1
|
Lin F, Xiao T, Wang B, Wang L, Liu G, Wang R, Xie C, Tang Z. Mechanisms and markers of malignant transformation of oral submucous fibrosis. Heliyon 2024; 10:e23314. [PMID: 38163180 PMCID: PMC10755325 DOI: 10.1016/j.heliyon.2023.e23314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Oral submucous fibrosis (OSF) is a chronic premalignant disease associated with betel quid chewing. Epidemiological studies indicate that there are approximately 5 million individuals suffering from OSF worldwide, with a concerning malignancy transformation rate of up to 4.2 %. When OSF progresses to oral squamous cell carcinoma (OSCC), the 5-year survival rate for OSCC drops to below 60 %. Therefore, early screening and diagnosis are essential for both preventing and effectively treating OSF and its potential malignant transformation. Numerous studies have shown that the malignant transformation of OSF is associated with various factors, including epigenetic reprogramming, epithelial-mesenchymal transition, hypoxia, cell cycle changes, immune regulation disturbances, and oxidative damage. This review article focuses on the unraveling the potential mechanisms underlying the malignant transformation of OSF, as well as the abnormal expression of biomarkers throughout this transformative process, with the aim of aiding early screening for carcinogenic changes in OSF. Furthermore, we discuss the significance of utilizing blood and saliva components from patients with OSF, along with optical diagnostic techniques, in the early screening of OSF malignant transformation.
Collapse
Affiliation(s)
- Fen Lin
- Hospital of Stomatology, Zhongshan city, Zhongshan, Guangdong 528400, China
| | - Ting Xiao
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Baisheng Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Liping Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Gui Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Rifu Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Changqing Xie
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Postdoctoral Research Workstation, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha 410078, Hunan, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
2
|
Xiao H, Shiu J, Chen CF, Wu J, Zhou P, Telang SS, Ruiz-Vega R, Nie Q, Lander AD, Ganesan AK. Uncovering Minimal Pathways in Melanoma Initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570336. [PMID: 38106189 PMCID: PMC10723457 DOI: 10.1101/2023.12.08.570336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cutaneous melanomas are clinically and histologically heterogeneous. Most display activating mutations in Braf or Nras and complete loss of function of one or more tumor suppressor genes. Mouse models that replicate such mutations produce fast-growing, pigmented tumors. However, mice that combine Braf activation with only heterozygous loss of Pten also produce tumors and, as we show here, in an Albino background this occurs even with Braf activation alone. Such tumors arise rarely, grow slowly, and express low levels of pigmentation genes. The timing of their appearance was consistent with a single step stochastic event, but no evidence could be found that it required de novo mutation, suggesting instead the involvement of an epigenetic transition. Single-cell transcriptomic analysis revealed such tumors to be heterogeneous, including a minor cell type we term LNM ( L ow-pigment, N eural- and extracellular M atrix-signature) that displays gene expression resembling "neural crest"-like cell subsets detected in the fast-growing tumors of more heavily-mutated mice, as well as in human biopsy and xenograft samples. We provide evidence that LNM cells pre-exist in normal skin, are expanded by Braf activation, can transition into malignant cells, and persist with malignant cells through multiple rounds of transplantation. We discuss the possibility that LNM cells not only serve as a pre-malignant state in the production of some melanomas, but also as an important intermediate in the development of drug resistance.
Collapse
|
3
|
Peng R, Huang Y, Huang P, Liu L, Cheng L, Peng X. The paradoxical role of transforming growth factor-β in controlling oral squamous cell carcinoma development. Cancer Biomark 2024; 40:241-250. [PMID: 39213051 PMCID: PMC11380267 DOI: 10.3233/cbm-230354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that plays a vital role in regulating cell growth, differentiation and survival in various tissues. It participates in a variety of cellular processes, including cell apoptosis, cell migration and evasion, and plays a paradoxical role in tumor genesis and development. In the early stage of tumor, TGF-β inhibits the occurrence of tumor by inhibiting cell proliferation and regulating cell apoptosis. In the advanced stage of tumor, TGF-β promotes tumor development and affects prognosis by promoting cell survival and proliferation, cell migration and invasion, participates in immune escape, etc. In this article, we will review the paradoxical role of TGF-β on the occurrence and development of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Ruiting Peng
- Department of Stomatology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Yun Huang
- Department of Stomatology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Ping Huang
- Department of Stomatology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Linyi Liu
- Maine Health Institute for Research, Scarborough, ME, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel) 2023; 15:1642. [PMID: 36980527 PMCID: PMC10046400 DOI: 10.3390/cancers15061642] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and heterogeneous groups of human neoplasms. HNSCC is characterized by high morbidity, accounting for 3% of all cancers, and high mortality with ~1.5% of all cancer deaths. It was the most common cancer worldwide in 2020, according to the latest GLOBOCAN data, representing the seventh most prevalent human malignancy. Despite great advances in surgical techniques and the application of modern combinations and cytotoxic therapies, HNSCC remains a leading cause of death worldwide with a low overall survival rate not exceeding 40-60% of the patient population. The most common causes of death in patients are its frequent nodal metastases and local neoplastic recurrences, as well as the relatively low response to treatment and severe drug resistance. Much evidence suggests that the tumour microenvironment (TME), tumour infiltrating lymphocytes (TILs) and circulating various subpopulations of immunocompetent cells, such regulatory T cells (CD4+CD25+Foxp3+Tregs), cytotoxic CD3+CD8+ T cells (CTLs) and CD3+CD4+ T helper type 1/2/9/17 (Th1/Th2/Th9/Th17) lymphocytes, T follicular helper cells (Tfh) and CD56dim/CD16bright activated natural killer cells (NK), carcinoma-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (N1/N2 TANs), as well as tumour-associated macrophages (M1/M2 phenotype TAMs) can affect initiation, progression and spread of HNSCC and determine the response to immunotherapy. Rapid advances in the field of immuno-oncology and the constantly growing knowledge of the immunosuppressive mechanisms and effects of tumour cancer have allowed for the use of effective and personalized immunotherapy as a first-line therapeutic procedure or an essential component of a combination therapy for primary, relapsed and metastatic HNSCC. This review presents the latest reports and molecular studies regarding the anti-tumour role of selected subpopulations of immunocompetent cells in the pathogenesis of HNSCC, including HPV+ve (HPV+) and HPV-ve (HPV-) tumours. The article focuses on the crucial regulatory mechanisms of pro- and anti-tumour activity, key genetic or epigenetic changes that favour tumour immune escape, and the strategies that the tumour employs to avoid recognition by immunocompetent cells, as well as resistance mechanisms to T and NK cell-based immunotherapy in HNSCC. The present review also provides an overview of the pre- and clinical early trials (I/II phase) and phase-III clinical trials published in this arena, which highlight the unprecedented effectiveness and limitations of immunotherapy in HNSCC, and the emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
5
|
Overexpression of E-Cadherin Is a Favorable Prognostic Biomarker in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. BIOLOGY 2023; 12:biology12020239. [PMID: 36829516 PMCID: PMC9953277 DOI: 10.3390/biology12020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is characterized by poor survival, mostly due to local invasion, loco-regional recurrence, and metastasis. Given that the weakening of cell-to-cell adhesion is a feature associated with the migration and invasion of cancer cells, different studies have explored the prognostic utility of cell adhesion molecules such as E-cadherin (E-cad). This study aims to summarize current evidence in a meta-analysis, focusing on the prognostic role of E-cad in OSCC. To find studies meeting inclusion criteria, Scopus, Web of Science, EMBASE, Medline, and OpenGrey databases were systematically assessed and screened. The selection process led to 25 studies, which were considered eligible for inclusion in the meta-analysis, representing a sample of 2553 patients. E-cad overexpression was strongly associated with longer overall survival (OS) with Hazard Ratio (HR) = 0.41 95% confidence interval (95% CI) (0.32-0.54); p < 0.001 and disease-free survival with HR 0.47 95% CI (0.37-0.61); p < 0.001. In terms of OS, patients with tongue cancer experienced better survivability when expressing E-cad with HR 0.28 95% CI (0.19-0.43); p < 0.001. Globally, our findings indicate the prognostic role of the immunohistochemical assessment of E-cad in OSCC and its expression might acquire a different role based on the oral cavity subsites.
Collapse
|
6
|
Prime SS, Cirillo N, Parkinson EK. Escape from Cellular Senescence Is Associated with Chromosomal Instability in Oral Pre-Malignancy. BIOLOGY 2023; 12:biology12010103. [PMID: 36671795 PMCID: PMC9855962 DOI: 10.3390/biology12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
An escape from cellular senescence through the development of unlimited growth potential is one of the hallmarks of cancer, which is thought to be an early event in carcinogenesis. In this review, we propose that the molecular effectors of senescence, particularly the inactivation of TP53 and CDKN2A, together with telomere attrition and telomerase activation, all lead to aneuploidy in the keratinocytes from oral potentially malignant disorders (OPMD). Premalignant keratinocytes, therefore, not only become immortal but also develop genotypic and phenotypic cellular diversity. As a result of these changes, certain clonal cell populations likely gain the capacity to invade the underlying connective tissue. We review the clinical implications of these changes and highlight a new PCR-based assay to identify aneuploid cell in fluids such as saliva, a technique that is extremely sensitive and could facilitate the regular monitoring of OPMD without the need for surgical biopsies and may avoid potential biopsy sampling errors. We also draw attention to recent studies designed to eliminate aneuploid tumour cell populations that, potentially, is a new therapeutic approach to prevent malignant transformations in OPMD.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Melbourne, VIC 3053, Australia
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| |
Collapse
|
7
|
Renu K, Vinayagam S, Veeraraghavan VP, Mukherjee AG, Wanjari UR, Prabakaran DS, Ganesan R, Dey A, Vellingiri B, Kandasamy S, Ramanathan G, Doss C GP, George A, Gopalakrishnan AV. Molecular Crosstalk between the Immunological Mechanism of the Tumor Microenvironment and Epithelial–Mesenchymal Transition in Oral Cancer. Vaccines (Basel) 2022; 10:vaccines10091490. [PMID: 36146567 PMCID: PMC9504083 DOI: 10.3390/vaccines10091490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Oral cancer is a significant non-communicable disease affecting both emergent nations and developed countries. Squamous cell carcinoma of the head and neck represent the eight major familiar cancer types worldwide, accounting for more than 350,000 established cases every year. Oral cancer is one of the most exigent tumors to control and treat. The survival rate of oral cancer is poor due to local invasion along with recurrent lymph node metastasis. The tumor microenvironment contains a different population of cells, such as fibroblasts associated with cancer, immune-infiltrating cells, and other extracellular matrix non-components. Metastasis in a primary site is mainly due to multifaceted progression known as epithelial-to-mesenchymal transition (EMT). For the period of EMT, epithelial cells acquire mesenchymal cell functional and structural characteristics, which lead to cell migration enhancement and promotion of the dissemination of tumor cells. The present review links the tumor microenvironment and the role of EMT in inflammation, transcriptional factors, receptor involvement, microRNA, and other signaling events. It would, in turn, help to better understand the mechanism behind the tumor microenvironment and EMT during oral cancer.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
- Correspondence: (K.R.); (A.V.G.)
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Centre for Postgraduate and Research Studies, Periyar University, Dharmapuri 635205, Tamil Nadu, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sabariswaran Kandasamy
- Institute of Energy Research, Jiangsu University, No 301, Xuefu Road, Zhenjiang 212013, China
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence: (K.R.); (A.V.G.)
| |
Collapse
|
8
|
Jin JQ, Wang Q, Zhang YX, Wang X, Lu ZY, Li BW. Effect of ALA-PDT on inhibition of oral precancerous cell growth and its related mechanisms. Lasers Med Sci 2022; 37:3461-3472. [PMID: 35796919 DOI: 10.1007/s10103-022-03607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
BACKROUND Early treatment of oral precancerous lesions is considered as a key strategy for in oral carcinogenesis prevention. Increasing evidence has suggested that the transforming growth factor beta (TGF-β) signaling pathway is tightly involved in the process of oral-carcinogenesis. In this study, we investigated the inhibition effect and potential mechanism of 5-aminolaevulinic acid photodynamic therapy (ALA-PDT) in human oral precancerous cells via TGF-β pathway. MATERIALS AND METHODS Here, the dysplastic oral keratinocyte (DOK) cells were incubated with ALA concentration of 1 mM/mL for 4 h and then irradiated with a Helium-Neon (He-Ne) ion laser at 633 nm (200 mW/cm2). The control cells were cultured in Dulbecco's modified Eagle's medium (DMEM) medium. We analyzed the differentially expressed genes and correlated pathways in oral precancerous cells following ALA-PDT using Affymetrix microarrays. TGF-β pathway was analyzed by quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting. Bioinformatics analysis was performed to evaluate the expression of TGF-β1 in human oral cancer samples and adjacent normal samples. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), flow cytometry, 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and wound healing assay were used to assess the effects of ALA-PDT plus TGF-β receptor inhibitor (LY2109761) in DOK cells. RESULTS The TGF-β signaling could exert in suppressive effects on DOK cells after ALA-PDT. The cell proliferation and migration rate of DOK cells was significantly reduced and apoptosis and ROS generation induced more effectively by ALA-PDT combined with LY2109761. Furthermore, cell cycle analysis revealed that the combined treatment resulted in G0/G1 phase arrest. CONCLUSIONS ALA-PDT suppresses the growth of oral precancerous cells by regulating the TGF-β signaling pathway, and its suppressive effect was enhanced using LY2109761. These results indicate that it could be a promising alternative treatment against oral precancerous lesions.
Collapse
Affiliation(s)
- Jian-Qiu Jin
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Qian Wang
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Yu-Xing Zhang
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Xing Wang
- Institute of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Zhi-Yue Lu
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China. .,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Bo-Wen Li
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China. .,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| |
Collapse
|
9
|
Paul S, Ruiz-Manriquez LM, Ambriz-Gonzalez H, Medina-Gomez D, Valenzuela-Coronado E, Moreno-Gomez P, Pathak S, Chakraborty S, Srivastava A. Impact of smoking-induced dysregulated human miRNAs in chronic disease development and their potential use in prognostic and therapeutic purposes. J Biochem Mol Toxicol 2022; 36:e23134. [PMID: 35695328 DOI: 10.1002/jbt.23134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/20/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are evolutionary conserved small noncoding RNA molecules with a significant ability to regulate gene expression at the posttranscriptional level either through translation repression or messenger RNA degradation. miRNAs are differentially expressed in various pathophysiological conditions, affecting the course of the disease by modulating several critical target genes. As the persistence of irreversible molecular changes caused by cigarette smoking is central to the pathogenesis of various chronic diseases, several studies have shown its direct correlation with the dysregulation of different miRNAs, affecting numerous essential biological processes. This review provides an insight into the current status of smoking-induced miRNAs dysregulation in chronic diseases such as COPD, atherosclerosis, pulmonary hypertension, and different cancers and explores the diagnostic/prognostic potential of miRNA-based biomarkers and their efficacy as therapeutic targets.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Luis M Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Hector Ambriz-Gonzalez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Daniel Medina-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Estefania Valenzuela-Coronado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Paloma Moreno-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Parkinson EK, Prime SS. Oral Senescence: From Molecular Biology to Clinical Research. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.822397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cellular senescence is an irreversible cell cycle arrest occurring following multiple rounds of cell division (replicative senescence) or in response to cellular stresses such as ionizing radiation, signaling imbalances and oxidative damage (stress-induced premature senescence). Even very small numbers of senescent cells can be deleterious and there is evidence that senescent cells are instrumental in a number of oral pathologies including cancer, oral sub mucous fibrosis and the side effects of cancer therapy. In addition, senescent cells are present and possibly important in periodontal disease and other chronic inflammatory conditions of the oral cavity. However, senescence is a double-edged sword because although it operates as a suppressor of malignancy in pre-malignant epithelia, senescent cells in the neoplastic environment promote tumor growth and progression. Many of the effects of senescent cells are dependent on the secretion of an array of diverse therapeutically targetable proteins known as the senescence-associated secretory phenotype. However, as senescence may have beneficial roles in wound repair, preventing fibrosis and stem cell activation the clinical exploitation of senescent cells is not straightforward. Here, we discuss biological mechanisms of senescence and we review the current approaches to target senescent cells therapeutically, including senostatics and senolytics which are entering clinical trials.
Collapse
|
11
|
Mikuła-Pietrasik J, Rutecki S, Książek K. The functional multipotency of transforming growth factor β signaling at the intersection of senescence and cancer. Cell Mol Life Sci 2022; 79:196. [PMID: 35305149 PMCID: PMC11073081 DOI: 10.1007/s00018-022-04236-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
The transforming growth factor β (TGF-β) family of cytokines comprises a group of proteins, their receptors, and effector molecules that, in a coordinated manner, modulate a plethora of physiological and pathophysiological processes. TGF-β1 is the best known and plausibly most active representative of this group. It acts as an immunosuppressant, contributes to extracellular matrix remodeling, and stimulates tissue fibrosis, differentiation, angiogenesis, and epithelial-mesenchymal transition. In recent years, this cytokine has been established as a vital regulator of organismal aging and cellular senescence. Finally, the role of TGF-β1 in cancer progression is no longer in question. Because this protein is involved in so many, often overlapping phenomena, the question arises whether it can be considered a molecular bridge linking some of these phenomena together and governing their reciprocal interactions. In this study, we reviewed the literature from the perspective of the role of various TGF-β family members as regulators of a complex mutual interplay between senescence and cancer. These aspects are then considered in a broader context of remaining TGF-β-related functions and coexisting processes. The main narrative axis in this work is centered around the interaction between the senescence of normal peritoneal cells and ovarian cancer cells. The discussion also includes examples of TGF-β activity at the interface of other normal and cancer cell types.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland.
| |
Collapse
|
12
|
Molecular Mechanisms of Malignant Transformation of Oral Submucous Fibrosis by Different Betel Quid Constituents-Does Fibroblast Senescence Play a Role? Int J Mol Sci 2022; 23:ijms23031637. [PMID: 35163557 PMCID: PMC8836171 DOI: 10.3390/ijms23031637] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Betel quid (BQ) is a package of mixed constituents that is chewed by more than 600 million people worldwide, particularly in Asia. The formulation of BQ depends on a variety of factors but typically includes areca nut, betel leaf, and slaked lime and may or may not contain tobacco. BQ chewing is strongly associated with the development of potentially malignant and malignant diseases of the mouth such as oral submucous fibrosis (OSMF) and oral squamous cell carcinoma (OSCC), respectively. We have shown recently that the constituents of BQ vary geographically and that the capacity to induce disease reflects the distinct chemical composition of the BQ. In this review, we examined the diverse chemical constituents of BQ and their putative role in oral carcinogenesis. Four major areca alkaloids—arecoline, arecaidine, guvacoline and guvacine—together with the polyphenols, were identified as being potentially involved in oral carcinogenesis. Further, we propose that fibroblast senescence, which is induced by certain BQ components, may be a key driver of tumour progression in OSMF and OSCC. Our study emphasizes that the characterization of the detrimental or protective effects of specific BQ ingredients may facilitate the development of targeted BQ formulations to prevent and/or treat potentially malignant oral disorders and oral cancer in BQ users.
Collapse
|
13
|
The Microenvironment's Role in Mycosis Fungoides and Sézary Syndrome: From Progression to Therapeutic Implications. Cells 2021; 10:cells10102780. [PMID: 34685762 PMCID: PMC8534987 DOI: 10.3390/cells10102780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mycosis fungoides (MF) and Sezary Syndrome (SS) are the most common cutaneous T-cell lymphomas. It has been hypothesized that the interaction between the immune system, cutaneous cells, and neoplastic elements may play a role in MF/SS pathogenesis and progression. METHODS This paper aims to revise in a narrative way our current knowledge of the microenvironment's role in MF/SS. RESULTS AND CONCLUSIONS Literature data support a possible implication of microenvironment cells in MF/SS pathogenesis and progression, opening up new therapeutic avenues.
Collapse
|
14
|
Li CC, Shen Z, Bavarian R, Yang F, Bhattacharya A. Oral Cancer: Genetics and the Role of Precision Medicine. Surg Oncol Clin N Am 2021; 29:127-144. [PMID: 31757309 DOI: 10.1016/j.soc.2019.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading cancers in the world. OSCC patients are managed with surgery and/or chemoradiation. Prognoses and survival rates are dismal, however, and have not improved for more than 20 years. Recently, the concept of precision medicine was introduced, and the introduction of targeted therapeutics demonstrated promising outcomes. This article reviews the current understanding of initiation, progression, and metastasis of OSCC from both genetic and epigenetic perspectives. In addition, the applications and integration of omics technologies in biomarker discovery and drug development for treating OSCC are reviewed.
Collapse
Affiliation(s)
- Chia-Cheng Li
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | - Zhen Shen
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Roxanne Bavarian
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA; Division of Oral Medicine and Dentistry, Brigham and Women's Hospital, Francis Street, Boston, MA 02115, USA
| | - Fan Yang
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Aditi Bhattacharya
- Department of Oral and Maxillofacial Surgery, NYU College of Dentistry, East 24th Street, New York, NY 10010, USA
| |
Collapse
|
15
|
Sharma M, Hunter KD, Fonseca FP, Radhakrishnan R. Emerging role of cellular senescence in the pathogenesis of oral submucous fibrosis and its malignant transformation. Head Neck 2021; 43:3153-3164. [PMID: 34227702 DOI: 10.1002/hed.26805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/09/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Senescence is a common denominator in wound healing, fibrosis, and cancer. Although, senescence is transiently antifibrotic, when prolonged, promotes fibrosis and malignant transformation. Eligible studies indexed in MEDLINE, Embase and Web of Science were searched to understand the role of cellular senescence in the pathogenesis of oral submucous fibrosis (OSF) and its malignant transformation. The senescence-associated secretory phenotype (SASP) components like IL-1, IL-6, and GRO-α induce double-strand DNA breaks in keratinocytes and drive genetic instability. SASP derived from myofibroblasts induces epithelial-mesenchymal transition in OSF and facilitates cancer progression. The use of senolytics has been shown to eliminate senescent cells from the areas of fibrosis, thereby preventing malignancy. Naturally occurring agents such as apigenin and kaempferol inhibit SASP. Mechanistic insight into the emerging role of senescence in the pathogenesis of OSF and modalities to inhibit senescence-associated antiapoptotic pathways as a supplementary therapy to prevent malignant transformation of OSF is underlined.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, UK
| | - Felipe Paiva Fonseca
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
16
|
Overexpression of TGF-β1 and SDF-1 in cervical cancer-associated fibroblasts promotes cell growth, invasion and migration. Arch Gynecol Obstet 2021; 305:179-192. [PMID: 34196798 DOI: 10.1007/s00404-021-06137-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/23/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the effect of overexpression of transforming growth factor β1 (TGF-β1) and stromal cell-derived factor 1 (SDF-1) in cervical cancer-associated fibroblasts (CAFs) on regulating cell growth, invasion and migration. METHODS CAF cells and normal fibroblast cells (NFs) were obtained from patients with cervical squamous cell carcinoma and multiple uterine leiomyomas, respectively. Immunofluorescence assay and western blot were used to determine the expression of Vimentin and α-smooth muscle actin (α-SMA). CCK-8 assay was used to detect cell viability. Giemsa dyer was used to detect the colony formation. Flow cytometry was used to detect the growth state of cells. Transwell assays were used to detect the migration and invasion. RESULTS Vimentin and α-SMA expression in CAFs were significantly increased than those in NFs. In addition, TGF-β1 and SDF-1 expression were notably increased, and transforming growth factor beta receptor 2 (TβRII) expression was markedly decreased in CAF cells than those in NFs. Similarly, TGF-β1 and SDF-1 expression in the co-culture of CAFs and Hela cells were significantly increased, and cell proliferation, migration, invasion, colony formation and cell cycle progression were also promoted, while cell apoptosis was decreased. Those phenomena were reversed in the co-culture system with neutralizing antibodies to TGF-β1 and SDF-1. Furthermore, exogenous TGF-β1 and SDF-1 enhanced proliferation, colony formation, cell cycle progression, migration and invasion while decreased apoptosis of cells. These phenomena were also reversed by the addition of neutralizing antibodies to TGF-β1 and SDF-1. CONCLUSION Overexpression of TGF-β1 and SDF-1 in CAFs can promote the growth, invasion and migration of cervical cancer cells.
Collapse
|
17
|
Prime SS, Cirillo N, Cheong SC, Prime MS, Parkinson EK. Targeting the genetic landscape of oral potentially malignant disorders has the potential as a preventative strategy in oral cancer. Cancer Lett 2021; 518:102-114. [PMID: 34139286 DOI: 10.1016/j.canlet.2021.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
This study reviews the molecular landscape of oral potentially malignant disorders (OPMD). We examine the impact of tumour heterogeneity, the spectrum of driver mutations (TP53, CDKN2A, TERT, NOTCH1, AJUBA, PIK3CA, CASP8) and gene transcription on tumour progression. We comment on how some of these mutations impact cellular senescence, field cancerization and cancer stem cells. We propose that OPMD can be monitored more closely and more dynamically through the use of liquid biopsies using an appropriate biomarker of transformation. We describe new gene interactions through the use of a systems biology approach and we highlight some of the first studies to identify functional genes using CRISPR-Cas9 technology. We believe that this information has translational implications for the use of re-purposed existing drugs and/or new drug development. Further, we argue that the use of digital technology encompassing clinical and laboratory-based data will create relevant datasets for machine learning/artificial intelligence. We believe that therapeutic intervention at an early molecular premalignant stage should be an important preventative strategy to inhibit the development of oral squamous cell carcinoma and that this approach is applicable to other aerodigestive tract cancers.
Collapse
Affiliation(s)
- S S Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4NS, UK.
| | - N Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Carlton, Melbourne, Victoria, 3053, Australia.
| | - S C Cheong
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 1 Jalan SS12/1A, Subang Jaya, Selangor, Malaysia.
| | - M S Prime
- Roche Diagnostics Information Solutions, Hoffman-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - E K Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
18
|
Sá JDO, Trino LD, Oliveira AK, Lopes AFB, Granato DC, Normando AGC, Santos ES, Neves LX, Carnielli CM, Paes Leme AF. Proteomic approaches to assist in diagnosis and prognosis of oral cancer. Expert Rev Proteomics 2021; 18:261-284. [PMID: 33945368 DOI: 10.1080/14789450.2021.1924685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Oral squamous cell carcinoma (OSCC) ranks among the top 10 leading causes of cancer worldwide, with 5-year survival rate of about 50%, high lymph node metastasis, and relapse rates. The OSCC diagnosis, prognosis, and treatment are mostly based on the clinical TNM classification. There is an urgent need for the discovery of biomarkers and therapeutic targets to assist in the clinical decision-making process.Areas covered: We summarize proteomic studies of the OSCC tumor, immune microenvironment, potential liquid biopsy sites, and post-translational modifications trying to retrieve information in the discovery and verification or (pre)validation phases. The search strategy was based on the combination of MeSH terms and expert refinement.Expert opinion: Untargeted combined with targeted proteomics are strategies that provide reliable and reproducible quantitation of proteins and are the methods of choice of many groups worldwide. Undoubtedly, proteomics has been contributing to the understanding of OSCC progression and uncovers potential candidates as biomarker or therapeutic targets. Nevertheless, none of these targets are available in the clinical practice yet. The scientific community needs to overcome the limitations by investing in robust experimental designs to strengthen the value of the findings, leveraging the translation of knowledge, and further supporting clinical decisions.
Collapse
Affiliation(s)
- Jamile De Oliveira Sá
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil.,Departamento De Diagnóstico Oral, Faculdade De Odontologia De Piracicaba, Universidade Estadual De Campinas (UNICAMP), Piracicaba, Brazil
| | - Luciana Daniele Trino
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Ana Karina Oliveira
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Ariane Fidelis Busso Lopes
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Daniela Campos Granato
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Ana Gabriela Costa Normando
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil.,Departamento De Diagnóstico Oral, Faculdade De Odontologia De Piracicaba, Universidade Estadual De Campinas (UNICAMP), Piracicaba, Brazil
| | - Erison Santana Santos
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil.,Departamento De Diagnóstico Oral, Faculdade De Odontologia De Piracicaba, Universidade Estadual De Campinas (UNICAMP), Piracicaba, Brazil
| | - Leandro Xavier Neves
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Carolina Moretto Carnielli
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Adriana Franco Paes Leme
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| |
Collapse
|
19
|
Tan ML, Parkinson EK, Yap LF, Paterson IC. Autophagy is deregulated in cancer-associated fibroblasts from oral cancer and is stimulated during the induction of fibroblast senescence by TGF-β1. Sci Rep 2021; 11:584. [PMID: 33436723 PMCID: PMC7804411 DOI: 10.1038/s41598-020-79789-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Many of the characteristics ascribed to cancer-associated fibroblasts (CAFs) are shared by activated, autophagic and senescent fibroblasts. Whilst most oral squamous cell carcinomas (OSCCs) are genetically unstable (GU-OSCC), genetically stable variants (GS-OSCC) have been described and, notably, CAF activation (myofibroblast differentiation) and senescence are characteristics particularly associated with GU-OSCCs. However, it is not known whether autophagy is disrupted in these cells or whether autophagy regulates the development of the myofibroblast and senescent phenotypes. In this study, we show that senescent CAFs from GU-OSCCs contained more autophagosomes than normal human oral fibroblasts (NHOFs) and CAFs from GS-OSCCs possibly due to autophagic impairment. Further, we show that deregulation of autophagy in normal fibroblasts, either by inhibition with autophagy inhibitor, SAR405, or activation with TGF-β1, induced fibroblast activation and senescence: In response to TGF-β1, autophagy was induced prior to the development of the activated and senescent phenotypes. Lastly, we show that both SAR405- and TGF-β1-treated NHOFs enhance OSCC cell migration but only TGF-β1-treated cells increase OSCC invasion through Matrigel, indicating that TGF-β1 has additional effects that are independent of fibroblast activation/senescence. These results suggest a functional role for autophagy in the development of myofibroblast and CAF phenotypes.
Collapse
Affiliation(s)
- May Leng Tan
- Department of Oral and Craniofacial Sciences, Level 9, Postgraduate and Research Tower, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - E Kenneth Parkinson
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, Level 9, Postgraduate and Research Tower, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, Level 9, Postgraduate and Research Tower, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
Goulet CR, Pouliot F. TGFβ Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:89-105. [PMID: 33123995 DOI: 10.1007/978-3-030-47189-7_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor beta (TGFβ) is a pleiotropic growth factor. Under normal physiological conditions, TGFβ maintains homeostasis in mammalian tissues by restraining the growth of cells and stimulating apoptosis. However, the role of TGFβ signaling in the carcinogenesis is complex. TGFβ acts as a tumor suppressor in the early stages of disease and as a tumor promoter in its later stages where cancer cells have been relieved from TGFβ growth controls. Overproduction of TGFβ by cancer cells lead to a local fibrotic and immune-suppressive microenvironment that fosters tumor growth and correlates with invasive and metastatic behavior of the cancer cells. Here, we present an overview of the complex biology of the TGFβ family, and we discuss the roles of TGFβ signaling in carcinogenesis and how this knowledge is being leveraged to develop TGFβ inhibition therapies against the tumor.
Collapse
Affiliation(s)
- Cassandra Ringuette Goulet
- Oncology Division, CHU de Québec Research Center, Quebec, QC, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Frédéric Pouliot
- Oncology Division, CHU de Québec Research Center, Quebec, QC, Canada.
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC, Canada.
- Department of surgery, CHU de Québec Research Center - Laval University, Quebec City, QC, Canada.
| |
Collapse
|
21
|
Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer 2020; 148:1548-1561. [PMID: 33091960 DOI: 10.1002/ijc.33352] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy representing 90% of all forms of oral cancer worldwide. Although great efforts have been made in the past decades, the 5-year survival rate of OSCC patients is no more than 60% due to tumor metastasis and subsequent recurrence. The metastasis from the primary site is due to a complex process known as epithelial-to-mesenchymal transition (EMT). During the EMT, epithelial cells gradually acquire the structural and functional characteristics of mesenchymal cells, leading to the upregulation of cell migration and the promotion of tumor cell dissemination. Therefore, EMT attracted broad attention due to its close relationship with cancer invasion and metastasis. Therefore, in the present review, an extensive description of the current research on OSCC and the role of EMT in this cancer type is provided, including diverse EMT markers, regulatory networks and crucial EMT-inducing transcription factors in OSCC. Moreover, a brief summary was made regarding the current application of EMT-correlated indexes in the prognostic analysis of OSCC patients, and the potential therapeutic approaches against OSCC and difficulties in the development of an effective anti-EMT treatment are discussed. Our aim is to provide novel insights to develop new strategies to combat OSCC by targeting EMT.
Collapse
Affiliation(s)
- Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
22
|
Custódio M, Biddle A, Tavassoli M. Portrait of a CAF: The story of cancer-associated fibroblasts in head and neck cancer. Oral Oncol 2020; 110:104972. [PMID: 33011636 DOI: 10.1016/j.oraloncology.2020.104972] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Complex interactions take place during cancer formation and progression. In this regard, there has been increasing focus on the non-malignant cells that make up the tumour microenvironment (TME), and how they interact with malignant tumour cells. TME is highly heterogeneous and has a major influence on tumour behaviour and therapy response. Cancer-associated fibroblasts (CAFs), one of the main components of the TME, establish dangerous liaisons with cancer cells and other components of the TME to shape a tumour-supportive environment in many types of cancer. Head and neck squamous cell carcinoma (HNSCC) encompass the malignant neoplasms arising from the mucosal lining of the oral cavity, pharynx and larynx. The TME of HNSCC contributes to tumour progression and this stromal compartment may be an interesting target for treatment. There is an emerging picture of the behaviour of CAFs in HNSCC; how they affect and are affected by the TME. We aim to summarise and discuss the current understanding of CAFs in head and neck cancer, exploring CAF activation and heterogeneity, and interaction with cancer cells and other cells within the TME.
Collapse
Affiliation(s)
- Marcos Custódio
- Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Adrian Biddle
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London SE1 1UL, UK.
| |
Collapse
|
23
|
Guimaraes VSN, Vidal MTA, de Faro Valverde L, de Oliveira MG, de Oliveira Siquara da Rocha L, Coelho PLC, Soares FA, de Freitas Souza BS, Bezerra DP, Coletta RD, Pereira TA, Dos Santos JN, Gurgel Rocha CA. Hedgehog pathway activation in oral squamous cell carcinoma: cancer-associated fibroblasts exhibit nuclear GLI-1 localization. J Mol Histol 2020; 51:675-684. [PMID: 33000351 DOI: 10.1007/s10735-020-09913-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to evaluate the expression of Hedgehog (HH) signaling molecules (SHH and GLI-1) by cancer-associated fibroblasts (CAF) in oral squamous cell carcinoma (OSCC). Immunohistochemistry was used to detect molecular HH signaling and CAF-related protein expression, including α-SMA and S100A4, in 70 samples of human OSCC. The colocalization of α-SMA and S100A4 with SHH was also evaluated by double-staining. In vitro study was performed using primary normal oral fibroblast (NOF) and CAF through immunofluorescence and Western Blot for CAF-proteins, SHH, and GLI-1. Forty-five cases (64.28%) were positive for α-SMA exclusively in tumor stroma, and S100A4 was identified in the cytoplasm of CAFs in 94.28% (n = 66) of the cases. With respect to stromal cells, 64 (91.43%) OSCC cases were positive for SHH, and 31 were positive for GLI-1 (44.29%); positive correlations were found between SHH and α-SMA (p < 0.0001, φ = 0.51), as well as between SHH and S100A4 (p = 0.087, φ = 0.94). Protein expression of SHH and GLI-1 was observed in primary CAFs and NOFs. Although SHH was found to be localized in the cellular cytoplasm of both cell types, GLI-1 was present only in the nuclei of CAF. Our results indicate that CAFs are not only potential sources of HH ligands in tumor stroma, but may also respond to HH signaling through nuclear GLI-1 activation. We further observed that elevated SHH expression by OSCC cells was associated with higher CAF density, reinforcing the chemoattractant role played by these molecules.
Collapse
Affiliation(s)
- Vanessa Sousa Nazare Guimaraes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcao Street, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
- Federal University of Bahia, Augusto Viana Street, s/n, Canela, Salvador, Bahia, 40110-909, Brazil
| | - Manuela Torres Andion Vidal
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcao Street, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
- Federal University of Bahia, Augusto Viana Street, s/n, Canela, Salvador, Bahia, 40110-909, Brazil
| | - Ludmila de Faro Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcao Street, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
- Federal University of Bahia, Augusto Viana Street, s/n, Canela, Salvador, Bahia, 40110-909, Brazil
| | - Marbele Guimarães de Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcao Street, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
- Federal University of Bahia, Augusto Viana Street, s/n, Canela, Salvador, Bahia, 40110-909, Brazil
| | - Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcao Street, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
- Federal University of Bahia, Augusto Viana Street, s/n, Canela, Salvador, Bahia, 40110-909, Brazil
| | - Paulo Lucas Cerqueira Coelho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcao Street, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
| | - Fernando Augusto Soares
- D'Or Institute for Research and Education, Diniz Cordeiro Street, 30, Botafogo, Rio de Janeiro, 22281-100, Brazil
- School of Dentistry, University of São Paulo, Prof. Almeida Prado Avenue, 1280, Butantã, São Paulo, 05508-900, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcao Street, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
| | - Daniel Pereira Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcao Street, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
| | - Ricardo D Coletta
- School of Dentistry, University of Campinas, Limeira Avenue, 901, Areiao, Piracicaba, São Paulo, 13414-903, Brazil
| | - Thiago Almeida Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305-5463, USA
| | - Jean Nunes Dos Santos
- Federal University of Bahia, Augusto Viana Street, s/n, Canela, Salvador, Bahia, 40110-909, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcao Street, 121, Candeal, Salvador, Bahia, 40296-710, Brazil.
- Federal University of Bahia, Augusto Viana Street, s/n, Canela, Salvador, Bahia, 40110-909, Brazil.
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation,121 Waldemar Falcao, Candeal, Salvador, Bahia, Brazil.
| |
Collapse
|
24
|
Water-Pipe Smoking Exposure Deregulates a Set of Genes Associated with Human Head and Neck Cancer Development and Prognosis. TOXICS 2020; 8:toxics8030073. [PMID: 32961854 PMCID: PMC7560251 DOI: 10.3390/toxics8030073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
Water-pipe smoking (WPS) is becoming the most popular form of tobacco use among the youth, especially in the Middle East, replacing cigarettes rapidly and becoming a major risk of tobacco addiction worldwide. Smoke from WPS contains similar toxins as those present in cigarette smoke and is linked directly with different types of cancers including lung and head and neck (HN) carcinomas. However, the underlying molecular pathways and/or target genes responsible for the carcinogenic process are still unknown. In this study, human normal oral epithelial (HNOE) cells, NanoString PanCancer Pathways panel of 770 gene transcripts and quantitative real-time polymerase chain reaction (qRT-PCR) analysis were applied to discover differentially expressed genes (DEG) modulated by WPS. In silico analysis was performed to analyze the impact of these genes in HN cancer patient’s biology and outcome. We found that WPS can induce the epithelial–mesenchymal transition (EMT: hallmark of cancer progression) of HNOE cells. More significantly, our analysis of NanoString revealed 23 genes deregulated under the effect of WPS, responsible for the modulation of cell cycle, proliferation, migration/invasion, apoptosis, signal transduction, and inflammatory response. Further analysis was performed using qRT-PCR of HNOE WPS-exposed and unexposed cells supported the reliability of our NanoString data. Moreover, we demonstrate those DEG to be upregulated in cancer compared with normal tissue. Using the Kaplan–Meier analysis, we observed a significant association between WPS-deregulated genes and relapse-free survival/overall survival in HN cancer patients. Our findings imply that WPS can modulate EMT as well as a set of genes that are directly involved in human HN carcinogenesis, thereby affecting HN cancer patients’ survival.
Collapse
|
25
|
Shen H, Sun B, Yang Y, Cai X, Bi L, Deng L, Zhang L. MIR4435-2HG regulates cancer cell behaviors in oral squamous cell carcinoma cell growth by upregulating TGF-β1. Odontology 2020; 108:553-559. [PMID: 32016787 DOI: 10.1007/s10266-020-00488-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022]
Abstract
MIR4435-2HG has been characterized as an oncogenic lncRNA in several types of cancer, while its role in oral squamous cell carcinoma (OSCC, a major subtype of oral cancer) has not been characterized. We explored the functionality of MIR4435-2HG in OSCC and investigated its interactions with TGF-β1. Blood samples were extracted from OSCC patients (n = 44) and healthy volunteers (n = 38), RT-qPCR, CCK-8, Transwell assays and western blot were performed in this study. The results showed that levels of MIR4435-2HG and TGF-β1 in plasma were upregulated in OSCC. Across OSCC plasma samples, TGF-β1 and MIR4435-2HG were significantly and positively correlated. Overexpression of MIR4435-2HG resulted in upregulated TGF-β1 expression, while exogenous TGF-β1 treatment had no effect on the expression of MIR4435-2HG. Overexpression of MIR4435-2HG and exogenous TGF-β1 treatment led to promoted, while TGF-β inhibitor led to inhibited migration, proliferation and invasion of cancer cells. Moreover, TGF-β inhibitor led to reduced effects of overexpressing MIR4435-2HG. Therefore, MIR4435-2HG regulates the behaviors of OSCC cells by promoting the expression of TGF-β1.
Collapse
Affiliation(s)
- Huan Shen
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Bin Sun
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Yongjin Yang
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Xingwei Cai
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Lixia Bi
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Lin Deng
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Luyue Zhang
- School of Basic Medical Sciences, The Fourth Military Medical University, No. 147, West of Changle Road, Xincheng District, Xi'an, 710032, Shannxi, People's Republic of China.
| |
Collapse
|
26
|
Celentano A, Yap T, Paolini R, Yiannis C, Mirams M, Koo K, McCullough M, Cirillo N. Inhibition of matrix metalloproteinase-2 modulates malignant behaviour of oral squamous cell carcinoma cells. J Oral Pathol Med 2020; 50:323-332. [PMID: 31925966 DOI: 10.1111/jop.12992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/16/2019] [Accepted: 01/04/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) play a crucial role in the malignant phenotype of cancer cells. In particular, active levels of MMP2 in cancer cells have been associated with invasion and metastasis through the degradation of basement membrane extracellular matrix proteins. However, little is known about the role of this potential biomarker in oral cancer. Our aim was to investigate the effect of MMP2 inhibition on OSCC activity in vitro, as well as to assess MMP2 dysregulation in oral cancer samples. METHODS Human OSCC cell lines H357 and H400 were tested with the selective MMP2 inhibitor ARP101 and the MMP2 neutralising monoclonal antibody MA5-13590 to assess cell proliferation in vitro using MTS assay. Cell migration at 12/24 h was assessed using a Transwell migration assay. Cell invasion was assessed at 24 h using a Corning Matrigel invasion assay. MMP2 expression was assessed in 208 tissue samples (related to 60 OSCC cases and nine normal control) using tissue microarray (TMA) and further analysed via TCGA. RESULTS Both ARP101 and MA5-13590 monoclonal antibody reduced cell proliferation in both the cell lines tested. Treatment with 4μg/mL of MMP2 monoclonal antibody showed a significant decrease in cell migration at 24 hours. The administration of ARP101 and monoclonal antibody to H357 and H400 cell lines induced a drastic reduction in cell invasion at 24 h compared to the control. In patients, TCGA analysis demonstrated that oral cancer tissues express significantly higher levels of MMP2 mRNA compared to normal oral tissues. Further, IHC analysis on TMA showed significant difference in MMP2 protein expression between low and high histopathological grade OSCC. CONCLUSIONS We have demonstrated, for the first time, that MMP2 inhibition affects oral cancer cells ability to survive, migrate and invade in vitro. Differences between MMP2 expression in normal and malignant tissues varied. Further research on the role of MMP2 in OSCC and novel mechanisms to inhibit MMP2-dependent pathways should be encouraged.
Collapse
Affiliation(s)
- Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | - Tami Yap
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Michiko Mirams
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia
| | - Kendrick Koo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Hsu PJ, Yan K, Shi H, Izumchenko E, Agrawal N. Molecular biology of oral cavity squamous cell carcinoma. Oral Oncol 2020; 102:104552. [PMID: 31918173 DOI: 10.1016/j.oraloncology.2019.104552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/30/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Oral cavity squamous cell carcinoma (OCSCC) is a heterogeneous and complex disease that arises due to dysfunction of multiple molecular signaling pathways. Recent advances in high-throughput genetic sequencing technologies coupled with innovative analytical techniques have begun to characterize the molecular determinants driving OCSCC. An understanding of the key molecular signaling networks underlying the initiation and progression of is essential for informing treatment of the disease. In this chapter, we discuss recent findings of key genes altered in OCSCC and potential treatments targeting these genes.
Collapse
Affiliation(s)
- Phillip J Hsu
- Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - Kenneth Yan
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Hailing Shi
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Evgeny Izumchenko
- Section of Hematology Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Nishant Agrawal
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA.
| |
Collapse
|
28
|
Cancer Biology and Carcinogenesis: Fundamental Biological Processes and How They Are Deranged in Oral Cancer. TEXTBOOK OF ORAL CANCER 2020. [DOI: 10.1007/978-3-030-32316-5_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
The integrative regulatory network of circRNA and microRNA in keloid scarring. Mol Biol Rep 2019; 47:201-209. [PMID: 31612410 DOI: 10.1007/s11033-019-05120-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Circular RNA (circRNA), a novel type of non-coding RNA that consists of a circular loop, has been demonstrated to act as a "sponge" for microRNAs (miRNAs). However, the role of circRNAs in keloid remains unknown. In this study, we investigated circRNA expression profiles in keloid to identify potential diagnostic and therapeutic circRNAs. We performed a circRNA microarray assay to determine circRNA expression in keloid and paired normal skin tissues. Quantitative reverse transcription polymerase chain reaction was used to evaluate the expression levels of candidate circRNAs. The most significantly over-expressed circRNA was used to predict putative miRNA targets and the binding sites of miRNAs with this circRNA. Finally, we constructed a circRNA-miRNA interaction network and carried out gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. We found 52 significantly upregulated and 24 downregulated circRNAs in keloid compared with normal skin tissue. We confirmed that hsa_circ_0057452, hsa_circ_0007482, hsa_circ_0020792, hsa_circ_0057342, and hsa_circ_0043688 were significantly upregulated in keloid tissues. Analysis of the circRNA-miRNA interaction network revealed that circRNAs could interact with miRNAs, including miRNA-29a, miRNA-23a-5p and miRNA-1976. GO and KEGG analyses indicated that these target genes were involved in biological functions and signaling pathways that may play vital roles in the pathogenesis of keloid. This study revealed that circRNAs are potentially implicated in the development of keloid and could serve as novel diagnostic and therapeutic targets.
Collapse
|
30
|
Alsahafi E, Begg K, Amelio I, Raulf N, Lucarelli P, Sauter T, Tavassoli M. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis 2019; 10:540. [PMID: 31308358 PMCID: PMC6629629 DOI: 10.1038/s41419-019-1769-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are an aggressive, genetically complex and difficult to treat group of cancers. In lieu of truly effective targeted therapies, surgery and radiotherapy represent the primary treatment options for most patients. But these treatments are associated with significant morbidity and a reduction in quality of life. Resistance to both radiotherapy and the only available targeted therapy, and subsequent relapse are common. Research has therefore focussed on identifying biomarkers to stratify patients into clinically meaningful groups and to develop more effective targeted therapies. However, as we are now discovering, the poor response to therapy and aggressive nature of HNSCCs is not only affected by the complex alterations in intracellular signalling pathways but is also heavily influenced by the behaviour of the extracellular microenvironment. The HNSCC tumour landscape is an environment permissive of these tumours' aggressive nature, fostered by the actions of the immune system, the response to tumour hypoxia and the influence of the microbiome. Solving these challenges now rests on expanding our knowledge of these areas, in parallel with a greater understanding of the molecular biology of HNSCC subtypes. This update aims to build on our earlier 2014 review by bringing up to date our understanding of the molecular biology of HNSCCs and provide insights into areas of ongoing research and perspectives for the future.
Collapse
Affiliation(s)
- Elham Alsahafi
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Katheryn Begg
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, LE1 9HN, UK
| | - Nina Raulf
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Philippe Lucarelli
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Thomas Sauter
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
31
|
Dourado MR, Korvala J, Åström P, De Oliveira CE, Cervigne NK, Mofatto LS, Campanella Bastos D, Pereira Messetti AC, Graner E, Paes Leme AF, Coletta RD, Salo T. Extracellular vesicles derived from cancer-associated fibroblasts induce the migration and invasion of oral squamous cell carcinoma. J Extracell Vesicles 2019; 8:1578525. [PMID: 30788085 PMCID: PMC6374932 DOI: 10.1080/20013078.2019.1578525] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 12/11/2018] [Accepted: 01/18/2019] [Indexed: 12/15/2022] Open
Abstract
As one of the most abundant constituents of the tumour microenvironment (TME), cancer-associated fibroblasts (CAF) display critical roles during tumour progression and metastasis. Multiple classes of molecules including growth factors, cytokines, proteases and extracellular matrix proteins, are produced by CAF to act as mediators of the stroma-tumour interactions. One of the main channels for this communication is associated with extracellular vesicles (EV), which are secreted particles loaded with protein and genetic information. In this study, we evaluated the effects of EV derived from CAF primary human cell lines (n = 5) on proliferation, survival, migration, and invasion of oral squamous cell carcinoma (OSCC) cells. As controls, EV from human primary-established normal oral fibroblasts (NOF, n = 5) were used. Our in vitro assays showed that CAF-EV significantly induces migration and invasion of OSCC cells and promote a disseminated pattern of HSC-3 cell invasion in the 3D organotypic assay. Furthermore, gene expression analysis of EV-treated cancer cells revealed changes in the pathways associated with tumour metabolism and up-regulation of tumour invasion genes. Our findings suggest a significant role of CAF-EV in promoting the migration and invasion of OSCC cells, which are related to the activation of cancer-related pathways.
Collapse
Affiliation(s)
- Mauricio Rocha Dourado
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil.,Cancer and Translational Medicine Research Unit, Faculty of Medicine and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Johanna Korvala
- Cancer and Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Pirjo Åström
- Cancer and Translational Medicine Research Unit, Faculty of Medicine and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | | | - Nilva K Cervigne
- Department of Morphology and Basic Pathology, Faculty of Medicine of Jundiai, Jundiai, Brazil
| | - Luciana Souto Mofatto
- Genomics and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Piracicaba, Brazil
| | - Debora Campanella Bastos
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Edgard Graner
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Ricardo D Coletta
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, Faculty of Medicine and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Institute of Oral and Maxillofacial Disease, University of Helsinki, and HUSLAB, Department of Pathology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
32
|
Bommi PV, Ravindran S, Raychaudhuri P, Bagchi S. DDB2 regulates Epithelial-to-Mesenchymal Transition (EMT) in Oral/Head and Neck Squamous Cell Carcinoma. Oncotarget 2018; 9:34708-34718. [PMID: 30410671 PMCID: PMC6205178 DOI: 10.18632/oncotarget.26168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/08/2018] [Indexed: 01/21/2023] Open
Abstract
DDB2 is a sensor of DNA damage and it plays an important role in Global Genomic Repair (GG-NER). Our previous studies show that DDB2 is involved in the regulation of metastasis in colon adenocarcinoma. Squamous Cell Carcinomas in the Oral/Head & Neck region (HNSCC) are particularly aggressive due to high incidence of recurrence and distant metastasis. In this study, we show that DDB2 expression is downregulated in advanced HNSCCs and loss of DDB2 expression coincides with reduced survival. Recent meta-analysis of gene expression data characterized the mesenchymal-type (EMT-type) as one most aggressive cancer cluster in HNSCC. Here, we report that DDB2 constitutively represses mRNA expression of the EMT- regulatory transcription factors SNAIL, ZEB1, and angiogenic factor VEGF in HNSCC cells. As a result, re-expression of DDB2 in metastatic cells reversed EMT with transcriptional upregulation of epithelial marker E-cadherin, and downregulation of mesenchymal markers N-cadherin, Vimentin, and Fibronectin. Interestingly, in a reverse assay, depletion of DDB2 in non-metastatic cells induced expression of the same EMT-regulatory transcription factors. TGFβs are major regulators of Snail and Zeb1, and we observed that DDB2 transcriptionally regulates expression of TGFB2 in HNSCC cells. Re-expression of DDB2 in mouse embryonic fibroblasts (MEFs) isolated from Ddb2 (-/-) knockout-mice resulted in repression of EMT-regulatory factors Zeb1, Snail and Tgfb2. Taken together, these results support the active role of DDB2 as a candidate suppressor of the EMT-process in HNSCC. Early detection leads to significantly higher survival in HNSCC and DDB2 expression in tumors can be a predictor of EMT progression.
Collapse
Affiliation(s)
- Prashant V Bommi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA.,Current Address: Department of Clinical Cancer Prevention, Biological Sciences Research Building (BSRB), University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Srilata Bagchi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading cancers in the world. OSCC patients are managed with surgery and/or chemoradiation. Prognoses and survival rates are dismal, however, and have not improved for more than 20 years. Recently, the concept of precision medicine was introduced, and the introduction of targeted therapeutics demonstrated promising outcomes. This article reviews the current understanding of initiation, progression, and metastasis of OSCC from both genetic and epigenetic perspectives. In addition, the applications and integration of omics technologies in biomarker discovery and drug development for treating OSCC are reviewed.
Collapse
|
34
|
Cigarette smoke and chewing tobacco alter expression of different sets of miRNAs in oral keratinocytes. Sci Rep 2018; 8:7040. [PMID: 29728663 PMCID: PMC5935709 DOI: 10.1038/s41598-018-25498-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/23/2018] [Indexed: 12/17/2022] Open
Abstract
Carcinogenic effect of tobacco in oral cancer is through chewing and/or smoking. Significant differences exist in development of oral cancer between tobacco users and non-users. However, molecular alterations induced by different forms of tobacco are yet to be fully elucidated. We developed cellular models of chronic exposure to chewing tobacco and cigarette smoke using immortalized oral keratinocytes. Chronic exposure to tobacco resulted in increased cell scattering and invasiveness in immortalized oral keratinocytes. miRNA sequencing using Illumina HiSeq 2500 resulted in the identification of 10 significantly dysregulated miRNAs (4 fold; p ≤ 0.05) in chewing tobacco treated cells and 6 in cigarette smoke exposed cells. We integrated this data with global proteomic data and identified 36 protein targets that showed inverse expression pattern in chewing tobacco treated cells and 16 protein targets that showed inverse expression in smoke exposed cells. In addition, we identified 6 novel miRNAs in chewing tobacco treated cells and 18 novel miRNAs in smoke exposed cells. Integrative analysis of dysregulated miRNAs and their targets indicates that signaling mechanisms leading to oncogenic transformation are distinct between both forms of tobacco. Our study demonstrates alterations in miRNA expression in oral cells in response to two frequently used forms of tobacco.
Collapse
|
35
|
Abstract
The worldwide annual incidence of oral squamous cell carcinoma (OSCC) is over 300,000 cases with a mortality rate of 48%. This cancer type accounts for 90% of all oral cancers, with the highest incidence in men over 50 years of age. A significantly increased risk of developing OSCC exists among smokers and people who consume alcohol daily. OSCC is an aggressive cancer that metastasizes rapidly. Despite the development of new therapies in the treatment of OSCC, no significant increase in 5-year survival has been recorded in the past decades. The latest research suggests focus should be put on examining tumor stroma activation within OSCC, as the stroma may contain cells that can produce signal molecules and a microenvironment crucial for the development of metastases. The aim of this review is to provide an insight into the factors that activate OSCC stroma and hence faciliate neoplastic progression. It is based on the currently available data on the role and interaction between metalloproteinases, cytokines, growth factors, hypoxia factor and extracellular adhesion proteins in the stroma of OSCC and neoplastic cells. Their interplay is additionally presented using the Systems Biology Graphical Notation in order to sublimate the collected knowledge and enable the more efficient recognition of possible new biomarkers in the diagnostics and follow-up of OSCC or in finding new therapeutic targets.
Collapse
|
36
|
New Gene Markers for Metabolic Processes and Homeostasis in Porcine Buccal Pouch Mucosa during Cells Long Term-Cultivation-A Primary Culture Approach. Int J Mol Sci 2018; 19:ijms19041027. [PMID: 29596348 PMCID: PMC5979461 DOI: 10.3390/ijms19041027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/22/2023] Open
Abstract
The oral mucosal tissue is a compound structure composed of morphologically and physiologically different cell types. The morphological modification involves genetically determined lifespan, which may be recognized as the balance between cell survival and apoptosis. Although the biochemical processes and pathways in oral mucosa, with special regards to drug transport, delivery, and metabolism, are well known, the cellular physiological homeostasis in this tissue requires further investigation. The porcine buccal pouch mucosal cells (BPMCs) collected from 20 pubertal crossbred Landrace gilts, were used in this study. Immediately after recovery, the oral mucosa was separated micro-surgically, and treated enzymatically. The dispersed cells were transferred into primary in vitro culture systems for a long-term cultivation of 30 days. After each step of in vitro culture (IVC), the cells were collected for isolation of total RNA at 24 h, 7, 15, and 30 days of IVC. While the expression was analyzed for days 7, 15, and 30, the 24th hour was used as a reference for outcome calibration. The gene expression profile was determined using Affymetrix microarray assays and necessary procedures. In results, we observed significant up-regulation of SCARB1, PTGS2, DUSP5, ITGB3, PLK2, CCL2, TGFB1, CCL8, RFC4, LYN, ETS1, REL, LIF, SPP1, and FGER1G genes, belonging to two ontological groups, namely "positive regulation of metabolic process", and "regulation of homeostatic process" at 7 day of IVC as compared to down-regulation at days 15 and 30. These findings suggest that the metabolic processes and homeostatic regulations are much more intense in porcine mucosal cells at day 7 of IVC. Moreover, the increased expression of marker genes, for both of these ontological groups, may suggest the existence of not only "morphological lifespan" during tissue keratinization, but also "physiological checkpoint" dedicated to metabolic processes in oral mucosa. This knowledge may be useful for preclinical experiments with drugs delivery and metabolism in both animals and humans.
Collapse
|
37
|
Troiano G, Mastrangelo F, Caponio V, Laino L, Cirillo N, Lo Muzio L. Predictive Prognostic Value of Tissue-Based MicroRNA Expression in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-analysis. J Dent Res 2018. [DOI: 10.1177/0022034518762090] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common type of cancer characterized by a low survival rate, mostly due to local recurrence and metastasis. In view of the importance of predicting tumor behavior in the choice of treatment strategies for OSCC, several studies have attempted to investigate the prognostic value of tissue biomarkers, including microRNA (miRNA). The purpose of this study was to perform a systematic review and meta-analysis to evaluate the relationship between miRNA expression and survival of OSCC patients. Studies were identified by searching on MEDLINE/PubMed, SCOPUS, Web of Science, and Google Scholar. Quality assessment of studies was performed with the Newcastle-Ottawa Scale. Data were collected from cohort studies comparing disease-free survival and overall survival in patients with high miRNA expression compared to those with low expression. A total of 15 studies featuring 1,200 OSCC samples, predominantly from Asia, met the inclusion criteria and were included in the meta-analysis. Poor prognosis correlated with upregulation of 9 miRNAs (miR-21, miR-455-5p, miiR-155-5p, miR-372, miR-373, miR-29b, miR-1246, miR-196a, and miR-181) and downregulation of 7 miRNAs (miR-204, miR-101, miR-32, miR-20a, miR-16, miR-17, and miR-125b). The pooled hazard ratio values (95% confidence interval) related to different miRNA expression for overall survival and disease-free survival were 2.65 (2.07–3.39) and 1.95 (1.28–2.98), respectively. The results of this meta-analysis revealed that the expression levels of specific miRNAs can robustly predict prognosis of OSCC patients.
Collapse
Affiliation(s)
- G. Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - F. Mastrangelo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - V.C.A. Caponio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - L. Laino
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania–“Luigi Vanvitelli,” Naples, Italy
| | - N. Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | - L. Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
38
|
Cancer-associated fibroblasts confer cisplatin resistance of tongue cancer via autophagy activation. Biomed Pharmacother 2018; 97:1341-1348. [DOI: 10.1016/j.biopha.2017.11.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 11/21/2022] Open
|