1
|
Mao J, Song F, Zhang Y, Li Y, Inchingolo R, Chauhan A, Midorikawa Y, Chen Z, Tang W. Development and validation of a chromatin regulator signature for predicting prognosis hepatocellular carcinoma patient. J Gastrointest Oncol 2024; 15:397-414. [PMID: 38482221 PMCID: PMC10932653 DOI: 10.21037/jgo-23-996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/01/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignancy with a bleak prognosis. Although emerging research increasingly supports the involvement of chromatin regulators (CRs) in cancer development, CRs in HCC patients have not received proportionate attention. This study aimed to investigate the role and prognostic significance of CRs in HCC patients, providing new insights for clinical diagnosis and treatment strategies. METHODS We analyzed 424 samples in The Cancer Genome Atlas-Liver hepatocellular carcinoma (TCGA-LIHC) data to identify key CR genes associated with HCC prognosis by differential expression and univariate Cox regression analyses. LASSO-multivariate Cox regression method was used for construction of a prognostic signature and development of a CR-related prognosis model. The prognosis capacity of the model was evaluated via Kaplan-Meier method. Relationship between the model and tumor microenvironment (TME) was evaluated. Additionally, clinical variables and the model were incorporated to create a nomogram. The role of the prognostic gene MRG-binding protein (MRGBP) in HCC was elucidated by immunohistochemistry and semiquantitative analysis. RESULTS A risk score model, comprising B-lymphoma Mo-MLV insertion region 1 (BMI1), chromobox 2 (CBX2), and MRGBP, was constructed. The area under the curve (AUC) of the CR-based signature is 0.698 (P<0.05), exhibiting robust predictive power. Functional and pathway analyses illuminated the biological relevance of these genes. Immune microenvironment analysis suggested potential implications for immunotherapy. Drug sensitivity analysis identified agents for targeted treatment. Clinical samples show that MRGBP is highly expressed in HCC tissues. CONCLUSIONS This CR-based signature shows promise as a valuable prognostic tool for HCC patients. It demonstrates predictive capabilities, independence from other clinical factors, and potential clinical applicability. In addition, we need more experiments to validate our findings. These findings offer insights into HCC prognosis and treatment, with implications for personalized medicine and improved patient outcomes.
Collapse
Affiliation(s)
- Jiazhen Mao
- Department of Hepatobiliary Pancreatic Splenic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Fei Song
- Department of Hepatobiliary Pancreatic Splenic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yu Zhang
- Department of Hepatobiliary Pancreatic Splenic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yifan Li
- Department of Hepatobiliary Pancreatic Splenic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Riccardo Inchingolo
- Interventional Radiology Unit, “F. Miulli” Regional General Hospital, Bari, Italy
| | - Aman Chauhan
- Division of Medical Oncology, Department of Internal Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Yutaka Midorikawa
- Department of Surgery, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Zhong Chen
- Department of Hepatobiliary Pancreatic Splenic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Weidong Tang
- Department of Hepatobiliary Pancreatic Splenic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of General Surgery, Nantong Elderly Rehabilitation Hospital, Nantong, China
| |
Collapse
|
2
|
Zhou Y, Tan F, Wang Z, Zhou G, Yuan C. The Pivotal Function of SLC16A1 and SLC16A1-AS1 in Cancer Progress: Molecular Pathogenesis and Prognosis. Mini Rev Med Chem 2024; 24:1685-1700. [PMID: 38616756 DOI: 10.2174/0113895575284780240327103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
More than 300 membranes make up the SLC family of transporters, utilizing an ion gradient or electrochemical potential difference to move their substrates across biological membranes. The SLC16 gene family contains fourteen members. Proton-linked transportation of monocarboxylates can be promoted by the transporters MCT1, which the SLC16A1 gene family encodes. Glycolysis is constitutively up-regulated in cancer cells, and the amount of lactate produced as a result is correlated with prognosis. Further speaking, SLC16A1 plays an essential role in controlling the growth and spread of tumors, according to mounting evidence. Additionally, LncRNAs are the collective term for all genes that produce RNA transcripts longer than 200 nucleotides but do not convert into proteins. It has steadily developed into a hub for research, offering an innovative approach to tumor study as technology related to molecular biology advances. The growing study has uncovered SLC16A1-AS1, an RNA that acts as an antisense to SLC16A1, which is erroneously expressed in various types of cancers. Therefore, we compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. We compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. Relevant studies were retrieved and collected through the PubMed system. After determining SLC16A1 and SLC16A1-AS1 as the research object, we found a close relationship between SLC16A1 and tumorigenesis as well as the influencing factors through the analysis of the research articles. SLC16A1 regulates lactate chemotaxis while uncovering SLC16A1- AS1 as an antisense RNA acting through multiple pathways; they affect the metabolism of tumor cells and have an impact on the prognosis of patients with various cancers.
Collapse
Affiliation(s)
- Yunxi Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Fangshun Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Zhuowei Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| |
Collapse
|
3
|
Chen L, Li Y, Deng X. Comprehensive analysis of pan-cancer reveals the potential of SLC16A1 as a prognostic and immunological biomarker. Medicine (Baltimore) 2023; 102:e33242. [PMID: 36930112 PMCID: PMC10019278 DOI: 10.1097/md.0000000000033242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
SLC16A1 plays an important role in the development of multiple cancer types. Pan-cancer analysis may have significant impacts on the exploration of the relationship between SLC16A1 gene expression, prognosis and the molecular mechanisms of tumorigenesis. In this study, through the analysis of TCGA and GEO datasets, we explored the expression level and survival prognosis of SLC16A1 in pan-cancer, and further explored the differences in SLC16A1 gene mutation, methylation, and phosphorylation between tumor and normal tissues. In addition, we focused on the biological function of this gene and the relationship between the prognosis and immune infiltration by immune infiltration analysis and enrichment analysis, in order to evaluate the diagnostic and prognostic significance of SLC16A1 in carcinomas. The study found that SLC16A1 was highly expressed in 14 kinds of tumors, and there were statistically significant differences in the prognosis of 9 tumors. The phosphorylation level of S467 increased in OV, RCC, and UCEC. There was a statistically negative correlation between the CD8+ T-cell infiltration level and the SLC16A1 expression in HNSC, LUSC, SARC, TGCT, and KIRC. The cancer-related fibroblasts were positively correlated with SLC16A1 expression in BLCA, BRCA, KIRC, KIRP, PAAD, PCPG, and THCA. The enrichment analysis indicated that the tumorigenesis mechanism of this gene was mainly related to "glycolysis and glucose metabolism synthesis." SLC16A1 was a promising prognostic and immunological biomarker in pan-cancer.
Collapse
Affiliation(s)
- Lingyun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Yang Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Xinna Deng
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
5
|
Chai D, Zhang L, Guan Y, Yuan J, Li M, Wang W. Prognostic Value and Immunological Role of MORF4-Related Gene-Binding Protein in Human Cancers. Front Cell Dev Biol 2021; 9:703415. [PMID: 34660575 PMCID: PMC8511499 DOI: 10.3389/fcell.2021.703415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
MORF4-related gene-binding protein (MRGBP) is the subunit of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. Much of the research indicated an oncogenic role of MRGBP in the development of cancers. However, it is still unknown the role MRGBP plays in human cancers, which deserves further exploration. In this research, the expression profile, prognostic value of MRGBP, and the relationship between MRGBP and immune infiltration were explored in 33 types of cancer. The differences in MRGBP expression in tumor and normal tissues were explored using data from The Cancer Genome Atlas, Gene Expression Omnibus and ONCOMINE. Analysis of the association between MRGBP and prognosis using Kaplan-Meier survival curve and COX analysis. The data of Tumor mutational burden (TMB), microsatellite instability (MSI) from TCGA. The relationship Between MRGBP expression and immunity was analyzed using the ESTIMATE algorithm and CIBERSORT. Furthermore, we explored MRGBP expression and the relationship between MRGBP expression and macrophage infiltration using immunohistochemical analysis in lower grade glioma (LGG). Our results revealed that MRGBP was highly expressed in most cancer tissues compared with normal tissues. Tumors with increased MRGBP expression had a high clinicopathologic stage and poor prognosis. The expression of MRGBP was closely related to the TMB, MSI. We also found a significant negative correlation between MRGBP expression and stromal scores and immune scores in various types of cancer. Furthermore, MRGBP expression was associated with a variety of immune cells including B cells, NK cells, T cells, and macrophages. LGG and LIHC was selected as representative cancer types for further study, the results of immunohistochemistry indicated that the protein levels of MRGBP were significantly elevated in tumor tissues. Moreover, our LIHC data analysis showed that patients with high MRGBP expression were associated with short survival rates and MRGBP was a risk factor to determine OS. Immunohistochemistry also confirmed that M0 macrophage infiltration in the MRGBP-high group significantly increased. In conclusion, these results reveal that MRGBP can serve as a potential prognostic biomarker and it plays an important role in tumor immune infiltration in various tumors, especially in LGG and LIHC.
Collapse
Affiliation(s)
- Dongqi Chai
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lilong Zhang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongjun Guan
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Man Li
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weixing Wang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Wang Y, Gorlova OY, Gorlov IP, Zhu M, Dai J, Albanes D, Lam S, Tardon A, Chen C, Goodman GE, Bojesen SE, Landi MT, Johansson M, Risch A, Wichmann HE, Bickeboller H, Christiani DC, Rennert G, Arnold SM, Brennan P, Field JK, Shete S, Le Marchand L, Melander O, Brunnstrom H, Liu G, Hung RJ, Andrew AS, Kiemeney LA, Zienolddiny S, Grankvist K, Johansson M, Caporaso NE, Woll PJ, Lazarus P, Schabath MB, Aldrich MC, Stevens VL, Ma H, Jin G, Hu Z, Amos CI, Shen H. Association Analysis of Driver Gene-Related Genetic Variants Identified Novel Lung Cancer Susceptibility Loci with 20,871 Lung Cancer Cases and 15,971 Controls. Cancer Epidemiol Biomarkers Prev 2020; 29:1423-1429. [PMID: 32277007 PMCID: PMC8120681 DOI: 10.1158/1055-9965.epi-19-1085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/10/2019] [Accepted: 04/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A substantial proportion of cancer driver genes (CDG) are also cancer predisposition genes. However, the associations between genetic variants in lung CDGs and the susceptibility to lung cancer have rarely been investigated. METHODS We selected expression-related single-nucleotide polymorphisms (eSNP) and nonsynonymous variants of lung CDGs, and tested their associations with lung cancer risk in two large-scale genome-wide association studies (20,871 cases and 15,971 controls of European descent). Conditional and joint association analysis was performed to identify independent risk variants. The associations of independent risk variants with somatic alterations in lung CDGs or recurrently altered pathways were investigated using data from The Cancer Genome Atlas (TCGA) project. RESULTS We identified seven independent SNPs in five lung CDGs that were consistently associated with lung cancer risk in discovery (P < 0.001) and validation (P < 0.05) stages. Among these loci, rs78062588 in TPM3 (1q21.3) was a new lung cancer susceptibility locus (OR = 0.86, P = 1.65 × 10-6). Subgroup analysis by histologic types further identified nine lung CDGs. Analysis of somatic alterations found that in lung adenocarcinomas, rs78062588[C] allele (TPM3 in 1q21.3) was associated with elevated somatic copy number of TPM3 (OR = 1.16, P = 0.02). In lung adenocarcinomas, rs1611182 (HLA-A in 6p22.1) was associated with truncation mutations of the transcriptional misregulation in cancer pathway (OR = 0.66, P = 1.76 × 10-3). CONCLUSIONS Genetic variants can regulate functions of lung CDGs and influence lung cancer susceptibility. IMPACT Our findings might help unravel biological mechanisms underlying lung cancer susceptibility.
Collapse
Affiliation(s)
- Yuzhuo Wang
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Olga Y Gorlova
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas
| | - Ivan P Gorlov
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas
| | - Meng Zhu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Adonina Tardon
- Department of Public Health IUOPA, University of Oviedo, ISPA and CIBERESP, Oviedo, Spain
| | - Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gary E Goodman
- Public Health Sciences Division, Swedish Cancer Institute, Seattle, Washington
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mattias Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Angela Risch
- University of Salzburg, Department of Biosciences, Allergy-Cancer-BioNano Research Centre, Salzburg, Austria
- Division of Epigenomics and Cancer Risk Factors, DKFZ-German Cancer Research Center, Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Heunz-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig Maximilians University, Munich, Bavaria, Germany
- Helmholtz Zentrum Munchen, German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Neuherberg, Germany
- Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, Germany
| | - Heike Bickeboller
- Department of Genetic Epidemiology, University Medical Center Goettingen, Goettingen, Germany
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Gad Rennert
- Technion Faculty of Medicine, Carmel Medical Center, Haifa, Israel
| | - Susanne M Arnold
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - John K Field
- Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, The University of Liverpool Institute of Translational Medicine, Liverpool, United Kingdom
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawai'i Cancer Center, Honolulu, Hawai'i
| | - Olle Melander
- Clinical Sciences, Lund University, Lund, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | | | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Rayjean J Hung
- Prosseman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Angeline S Andrew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Lambertus A Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umea, Sweden
| | | | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Penella J Woll
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Melinda C Aldrich
- Department of Medicine (Division of Genetic Medicine), Vanderbilt University Medical Center, Nashville, Tennessee
| | - Victoria L Stevens
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Hongxia Ma
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Christopher I Amos
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas.
| | - Hongbing Shen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|