1
|
Graifer D, Malygin A, Shefer A, Tamkovich S. Ribosomal Proteins as Exosomal Cargo: Random Passengers or Crucial Players in Carcinogenesis? Adv Biol (Weinh) 2025:e2400360. [PMID: 39895482 DOI: 10.1002/adbi.202400360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/28/2024] [Indexed: 02/04/2025]
Abstract
Many ribosomal proteins (RPs) have functions beyond their canonical role as constituents of the ribosome. They often relate to human pathologies, primarily, to carcinogenesis, and the expression of specific RPs is considerably changed in malignant cells. On the other hand, extracellular vesicles (including exosomes), which provide intercellular communication by transporting specific molecular cargo from donor to recipient cells, often contain specific sets of RPs. Thus, one can assume that oncogenic properties of RPs can be transferred from one cell to another by exosomes. Such kind transfer has been already documented with RPS3 and gastric cancer cells. However, it remains largely unclear how widespread is the above effect and to which extent it contributes to the tumor progression and metastasis. To shed light on this issue, a comparative analysis of the sets of RPs found in exosomes and of the available data on oncogenic properties of these proteins is conducted.
Collapse
Affiliation(s)
- Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| | - Alexey Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| | - Aleksei Shefer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| | - Svetlana Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Han TS, Kim DS, Son MY, Cho HS. SMYD family in cancer: epigenetic regulation and molecular mechanisms of cancer proliferation, metastasis, and drug resistance. Exp Mol Med 2024; 56:2325-2336. [PMID: 39482529 PMCID: PMC11611910 DOI: 10.1038/s12276-024-01326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 11/03/2024] Open
Abstract
Epigenetic modifiers (miRNAs, histone methyltransferases (HMTs)/demethylases, and DNA methyltransferases/demethylases) are associated with cancer proliferation, metastasis, angiogenesis, and drug resistance. Among these modifiers, HMTs are frequently overexpressed in various cancers, and recent studies have increasingly identified these proteins as potential therapeutic targets. In this review, we discuss members of the SET and MYND domain-containing protein (SMYD) family that are topics of extensive research on the histone methylation and nonhistone methylation of cancer-related genes. Various members of the SMYD family play significant roles in cancer proliferation, metastasis, and drug resistance by regulating cancer-specific histone methylation and nonhistone methylation. Thus, the development of specific inhibitors that target SMYD family members may lead to the development of cancer treatments, and combination therapy with various anticancer therapeutic agents may increase treatment efficacy.
Collapse
Affiliation(s)
- Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Hushmandi K, Saadat SH, Raei M, Daneshi S, Aref AR, Nabavi N, Taheriazam A, Hashemi M. Implications of c-Myc in the pathogenesis and treatment efficacy of urological cancers. Pathol Res Pract 2024; 259:155381. [PMID: 38833803 DOI: 10.1016/j.prp.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, β-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Chen S, Yang Y, Yuan Y, Bo Liu. Targeting PIM kinases in cancer therapy: An update on pharmacological small-molecule inhibitors. Eur J Med Chem 2024; 264:116016. [PMID: 38071792 DOI: 10.1016/j.ejmech.2023.116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
PIM kinases, a serine/threonine kinase family with three isoforms, has been well-known to participate in multiple physiological processes by phosphorylating various downstream targets. Accumulating evidence has recently unveiled that aberrant upregulation of PIM kinases (PIM1, PIM2, and PIM3) are closely associated with tumor cell proliferation, migration, survival, and even resistance. Inhibiting or silencing of PIM kinases has been reported have remarkable antitumor effects, such as anti-proliferation, pro-apoptosis and resensitivity, indicating the therapeutic potential of PIM kinases as potential druggable targets in many types of human cancers. More recently, several pharmacological small-molecule inhibitors have been preclinically and clinically evaluated and showed their therapeutic potential; however, none of them has been approved for clinical application so far. Thus, in this perspective, we focus on summarizing the oncogenic roles of PIM kinases, key signaling network, and pharmacological small-molecule inhibitors, which will provide a new clue on discovering more candidate antitumor drugs targeting PIM kinases in the future.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yushang Yang
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Liu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Huang Y, Tang M, Hu Z, Cai B, Chen G, Jiang L, Xia Y, Guan P, Li X, Mao Z, Wan X, Lu W. SMYD3 promotes endometrial cancer through epigenetic regulation of LIG4/XRCC4/XLF complex in non-homologous end joining repair. Oncogenesis 2024; 13:3. [PMID: 38191478 PMCID: PMC10774296 DOI: 10.1038/s41389-023-00503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Endometrial cancer (EC) stands as one of the most prevalent malignancies affecting the female genital tract, witnessing a rapid surge in incidence globally. Despite the well-established association of histone methyltransferase SMYD3 with the development and progression of various cancers, its specific oncogenic role in endometrial cancer remains unexplored. In the present study, we report that the expression level of SMYD3 is significantly upregulated in EC samples and associated with EC progression. Through meticulous in vivo and in vitro experiments, we reveal that depletion of SMYD3 curtails cell proliferation, migration, and invasion capabilities, leading to compromised non-homologous end joining repair (NHEJ) and heightened sensitivity of EC cells to radiation. Furthermore, our pathway enrichment analysis underscores the pivotal involvement of the DNA damage repair pathway in regulating EC progression. Mechanistically, in response to DNA damage, SMYD3 is recruited to these sites in a PARP1-dependent manner, specifically methylating LIG4. This methylation sets off a sequential assembly of the LIG4/XRCC4/XLF complex, actively participating in the NHEJ pathway and thereby fostering EC progression. Notably, our findings highlight the promise of SMYD3 as a crucial player in NHEJ repair and its direct correlation with EC progression. Intriguingly, pharmacological intervention targeting SMYD3 with its specific inhibitor, BCI-121, emerges as a potent strategy, markedly suppressing the tumorigenicity of EC cells and significantly enhancing the efficacy of radiotherapy. Collectively, our comprehensive data position SMYD3 as a central factor in NHEJ repair and underscore its potential as a promising pharmacological target for endometrial cancer therapy, validated through both in vitro and in vivo systems.
Collapse
Affiliation(s)
- Yujia Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Zhiyi Hu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bailian Cai
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Xia
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Pujun Guan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Wen Lu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Singh P, Sharma A, Kumar B, Sinha A, Syed MA, Dohare R. Integrative multiomics and weighted network approach reveals the prognostic role of RPS7 in lung squamous cell carcinoma pathogenesis. J Appl Genet 2023; 64:737-748. [PMID: 37653284 DOI: 10.1007/s13353-023-00782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Lung cancer is one of the most commonly occurring malignant cancers with the highest rate of mortality globally. Difference between lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) and their treatment strategies according to genetic markers may be helpful in reducing the cancer progression and increasing the overall survival (OS) in patients. LUSC is known for comparatively less typical onco-drivers, target therapy resistance, marked genomic complexity, and a reasonably higher mutation rate. The mRNA-seq data and clinical information of LUAD and LUSC cohorts from UCSC Xena comprising 437 and 379 patient samples were extracted. Differential expression and weighted network analyses revealed 47 and 18 hub differentially expressed genes (DEGs) corresponding to LUAD and LUSC cohorts. These hub DEGs were further subjected to protein-protein interaction network (PPIN) and OS analyses. Lower mRNA expression levels of both RPS15A and RPS7 worsened the OS of LUSC patients. Additionally, both these prognostic biomarkers were validated via external sources such as UALCAN, cBioPortal, TIMER, and HPA. RPS7 had higher mutation frequency compared to RPS15A and showed significant negative correlations with infiltrating levels of CD4+ T cells, CD8+ T cells, neutrophils, and macrophages. Our findings provided novel insights into biomarker discovery and the critical role of ribosomal biogenesis especially smaller ribosomal subunit in pathogenesis of LUSC.
Collapse
Affiliation(s)
- Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Archana Sharma
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Bhupender Kumar
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, 110036, India
| | - Anuradha Sinha
- Department of Preventive Oncology, Homi Bhabha Cancer Hospital and Research Centre, Muzaffarpur, 842004, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
7
|
Ichinose Y, Hasebe T, Hirasaki M, Sakakibara A, Yokogawa H, Nukui A, Hiratsuka M, Fujimoto A, Iso C, Wakui N, Shibasaki S, Kamada K, Suzuki N, Kamakura Y, Yasuda M, Aya A, Shimada H, Matsuura K, Ishiguro H, Osaki A, Saeki T. Vimentin-positive invasive breast carcinoma of no special type: A breast carcinoma with lethal biological characteristics. Pathol Int 2023; 73:413-433. [PMID: 37378453 DOI: 10.1111/pin.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Vimentin is a stable mesenchymal immunohistochemical marker and is widely recognized as a major marker of mesenchymal tumors. The purpose of the present study was to investigate if the vimentin expression status might serve as a significant predictor of outcomes in patients with invasive breast carcinoma of no special type (IBC-NST) and to investigate, by comprehensive RNA sequencing analyses, the mechanisms involved in the heightened malignant potential of vimentin-positive IBC-NSTs. This study, conducted using the data of 855 patients with IBC-NST, clearly identified vimentin expression status as a very important independent biological parameter for accurately predicting the outcomes in patients with IBC-NST. RNA sequence analyses clearly demonstrated significant upregulation of coding RNAs known to be closely associated with cell proliferation or cellular senescence, and significant downregulation of coding RNAs known to be closely associated with transmembrane transport in vimentin-positive IBC-NSTs. We conclude that vimentin-positive IBC-NSTs show heightened malignant biological characteristics, possibly attributable to the upregulation of RNAs closely associated with proliferative activity and cellular senescence, and downregulation of RNAs closely associated with transmembrane transport in IBC-NSTs.
Collapse
Affiliation(s)
- Yuki Ichinose
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Takahiro Hasebe
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Masataka Hirasaki
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Ayaka Sakakibara
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Hideki Yokogawa
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Asami Nukui
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Miyuki Hiratsuka
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Akihiro Fujimoto
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Chihiro Iso
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Noriko Wakui
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Satomi Shibasaki
- Community Health Science Center, Saitama Medical University, Iruma, Saitama, Japan
| | - Koichi Kamada
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Nobuyuki Suzuki
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Yasuo Kamakura
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Asano Aya
- Department of Breast Oncology, Saitama Medical University, Iruma, Saitama, Japan
| | - Hiroko Shimada
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Kazuo Matsuura
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Hiroshi Ishiguro
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Akihiko Osaki
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Toshiaki Saeki
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| |
Collapse
|
8
|
Boi D, Rubini E, Breccia S, Guarguaglini G, Paiardini A. When Just One Phosphate Is One Too Many: The Multifaceted Interplay between Myc and Kinases. Int J Mol Sci 2023; 24:4746. [PMID: 36902175 PMCID: PMC10003727 DOI: 10.3390/ijms24054746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Myc transcription factors are key regulators of many cellular processes, with Myc target genes crucially implicated in the management of cell proliferation and stem pluripotency, energy metabolism, protein synthesis, angiogenesis, DNA damage response, and apoptosis. Given the wide involvement of Myc in cellular dynamics, it is not surprising that its overexpression is frequently associated with cancer. Noteworthy, in cancer cells where high Myc levels are maintained, the overexpression of Myc-associated kinases is often observed and required to foster tumour cells' proliferation. A mutual interplay exists between Myc and kinases: the latter, which are Myc transcriptional targets, phosphorylate Myc, allowing its transcriptional activity, highlighting a clear regulatory loop. At the protein level, Myc activity and turnover is also tightly regulated by kinases, with a finely tuned balance between translation and rapid protein degradation. In this perspective, we focus on the cross-regulation of Myc and its associated protein kinases underlying similar and redundant mechanisms of regulation at different levels, from transcriptional to post-translational events. Furthermore, a review of the indirect effects of known kinase inhibitors on Myc provides an opportunity to identify alternative and combined therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Breccia
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
9
|
PIM1 attenuates renal ischemia-reperfusion injury by inhibiting ASK1-JNK/P38. Int Immunopharmacol 2023; 114:109563. [PMID: 36513021 DOI: 10.1016/j.intimp.2022.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Renal ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury (AKI), yet therapeutic approaches to alleviate IRI remain limited. PIM1 (provirus integration site for Moloney murine leukemia virus 1) is a constitutive serine threonine kinase that phosphorylates various substrates to regulate cell death and survival. However, the role of PIM1 in renal IRI remains unclear. This study aims to investigate the effect of PIM1 on renal IRI and explore its downstream regulatory mechanism. In this study, we inhibited or overexpressed PIM1 in mice and cultured proximal tubular cells, and then induced renal IRI model in vivo and hypoxia reoxygenation (HR) model in vitro. Renal function, renal structure injuries and cellular death were assessed to reflect the extent of IRI. The expression of PIM1 and the levels of ASK1, MAPK and their phosphorylated forms were detected by immunoblot. RNA sequencing of kidney cortex was performed to analyze downstream pathway of PIM1 in renal IRI. The results showed that PIM1 expression was significantly upregulated in renal IRI mouse model and in renal tubular cell HR model. AZD1208 (a PIM1 inhibitor) aggravated renal IRI, while PIM1 overexpression ameliorated renal IRI. This was involved in the regulation of the ASK1-MAPK pathway. Moreover, results demonstrated that ASK1 was a downstream target of PIM1 by administering Selonsertib (an inhibitor of ASK1 activity), and inhibiting ASK1 alleviated cell death after HR in PIM1 knockdown cells by reducing JNK/P38 activation. In conclusion, this study elucidated the protective effect of PIM1 on renal IRI, and the underlying mechanism may be related to ASK1-JNK/P38 signaling pathway. Taken together, PIM1 may be a potential therapeutic target for renal IRI.
Collapse
|
10
|
Gao Y, Xu W, Guo C, Huang T. GATA1 regulates the microRNA‑328‑3p/PIM1 axis via circular RNA ITGB1 to promote renal ischemia/reperfusion injury in HK‑2 cells. Int J Mol Med 2022; 50:100. [PMID: 35674159 PMCID: PMC9242654 DOI: 10.3892/ijmm.2022.5156] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
Acute kidney injury (AKI) is caused by renal ischemia/reperfusion injury (IRI) during kidney transplantation. The levels of both circular RNAs (circRNAs) and microRNAs (miRNAs/miR) appear to be critical for AKI detection. While several RNA interactions in AKI have been found, the regulatory mechanisms between the molecules remain to be fully elucidated. In the present study, miRNA expression profiling analysis was conducted using an online dataset to identify the differentially expressed miRNAs in rats with IRI. miR-328-3p was also found to be downregulated in human kidney-2 (HK-2) cells subjected to hypoxia/reperfusion (H/R), and its overexpression targeting pim-1 proto-oncogene (PIM1) resulted in an increased viability and a reduced apoptosis, as well as in the decreased expression of inflammatory factors upon H/R exposure. Putative targets and circRNAs of miR-328-3p were identified using publically available databases. The inhibition of circRNA integrin beta 1 (ITGB1; circITGB1) suppressed the inflammatory response induced by H/R by sponging miR-328-3p in HK-2 cells. Furthermore, a sequence of the functional ITGB1 promoter was studied for transcription factor GATA binding protein 1 (GATA1) binding sites. GATA1 binds to the ITGB1 promoter, leading to the expression of circITGB1. On the whole, the findings of the present study revealed a regulatory pathway modulating miR-328-3p in IRI, demonstrating that the GATA1-mediated regulation of circITGB1 enhanced the H/R-induced inflammatory response via the miR-328-3p/PIM1 axis.
Collapse
Affiliation(s)
- Yang Gao
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Weijia Xu
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Chen Guo
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Tao Huang
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
11
|
Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018‒2021). Acta Pharm Sin B 2022; 12:3006-3027. [PMID: 35865090 PMCID: PMC9293743 DOI: 10.1016/j.apsb.2022.03.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/23/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Cancer, which is the uncontrolled growth of cells, is the second leading cause of death after heart disease. Targeting drugs, especially to specific genes and proteins involved in growth and survival of cancer cells, is the prime need of research world-wide. Indole moiety, which is a combination of aromatic-heterocyclic compounds, is a constructive scaffold for the development of novel leads. Owing to its bioavailability, high unique chemical properties and significant pharmacological behaviours, indole is considered as the most inquisitive scaffold for anticancer drug research. This is illustrated by the fact that the U.S. Food and Drug Administration (FDA) has recently approved several indole-based anticancer agents such as panobinostat, alectinib, sunitinib, osimertinib, anlotinib and nintedanib for clinical use. Furthermore, hundreds of studies on the synthesis and activity of the indole ring have been published in the last three years. Taking into account the facts stated above, we have presented the most recent advances in medicinal chemistry of indole derivatives, encompassing hot articles published between 2018 and 2021 in anticancer drug research. The recent advances made towards the synthesis of promising indole-based anticancer compounds that may act via various targets such as topoisomerase, tubulin, apoptosis, aromatase, kinases, etc., have been discussed. This review also summarizes some of the recent efficient green chemical synthesis for indole rings using various catalysts for the period during 2018–2021. The review also covers the synthesis, structure‒activity relationship, and mechanism by which these leads have demonstrated improved and promising anticancer activity. Indole molecules under clinical and preclinical stages are classified into groups based on their cancer targets and presented in tabular form, along with their mechanism of action. The goal of this review article is to point the way for medicinal chemists to design and develop effective indole-based anticancer agents.
Collapse
|
12
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
13
|
Wittmann C, Bacher F, Enyedy EA, Dömötör O, Spengler G, Madejski C, Reynisson J, Arion VB. Highly Antiproliferative Latonduine and Indolo[2,3- c]quinoline Derivatives: Complex Formation with Copper(II) Markedly Changes the Kinase Inhibitory Profile. J Med Chem 2022; 65:2238-2261. [PMID: 35104137 PMCID: PMC8842277 DOI: 10.1021/acs.jmedchem.1c01740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
A series of latonduine
and indoloquinoline derivatives HL1–HL8 and their copper(II)
complexes (1–8) were synthesized and comprehensively
characterized. The structures of five compounds (HL6, [CuCl(L1)(DMF)]·DMF, [CuCl(L2)(CH3OH)], [CuCl(L3)]·0.5H2O, and [CuCl2(H2L5)]Cl·2DMF) were elucidated
by single crystal X-ray diffraction. The copper(II) complexes revealed
low micro- to sub-micromolar IC50 values with promising
selectivity toward human colon adenocarcinoma multidrug-resistant
Colo320 cancer cells as compared to the doxorubicin-sensitive Colo205
cell line. The lead compounds HL4 and 4 as well as HL8 and 8 induced apoptosis efficiently in Colo320 cells. In addition, the
copper(II) complexes had higher affinity to DNA than their metal-free
ligands. HL8 showed selective inhibition for
the PIM-1 enzyme, while 8 revealed strong inhibition
of five other enzymes, i.e., SGK-1, PKA, CaMK-1, GSK3β, and
MSK1, from a panel of 50 kinases. Furthermore, molecular modeling
of the ligands and complexes showed a good fit to the binding pockets
of these targets.
Collapse
Affiliation(s)
- Christopher Wittmann
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| | - Felix Bacher
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| | - Eva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary.,Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Christian Madejski
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, United Kingdom
| | - Vladimir B Arion
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| |
Collapse
|
14
|
Deregulation of ribosomal proteins in human cancers. Biosci Rep 2021; 41:230380. [PMID: 34873618 PMCID: PMC8685657 DOI: 10.1042/bsr20211577] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
The ribosome, the site for protein synthesis, is composed of ribosomal RNAs (rRNAs) and ribosomal proteins (RPs). The latter have been shown to have many ribosomal and extraribosomal functions. RPs are implicated in a variety of pathological processes, especially tumorigenesis and cell transformation. In this review, we will focus on the recent advances that shed light on the effects of RPs deregulation in different types of cancer and their roles in regulating the tumor cell fate.
Collapse
|
15
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
16
|
Rathi A, Kumar D, Hasan GM, Haque MM, Hassan MI. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim Biophys Acta Gen Subj 2021; 1865:129995. [PMID: 34455019 DOI: 10.1016/j.bbagen.2021.129995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
17
|
SMYD2 promotes tumorigenesis and metastasis of lung adenocarcinoma through RPS7. Cell Death Dis 2021; 12:439. [PMID: 33935284 PMCID: PMC8089105 DOI: 10.1038/s41419-021-03720-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
The protein methyltransferase SET and MYND domain-containing protein 2 (SMYD2) is a transcriptional regulator that methylates histones and nonhistone proteins. As an oncogene, SMYD2 has been investigated in numerous types of cancer. However, its involvement in lung cancer remains elusive. The prognostic value of SMYD2 expression in lung adenocarcinoma (LUAD) was determined through bioinformatics analysis, reverse-transcription polymerase chain reaction, western blotting, and immunohistochemistry. The effect of SMYD2 on LUAD cell proliferation and metastasis was explored in vivo and in vitro, and the underlying mechanisms were investigated via RNA-seq, and chromatin immunoprecipitation-quantitative PCR. SMYD2 expression was significantly upregulated in LUAD cell lines and tissues. High SMYD2 expression was associated with shorter overall and disease-free survival in LUAD patients. Inhibition of SMYD2 with SMYD2 knockdown or AZ505 dramatically inhibited the proliferation, migration, and invasion ability of GLC-82 and SPC-A1 cells and remarkably reduced tumor growth in mice. Mechanically, SMYD2 may activate the transcription of ribosomal small subunit protein 7 (RPS7) by binding to its promoter. Following overexpression of SMYD2, the proliferation, migration, and invasion of cells increased, which was partially reversed by RPS7. Thus, SMYD2 might modulate tumorigenesis and metastasis mediated by RPS7 LUAD. SMYD2 might be a prognostic biomarker and therapeutic target in LUAD.
Collapse
|
18
|
Zou R, Xu H, Li F, Wang S, Zhu L. Increased Expression of UBE2T Predicting Poor Survival of Epithelial Ovarian Cancer: Based on Comprehensive Analysis of UBE2s, Clinical Samples, and the GEO Database. DNA Cell Biol 2020; 40:36-60. [PMID: 33180631 DOI: 10.1089/dna.2020.5823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin-conjugating enzymes E2 (UBE2) have been reported in the microenvironment of various malignant tumors, but their correlation with ovarian cancer (OC) remains elusive. This study aimed to systematically analyze the expression patterns, prognostic value, genetic variation, and biological functions of 12 members of the UBE2 gene family in OC through the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, cBioPortal, and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) databases, respectively. We found that the mRNA levels of UBE2C, UBE2N, UBE2S, and UBE2T were significantly upregulated in OC compared with those in normal ovarian tissue. In patients with serous ovarian cancer (SOC), UBE2A, UBE2B, UBE2C, UBE2G, UBE2R2, and UBE2T upregulation were associated with poor overall survival. Moreover, UBE2A, UBE2N, UBE2R2, and UBE2T upregulation and UBE2G downregulation were associated with poor progression-free survival. UBE2T exhibited a strong correlation with OC and was thus further examined. We found that UBE2T has a high diagnostic accuracy (area under the receiver operating characteristic curve = 0.969) in epithelial ovarian cancer (EOC). Immunohistochemical assays and the Gene Expression Omnibus (GEO) database revealed that UBE2T was significantly upregulated in EOC compared with that in borderline tumors, benign tumors, and normal ovarian tissues, and its high expression was associated with poor prognosis. The Cox model showed that UBE2T upregulation was an independent risk factor affecting the prognosis of EOC and SOC. Furthermore, UBE2T was associated with specific immune cells and was mainly involved in cell cycle-related events. Genomic analysis showed that TP53 and TTN mutations were associated with UBE2T expression. Gene copy number amplification and hypomethylation may be responsible for UBE2T upregulation in OC. In conclusion, UBE2 family members may play a role in the development of OC. Specifically, UBE2T could serve as a new prognostic marker and therapeutic target for this disease. (IRB Approval No. 2020PS533K).
Collapse
Affiliation(s)
- Ruoyao Zou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Haoya Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Feifei Li
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shengke Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| |
Collapse
|
19
|
PIM-1 Is Overexpressed at a High Frequency in Circulating Tumor Cells from Metastatic Castration-Resistant Prostate Cancer Patients. Cancers (Basel) 2020; 12:cancers12051188. [PMID: 32397108 PMCID: PMC7281625 DOI: 10.3390/cancers12051188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
PIM-1 is an oncogene involved in cell cycle progression, cell growth, cell survival and therapy resistance, activated in many types of cancer, and is now considered as a very promising target for cancer therapy. We report for the first time that PIM-1 is overexpressed in circulating tumor cells (CTCs) from metastatic castration-resistant prostate cancer patients (mCRPC). We first developed and validated a highly sensitive RT-qPCR assay for quantification of PIM-1 transcripts. We further applied this assay to study PIM-1 expression in EpCAM(+) CTC fraction isolated from 64 peripheral blood samples of 50 mCRPC patients. CTC enumeration in all samples was performed using the FDA-cleared CellSearch® system. PIM-1 overexpression was detected in 24/64 (37.5%) cases, while in 20/24 (83.3%) cases that were positive for PIM-1 expression, at least one CTC/7.5 mL PB was detected in the CellSearch®. Our data indicate that PIM-1 overexpression is observed at high frequency in CTCs from mCRPC patients and this finding, in combination with androgen receptor splice variant 7 (AR-V7) expression in CTCs, suggest its potential role as a very promising target for cancer therapy. We strongly believe that PIM-1 overexpression in EpCAM(+) CTC fraction merits to be further evaluated and validated as a non-invasive circulating tumor biomarker in a large and well-defined patient cohort with mCRPC.
Collapse
|
20
|
Lin A, Giuliano CJ, Palladino A, John KM, Abramowicz C, Yuan ML, Sausville EL, Lukow DA, Liu L, Chait AR, Galluzzo ZC, Tucker C, Sheltzer JM. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med 2019; 11:eaaw8412. [PMID: 31511426 PMCID: PMC7717492 DOI: 10.1126/scitranslmed.aaw8412] [Citation(s) in RCA: 413] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Ninety-seven percent of drug-indication pairs that are tested in clinical trials in oncology never advance to receive U.S. Food and Drug Administration approval. While lack of efficacy and dose-limiting toxicities are the most common causes of trial failure, the reason(s) why so many new drugs encounter these problems is not well understood. Using CRISPR-Cas9 mutagenesis, we investigated a set of cancer drugs and drug targets in various stages of clinical testing. We show that-contrary to previous reports obtained predominantly with RNA interference and small-molecule inhibitors-the proteins ostensibly targeted by these drugs are nonessential for cancer cell proliferation. Moreover, the efficacy of each drug that we tested was unaffected by the loss of its putative target, indicating that these compounds kill cells via off-target effects. By applying a genetic target-deconvolution strategy, we found that the mischaracterized anticancer agent OTS964 is actually a potent inhibitor of the cyclin-dependent kinase CDK11 and that multiple cancer types are addicted to CDK11 expression. We suggest that stringent genetic validation of the mechanism of action of cancer drugs in the preclinical setting may decrease the number of therapies tested in human patients that fail to provide any clinical benefit.
Collapse
Affiliation(s)
- Ann Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Christopher J Giuliano
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Ann Palladino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kristen M John
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Hofstra University, Hempstead, NY 11549, USA
| | - Connor Abramowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- New York Institute of Technology, Glen Head, NY 11545, USA
| | - Monet Lou Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Syosset High School, Syosset, NY 11791, USA
| | - Erin L Sausville
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Devon A Lukow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Luwei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | - Clara Tucker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
21
|
Li X, Yu X, He Y, Meng Y, Liang J, Huang L, Du H, Wang X, Liu W. Integrated Analysis of MicroRNA (miRNA) and mRNA Profiles Reveals Reduced Correlation between MicroRNA and Target Gene in Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1972606. [PMID: 30627543 PMCID: PMC6304515 DOI: 10.1155/2018/1972606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/10/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Accumulating evidences demonstrated that microRNA-target gene pairs were closely related to tumorigenesis and development. However, the correlation between miRNA and target gene was insufficiently understood, especially its changes between tumor and normal tissues. OBJECTIVES The aim of this study was to evaluate the changes of correlation of miRNAs-target pairs between normal and tumor. MATERIALS AND METHODS 5680 mRNA and 5740 miRNA expression profiles of 11 major human cancers were downloaded from the Cancer Genome Atlas (TCGA). The 11 cancer types were bladder urothelial carcinoma, breast invasive carcinoma, head and neck squamous cell carcinoma, kidney chromophobe, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, stomach adenocarcinoma, and thyroid carcinoma. For each cancer type, we firstly obtained differentially expressed miRNAs (DEMs) and genes (DEGs) in tumor and then acquired critical miRNA-target gene pairs by combining DEMs, DEGs and two experimentally validated miRNA-target interaction databases, miRTarBase and miRecords. We collected samples with both miRNA and mRNA expression values and performed a correlation analysis by Pearson method for miRNA-target pairs in normal and tumor, respectively. RESULTS We totally got 4743 critical miRNA-target pairs across 11 cancer types, and 4572 of them showed weaker correlation in tumor than in normal. The average correlation coefficients of miRNA-target pairs were different greatly between normal (-0.38 ~ -0.61) and tumor (-0.04 ~ -0.26) for 11 cancer type. The pan-cancer network, which consisted of 108 edges connecting 35 miRNAs and 89 target genes, showed the interactions of pairs appeared in multicancers. CONCLUSIONS This comprehensive analysis revealed that correlation between miRNAs and target genes was greatly reduced in tumor and these critical pairs we got were involved in cellular adhesion, proliferation, and migration. Our research could provide opportunities for investigating cancer molecular regulatory mechanism and seeking therapeutic targets.
Collapse
Affiliation(s)
- Xingsong Li
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Xiaokang Yu
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Yuting He
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Yuhuan Meng
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Jinsheng Liang
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Xueping Wang
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wanli Liu
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|