamin
- Metatoul-AXIOM Platform , National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE , 31300 Toulouse , France.,Toxalim (Research Centre in Food Toxicology) , Toulouse University , INRAE UMR 1331, ENVT, INP-Purpan, UPS , Toulouse , 31300 France
| | - Robin Costantino
- Metatoul-AXIOM Platform , National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE , 31300 Toulouse , France.,Toxalim (Research Centre in Food Toxicology) , Toulouse University , INRAE UMR 1331, ENVT, INP-Purpan, UPS , Toulouse , 31300 France
| | - Loïc Mervant
- Metatoul-AXIOM Platform , National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE , 31300 Toulouse , France.,Toxalim (Research Centre in Food Toxicology) , Toulouse University , INRAE UMR 1331, ENVT, INP-Purpan, UPS , Toulouse , 31300 France
| | - Jean-François Martin
- Metatoul-AXIOM Platform , National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE , 31300 Toulouse , France.,Toxalim (Research Centre in Food Toxicology) , Toulouse University , INRAE UMR 1331, ENVT, INP-Purpan, UPS , Toulouse , 31300 France
| | - Isabelle Jouanin
- Metatoul-AXIOM Platform , National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE , 31300 Toulouse , France.,Toxalim (Research Centre in Food Toxicology) , Toulouse University , INRAE UMR 1331, ENVT, INP-Purpan, UPS , Toulouse , 31300 France
| | - Florence Blas-Y-Estrada
- Toxalim (Research Centre in Food Toxicology) , Toulouse University , INRAE UMR 1331, ENVT, INP-Purpan, UPS , Toulouse , 31300 France
| | - Françoise Guéraud
- Toxalim (Research Centre in Food Toxicology) , Toulouse University , INRAE UMR 1331, ENVT, INP-Purpan, UPS , Toulouse , 31300 France
| | - Laurent Debrauwer
- Metatoul-AXIOM Platform , National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE , 31300 Toulouse , France.,Toxalim (Research Centre in Food Toxicology) , Toulouse University , INRAE UMR 1331, ENVT, INP-Purpan, UPS , Toulouse , 31300 France
| |
Collapse
|
15
|
Andueza D, Listrat A, Durand D, Normand J, Mourot B, Gruffat D. Prediction of beef meat fatty acid composition by visible-near-infrared spectroscopy was improved by preliminary freeze-drying. Meat Sci 2019; 158:107910. [DOI: 10.1016/j.meatsci.2019.107910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 11/29/2022]
|
16
|
Seiwert N, Heylmann D, Hasselwander S, Fahrer J. Mechanism of colorectal carcinogenesis triggered by heme iron from red meat. Biochim Biophys Acta Rev Cancer 2019; 1873:188334. [PMID: 31783067 DOI: 10.1016/j.bbcan.2019.188334] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the major tumor entities worldwide, with an increasing incidence in younger people. CRC formation is causally linked to various genetic, life-style and dietary risk factors. Among the ladder, the consumption of red meat has emerged as important risk factor contributing to CRC. A large body of evidence shows that heme iron is the critical component of red meat, which promotes colorectal carcinogenesis. In this review, we describe the uptake and cellular fate of both heme and inorganic iron in intestinal epithelial cells. Next, an overview on the DNA damaging properties of heme iron is provided, highlighting the DNA adducts relevant for CRC etiology. Moreover, heme triggered mechanisms leading to colonic hyperproliferation are presented, which are intimately linked to changes in the intestinal microbiota induced by heme. A special focus was set on the impact of heme iron on innate and adaptive immune cells, which could be relevant in the context of CRC. Finally, we recapitulate in vivo studies providing evidence for the tumor-promoting potential of dietary heme iron. Altogether, heme iron affects numerous key pathways involved in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Nina Seiwert
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniel Heylmann
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
17
|
de Moura NA, Caetano BFR, Bidinotto LT, Rodrigues MAM, Barbisan LF. Dietary hemin promotes colonic preneoplastic lesions and DNA damage but not tumor development in a medium-term model of colon carcinogenesis in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 846:403076. [PMID: 31585636 DOI: 10.1016/j.mrgentox.2019.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/23/2019] [Accepted: 07/16/2019] [Indexed: 01/10/2023]
Abstract
Red and processed meat consumption has been strongly related to increase the risk of colorectal cancer (CRC), although its impact is largely unknown. Hemin, an iron-containing porphyrin, is acknowledged as a putative factor of red and processed meat pro-carcinogenic effects. The aim of this study was to investigate the effects of high dietary hemin on the promotion/progression stages of 1,2-dimethylhydrazine (1,2-DMH)-induced colon carcinogenesis. Twenty-four Wistar male rats were given four subcutaneous 1,2-DMH injections and received either balanced diet or balanced diet supplemented with hemin 0.5 mmol/kg for 23 weeks. Colon specimens were analyzed for aberrant crypt foci (ACF) and tumor development. Dietary hemin significantly increased ACF number and fecal water cytotoxicity/genotoxicity in Caco-2 cells when compared to 1,2-DMH control group. However, tumor incidence, multiplicity and cell proliferation did not differ between 1,2-DMH + hemin and 1,2-DMH control group. Gene expression analysis of 91 target-genes revealed that only three genes (Figf, Pik3r5 and Tgfbr2) were down-regulated in the tumors from hemin-fed rats compared to those from 1,2-DMH control group. Therefore, the findings of this study show that high hemin intake promotes mainly DNA damage and ACF development and but does not change the number nor incidence of colon tumors induced by 1,2-DMH in male rats.
Collapse
Affiliation(s)
- Nelci A de Moura
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Brunno F R Caetano
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Lucas T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, SP, Brazil
| | - Maria A M Rodrigues
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luis F Barbisan
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
18
|
Hur SJ, Yoon Y, Jo C, Jeong JY, Lee KT. Effect of Dietary Red Meat on Colorectal Cancer Risk—A Review. Compr Rev Food Sci Food Saf 2019; 18:1812-1824. [DOI: 10.1111/1541-4337.12501] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Sun Jin Hur
- Dept. of Animal Science and TechnologyChung‐Ang Univ. Anseong 17546 Korea
| | - Yohan Yoon
- Dept. of Food and NutritionSookmyung Women's Univ. Seoul 04310 Korea
| | - Cheorun Jo
- Dept. of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Inst. of Agriculture and Life ScienceSeoul Natl. Univ. Seoul 08826 Korea
| | - Jong Youn Jeong
- School of Food Biotechnology and NutritionKyungsung Univ. Busan 48434 Korea
| | - Keun Taik Lee
- Dept. of Food Processing and DistributionGangneung‐Wonju Natl. Univ. Gangneung 25457 Korea
| |
Collapse
|
19
|
Steinberg P. Red Meat-Derived Nitroso Compounds, Lipid Peroxidation Products and Colorectal Cancer. Foods 2019; 8:foods8070252. [PMID: 31336781 PMCID: PMC6678524 DOI: 10.3390/foods8070252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
About 20 years ago, the research group of Sheila Anne Bingham in Cambridge, UK, showed for the first time that volunteers consuming large amounts of red meat excrete high amounts of nitroso compounds via feces. In the meantime, it has been demonstrated that heme leads to the enhanced formation of nitroso compounds in the gastrointestinal tract and that the main nitroso compounds formed in the gastrointestinal tract are S-nitrosothiols and the nitrosyl heme. Moreover, it has been postulated that these endogenously formed nitroso compounds may alkylate guanine at the O6-position, resulting in the formation of the promutagenic DNA lesions O6-methylguanine and O6-carboxymethylguanine, which, if not repaired (in time), could lead to gene mutations and, subsequently to the development of colorectal cancer. Alternatively, it has been postulated that heme iron could contribute to colorectal carcinogenesis by inducing lipid peroxidation. In the present review, the evidence supporting the above-mentioned hypotheses will be presented.
Collapse
Affiliation(s)
- Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany.
| |
Collapse
|
20
|
Martin OCB, Olier M, Ellero-Simatos S, Naud N, Dupuy J, Huc L, Taché S, Graillot V, Levêque M, Bézirard V, Héliès-Toussaint C, Estrada FBY, Tondereau V, Lippi Y, Naylies C, Peyriga L, Canlet C, Davila AM, Blachier F, Ferrier L, Boutet-Robinet E, Guéraud F, Théodorou V, Pierre FHF. Haem iron reshapes colonic luminal environment: impact on mucosal homeostasis and microbiome through aldehyde formation. MICROBIOME 2019; 7:72. [PMID: 31060614 PMCID: PMC6503375 DOI: 10.1186/s40168-019-0685-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/22/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND The World Health Organization classified processed and red meat consumption as "carcinogenic" and "probably carcinogenic", respectively, to humans. Haem iron from meat plays a role in the promotion of colorectal cancer in rodent models, in association with enhanced luminal lipoperoxidation and subsequent formation of aldehydes. Here, we investigated the short-term effects of this haem-induced lipoperoxidation on mucosal and luminal gut homeostasis including microbiome in F344 male rats fed with a haem-enriched diet (1.5 μmol/g) 14-21 days. RESULTS Changes in permeability, inflammation, and genotoxicity observed in the mucosal colonic barrier correlated with luminal haem and lipoperoxidation markers. Trapping of luminal haem-induced aldehydes normalised cellular genotoxicity, permeability, and ROS formation on a colon epithelial cell line. Addition of calcium carbonate (2%) to the haem-enriched diet allowed the luminal haem to be trapped in vivo and counteracted these haem-induced physiological traits. Similar covariations of faecal metabolites and bacterial taxa according to haem-induced lipoperoxidation were identified. CONCLUSIONS This integrated approach provides an overview of haem-induced modulations of the main actors in the colonic barrier. All alterations were closely linked to haem-induced lipoperoxidation, which is associated with red meat-induced colorectal cancer risk.
Collapse
Affiliation(s)
- Océane C. B. Martin
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- ADIV, 10 Rue Jacqueline Auriol, 63039 Clermont-Ferrand, France
| | - Maïwenn Olier
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Ellero-Simatos
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nathalie Naud
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Jacques Dupuy
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurence Huc
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sylviane Taché
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Vanessa Graillot
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Mathilde Levêque
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Valérie Bézirard
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cécile Héliès-Toussaint
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Florence Blas Y. Estrada
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Valérie Tondereau
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Yannick Lippi
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Claire Naylies
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Cécile Canlet
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Anne Marie Davila
- INRA, UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - François Blachier
- INRA, UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Laurent Ferrier
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Elisa Boutet-Robinet
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Françoise Guéraud
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Vassilia Théodorou
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Fabrice H. F. Pierre
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
21
|
Shi X, Lin X, Zhu Y, Ma Y, Li Y, Xu X, Zhou G, Li C. Effects of Dietary Protein from Different Sources on Biotransformation, Antioxidation, and Inflammation in the Rat Liver. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8584-8592. [PMID: 30060650 DOI: 10.1021/acs.jafc.8b01717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, the effects of different sources of meat protein on liver metabolic enzymes were investigated. Rats were fed for 90 days with semisynthetic diets in which casein was fully replaced by isolated soybean, fish, chicken, pork, or beef proteins. Then, liver proteomics was performed using iTRAQ and LC-ESI-MS/MS. The results indicated that intake of meat protein diets significantly reduced the protein levels of CYP450s, GSTs, UGTs, and SULTs compared to those of the casein and soybean protein diet groups. The total antioxidant capacity and lipid peroxidation values did not differ between four meat protein diet groups and the casein diet group. However, GSH activity in the fish, chicken, and beef protein groups was significantly higher than those of the casein and soybean protein groups. The beef protein diet significantly upregulated the expression of immune-related proteins. The Keap1-Nrf2-ARE signaling pathway was suggested to involve the diet-mediated regulation of biotransformation, inflammation, and redox status.
Collapse
Affiliation(s)
- Xuebin Shi
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Xisha Lin
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Yingying Zhu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Yafang Ma
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Yingqiu Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| |
Collapse
|
22
|
Kruger C, Zhou Y. Red meat and colon cancer: A review of mechanistic evidence for heme in the context of risk assessment methodology. Food Chem Toxicol 2018; 118:131-153. [PMID: 29689357 DOI: 10.1016/j.fct.2018.04.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023]
Abstract
On October 26, 2015, IARC published a summary of their findings regarding the association of cancer with consumption of red meat or processed meat (IARC 2015; The Lancet Oncology 2015). The Working Group concluded that there is limited evidence in human beings for carcinogenicity from the consumption of red meat and inadequate evidence in experimental animals for the carcinogenicity of consumption of red meat. Nevertheless, the working group concluded that there is strong mechanistic evidence by which ingestion of red meat can be linked to human colorectal cancer and assigned red meat to Group 2A "probably carcinogenic to humans". The Working Group cited supporting mechanistic evidence for multiple meat components, including those formed from meat processing, such as N-nitroso compounds (NOC) and heterocyclic aromatic amines, and the endogenous compound, heme iron. The mechanism of action for each of these components is different and so it is critical to evaluate the evidence for each component separately. Consequently, this review critically examined studies that investigated mechanistic evidence associated with heme iron to assess the weight of the evidence associating exposure to red meat with colorectal cancer. The evidence from in vitro studies utilized conditions that are not necessarily relevant for a normal dietary intake and thus do not provide sufficient evidence that heme exposure from typical red meat consumption would increase the risk of colon cancer. Animal studies utilized models that tested promotion of preneoplastic conditions utilizing diets low in calcium, high in fat combined with exaggerations of heme exposure that in many instances represented intakes that were orders of magnitude above normal dietary consumption of red meat. Finally, clinical evidence suggests that the type of NOC found after ingestion of red meat in humans consists mainly of nitrosyl iron and nitrosothiols, products that have profoundly different chemistries from certain N-nitroso species which have been shown to be tumorigenic through the formation of DNA adducts. In conclusion, the methodologies employed in current studies of heme have not provided sufficient documentation that the mechanisms studied would contribute to an increased risk of promotion of preneoplasia or colon cancer at usual dietary intakes of red meat in the context of a normal diet.
Collapse
Affiliation(s)
- Claire Kruger
- ChromaDex Spherix Consulting, A Business Unit of ChromaDex, Inc., Rockville, MD, United States.
| | - Yuting Zhou
- ChromaDex Spherix Consulting, A Business Unit of ChromaDex, Inc., Rockville, MD, United States
| |
Collapse
|
23
|
Bortoli S, Boutet-Robinet E, Lagadic-Gossmann D, Huc L. Nrf2 and AhR in metabolic reprogramming after contaminant exposure. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Tao J, Li Y, Li S, Li HB. Plant foods for the prevention and management of colon cancer. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
25
|
Guéraud F. 4-Hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer. Free Radic Biol Med 2017; 111:196-208. [PMID: 28065782 DOI: 10.1016/j.freeradbiomed.2016.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
Abstract
4-hydroxy-2-nonenal (HNE) is an amazing reactive compound, originating from lipid peroxidation within cells but also in food and considered as a "second messenger" of oxidative stress. Due to its chemical features, HNE is able to make covalent links with DNA, proteins and lipids. The aim of this review is to give a comprehensive summary of the chemical properties of HNE and of the consequences of its reactivity in relation to cancer development. The formation of exocyclic etheno-and propano-adducts and genotoxic effects are addressed. The adduction to cellular proteins and the repercussions on the regulation of cell signaling pathways involved in cancer development are reviewed, notably on the Nrf2/Keap1/ARE pathway. The metabolic pathways leading to the inactivation/elimination or, on the contrary, to the bioactivation of HNE are considered. A special focus is given on the link between HNE and colorectal cancer development, due to its occurrence in foodstuffs and in the digestive lumen, during digestion.
Collapse
Affiliation(s)
- Françoise Guéraud
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
26
|
Mariani F, Roncucci L. Role of the Vanins-Myeloperoxidase Axis in Colorectal Carcinogenesis. Int J Mol Sci 2017; 18:E918. [PMID: 28448444 PMCID: PMC5454831 DOI: 10.3390/ijms18050918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
The presence of chronic inflammation in the colonic mucosa leads to an increased risk of cancer. Among proteins involved in the regulation of mucosal inflammation and that may contribute both to structural damage of the intestinal mucosa and to intestinal carcinogenesis, there are myeloperoxidase (MPO) and vanins. The infiltration of colonic mucosa by neutrophils may promote carcinogenesis through MPO, a key enzyme contained in the lysosomes of neutrophils that regulates local inflammation and the generation of reactive oxygen species (ROS) and mutagenic species. The human vanin gene family consists of three genes: vanin-1, vanin-2 and vanin-3. All vanin molecules are pantetheinases, that hydrolyze pantetheine into pantothenic acid (vitamin B5), and cysteamine, a sulfhydryl compound. Vanin-1 loss confers an increased resistance to stress and acute intestinal inflammation, while vanin-2 regulates adhesion and transmigration of activated neutrophils. The metabolic product of these enzymes has a prominent role in the inflammation processes by affecting glutathione levels, inducing ulcers through a reduction in mucosal blood flow and oxygenation, decreasing local defense mechanisms, and in carcinogenesis by damaging DNA and regulating pathways involved in cell apoptosis, metabolism and growth, as Nrf2 and HIF-1α.
Collapse
Affiliation(s)
- Francesco Mariani
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Via Del Pozzo 71, I-41125 Modena, Italy.
| | - Luca Roncucci
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Via Del Pozzo 71, I-41125 Modena, Italy.
| |
Collapse
|
27
|
Van Hecke T, Van Camp J, De Smet S. Oxidation During Digestion of Meat: Interactions with the Diet andHelicobacter pyloriGastritis, and Implications on Human Health. Compr Rev Food Sci Food Saf 2017; 16:214-233. [DOI: 10.1111/1541-4337.12248] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas Van Hecke
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| | - John Van Camp
- the Unit of Food Chemistry and Human Nutrition; Ghent Univ.; Ghent Belgium
| | - Stefaan De Smet
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| |
Collapse
|
28
|
Hardonnière K, Huc L, Sergent O, Holme JA, Lagadic-Gossmann D. Environmental carcinogenesis and pH homeostasis: Not only a matter of dysregulated metabolism. Semin Cancer Biol 2017; 43:49-65. [PMID: 28088583 DOI: 10.1016/j.semcancer.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/18/2022]
Abstract
According to the World Health Organization, around 20% of all cancers would be due to environmental factors. Among these factors, several chemicals are indeed well recognized carcinogens. The widespread contaminant benzo[a]pyrene (B[a]P), an often used model carcinogen of the polycyclic aromatic hydrocarbons' family, has been suggested to target most, if not all, cancer hallmarks described by Hanahan and Weinberg. It is classified as a group I carcinogen by the International Agency for Research on Cancer; however, the precise intracellular mechanisms underlying its carcinogenic properties remain yet to be thoroughly defined. Recently, the pH homeostasis, a well known regulator of carcinogenic processes, was suggested to be a key actor in both cell death and Warburg-like metabolic reprogramming induced upon B[a]P exposure. The present review will highlight those data with the aim of favoring research on the role of H+ dynamics in environmental carcinogenesis.
Collapse
Affiliation(s)
- Kévin Hardonnière
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Laurence Huc
- INRA UMR 1331 ToxAlim (Research Center in Food Toxicology), University of Toulouse ENVT, INP, UPS, 180 Chemin de Tournefeuille, F-31027, France
| | - Odile Sergent
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Jørn A Holme
- Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dominique Lagadic-Gossmann
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France.
| |
Collapse
|
29
|
Muscaritoli M, Amabile MI, Molfino A. Foods and their components promoting gastrointestinal cancer. Curr Opin Clin Nutr Metab Care 2016; 19:377-381. [PMID: 27389082 DOI: 10.1097/mco.0000000000000309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Cancer represents one of the most feared diseases. Despite an increasing number of available scientific data, most people remain unaware of those basic dietary and healthy lifestyle measures, which might reduce their risk to develop cancer. Environmental factors, diet, and lifestyle play a crucial role in the development of several different neoplastic diseases, particularly gastrointestinal cancer. In this article, we aimed at focusing on foods and their components able to increase gastrointestinal cancer risk. RECENT FINDINGS During the last few years, major emphasis has been addressed on the relation between red meat and gastrointestinal cancer. Many potential mechanisms linked red meat consumption and cancer risk, including heterocyclic amines, polycyclic aromatic hydrocarbons, N-nitroso compounds, and heme iron. Other chemical substances, contaminating food, such as acrylamide, showed gastrointestinal carcinogenic properties. SUMMARY Correct diet and lifestyle are clinically relevant strategies in preventing gastrointestinal cancer. In the fight against cancer, nutritional educative intervention programs are necessary to spread the knowledge on healthy eating and appropriate nutrition to reduce cancer risk.
Collapse
|